Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 5, 2017

Mechanical behaviour of a lightweight, three-layered sandwich panel based on the raw material maize

  • Moira P. Burnett EMAIL logo and Alireza Kharazipour
From the journal Holzforschung

Abstract

Lightweight construction of composites is one of the strategies for developing material-saving panels, whereas light honeycomb boards or sandwich panels (SPs) based on foam or wood materials seem to be very promising in this context. The objective of the present work was the development of an SP with a reduced density based on nearly 100% expanded maize granular in the core layer, which was combined with 3 mm thin and stiff poplar plywood as face materials. In focus were mechanical and physical properties of the SPs, which should be applicable in the furniture industry and competitive with conventional wood composites such as fibreboards or particle boards.

Acknowledgements

The authors are grateful to industry partners for supplying the materials. Furthermore, the authors did receive financial support for research and publication from Fachagentur Nachwachsende Rohstoffe e. V. (22014313).

References

Allen, H.G. (1969) Analysis and design of structural sandwich panels. In: Chapter 2: Sandwich Beams, 1st ed., Pergamon Press, Oxford, London.10.1016/B978-0-08-012870-2.50005-5Search in Google Scholar

Barbu, M., Lüdtke, J., Thömen, H., Welling, J. (2012) Innovative production of wood-based lightweight panels. In: Processing Technologies for the Forest and Biobased Products Industries. Eds. Teischinger, A., Barbu, M., Dunky, M., Harper, D., Jungmeier, G., Militz, H., Musso, M., Petutschnigg, A., Pizzi, A., Wieland, S., Young, T.M., PTF BPI 2010, Salzburg University of Applied Sciences, Kuchl/Austria.Search in Google Scholar

Barbu, M.C., Reh, R., Irle, M. (2014) Wood-based composites. In: Research Developments in Wood Engineering and Technology. Eds. Aguilera, A., Davim, J.P. Engineering Science Reference, IGI Global Hershey.10.4018/978-1-4666-4554-7.ch001Search in Google Scholar

Burnett, M.P. (2016) Entwicklung von leichten, dreischichtigen Sandwichverbundplatten unter Verwendung des Agrarrohstoffes Mais. PhD thesis. Georg-August University Göttingen.Search in Google Scholar

Dauvergne, P., Lister, J. Timber. Chapter: flat-pack furniture. Polity Press, Cambridge, MA, 2011.Search in Google Scholar

DIN 53 293 (1982) Testing of sandwiches; Flexural test of flat sandwiches; German version DIN 53 293: 1982. European Committee for Standardization, Brussels, Belgium.Search in Google Scholar

Eierle, B., Niedermaier, P., Schanda, U., Meistring, P., Nusser, B. Konstruktionsgrundlagen für den Einsatz von Leichtbauelementen im Innenausbau. Abschlussbericht des gleichnamigen Teilprojektes im Rahmen des Verbundforschungsvorhabens „Holzbau der Zukunft“. Fraunhofer IRB Verlag, Rosenheim/München, 2008.Search in Google Scholar

EN 310 (1993) Particleboards and Fibreboards, Determination of modulus of elasticity in bending and of bending strength; German version EN 310:1993. European Committee for Standardization, Brussels, Belgium.Search in Google Scholar

EN 319 (1993) Particleboards and Fibreboards, Determination of tensile strength perpendicular to the plane of the board; German version EN 319:1993. European Committee for Standardization, Brussels, Belgium.Search in Google Scholar

EN 320 (1993) Fibreboards, Determination of resistance to axial withdrawal of screws; German version EN 320:1993. European Committee for Standardization, Brussels, Belgium.Search in Google Scholar

Irle, M.A., Barbu, M.C., Reh, R., Bergland, L., Rowell, R.M. (2012) Wood composites. In: Handbook of Wood Chemistry and Wood Composites. 2. Ed. Rowell, R.M. CRC Press/Taylor & Francis Group, Boca Raton, London, New York.Search in Google Scholar

Kharazipour, A., Bohn, C. Verwendung von Popcorn für Holz- und Verbundwerkstoffe. Deutsches Patent: AKZ: 102 006 047 279.9, 2006.Search in Google Scholar

Kharazipour, A., Bohn, C. Use of popcorn for timber and composite materials. USA Patent Nr. 8,568,895 B2, 2013.Search in Google Scholar

Kharazipour, A., Kraft, R. Wood and composite-material plate and method for production. WO 2014/131801 A1, 2014.Search in Google Scholar

Kharazipour, A., Ritter, N., von Werder, H.K., Bohn, C. (2011) Entwicklung leichter dreischichtiger Spanplatten auf Basis nachwachsender Rohstoffe. Holztechnologie 52:11–16.Search in Google Scholar

Klein, B. Leichtbau-Konstruktion, Berechnungsgrundlage und Gestaltung, 10th ed., Springer Vieweg, Wiesbaden, 2013.10.1007/978-3-658-02272-3Search in Google Scholar

