Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 21, 2017

Surface modification of Norway spruce wood by octadecyltrichlorosilane (OTS) nanosol by dipping and water vapour diffusion properties of the OTS-modified wood

  • Anuj Kumar ORCID logo EMAIL logo , Jan Richter , Jan Tywoniak , Petr Hajek , Stergios Adamopoulos , Urban Šegedin and Marko Petrič
From the journal Holzforschung


The present research deals with a simple dipping method to insert octadecyltrichlorosilane (OTS) into cell walls of spruce wood and to deposit OTS layers on its inner and outer surfaces. Distribution and chemical interactions of OTS with wood polymers has been investigated by scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The OTS/n-hexane solution penetrated into wood via capillary forces through ray tracheids and bordered pits