Kopp, G., Bruckmann, S., Kriescher, M., Friedrich, H. Next generation car – example of function integration at the light urbal vehicle (LUV) vehicle concept. In: Advanced Composites for Aerospace, Marine and Land Applications II. Eds. Sano, T., Srivatsan, T.S. John Wiley & Sons Inc., New York, 2015.10.1002/9781119093213.ch21Search in Google Scholar

Li, J., Hunt, J.F., Gong, S., Cai, Z. (2016) Fatigue behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP). Holzforschung 70:567–575.10.1515/hf-2015-0091Search in Google Scholar

Mantau, U. (2010) Rohstoffknappheit und Holzmarkt. In: Waldeigentum: Dimensionen und Perspektiven, 1st ed., Eds. Depenheuer, O., Möhring, B. Springer-Verlag, Berlin Heidelberg.10.1007/978-3-642-00232-8_8Search in Google Scholar

Niemz, P., Sonderegger, W. (2003) Untersuchungen zur Korrelation ausgewählter Holzeigenschaften untereinander und mit der Rohdichte unter Verwendung von 103 Holzarten. Schweizerische Zeitschrift für Forstwesen 154:489–493.10.3188/szf.2003.0489Search in Google Scholar

Peters, S. Material revolution 2: New sustainable and multi-purpose materials for design and architecture. Materials II: Lightweight construction materials, 2nd ed., Birkhäuser Architecture Basel, 2014.10.1515/9783038210023Search in Google Scholar

Poppensieker, J., Thömen, H. Wabenplatten für den Möbelbau. Bundesforschungsanstalt für Forst- und Holzwirtschaft. Arbeitsbericht des Instituts für Holzphysik und mechanische Technologie des Holzes, Universität Hamburg, 2005.Search in Google Scholar

Ritter, N. Entwicklung leichter, dreischichtiger Spanplatten aus einer Kombination der nachwachsenden Rohstoffe Mais und Holz. Dissertation, Fachbereich Forstwissenschaften, Universität Göttingen, Sierke Verlag, 2012.Search in Google Scholar

Schneider, K.J. Bautabellen für Ingenieure mit Berechnungshinweisen und Beispielen. 7. Auflage, Werner Verlag. Köln, 1986.Search in Google Scholar

Shalbafan, A. Investigation of foam materials to be used in lightweight wood‐based composites, Publication II. Dissertation, Fakultät für Mathematik, Informatik und Naturwissenschaften, Universität Hamburg, 2013.Search in Google Scholar

Shalbafan, A., Lüdtke, J., Welling, J., Frühwald, A. (2013) Physiomechanical properties of ultra-lightweight foam core particleboard: different core densities. Holzforschung 67:169–175.10.1515/hf-2012-0058Search in Google Scholar

Smardzewski, J. (2013) Elastic properties of cellular wood panels with hexagonal and auxetic cores. Holzforschung 67:87–92.10.1515/hf-2012-0055Search in Google Scholar

Smardzewski, J., Jasińska, D. (2017) Mathematical models and experimental data for HDF based sandwich panels with dual corrugated lightweight core. Holzforschung 71:265.10.1515/hf-2016-0146Search in Google Scholar

UNECE – United Nations Economic Commission for Europe. Forest Products Annual Market Review 2006–2007. Chapter 1: Wood energy policies and markets reshaping entire forest sector: overview of forest products markets and policies, 2006–2007. Geneva Timber and Forestry Study Paper 23, Timber Section, Geneva, Switzerland, UN New York and Geneva, 2008.Search in Google Scholar

VHI (Association of the German Wood-Based Panel Industry) (2016). Download (23.11.2016): http://nw.vhi.de/vhi/?lang=enSearch in Google Scholar

Vos, H., Kharazipour, A. (2010). Eigenschaften von leichten, industriell hergestellten Spanplatten aus Abies grandis. Forst. und Holz. 65:26–29.Search in Google Scholar

Wagner, W., Erlhof, G. Praktische Baustatik, Teil 2. 14. Auflage, Taubner Verlag, Stuttgart, 1991.10.1007/978-3-663-07663-6Search in Google Scholar

Wang, X., Mohammad, M., Salenikovich, A. (2009) Localized density effects on fastener holding capacities in wood-based panels. Part 2: Cyclic tests. Forest Prod. J. 59:61–68.Search in Google Scholar

Wong, S.S. (1991) Chemistry of protein conjugation and cross-linking. In: Chapter 4: Homobifunctional Cross-Linking Reagents, CRC Press/Taylor & Francis Group, Boca Raton, London, New York.Search in Google Scholar

Wong, S.S., Jameson, D.M. Chemistry of protein and nucleic acid cross-linking and conjugation. Chapter 8: Monofunctional and zero-length cross-linking reagents, 2nd ed., CRC Press/Taylor & Francis Group, Boca Raton, London, New York, 2011.10.1201/b11175Search in Google Scholar

Received: 2017-2-13
Accepted: 2017-6-26
Published Online: 2017-9-5
Published in Print: 2017-12-20

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.11.2023 from https://www.degruyter.com/document/doi/10.1515/hf-2017-0028/pdf
Scroll to top button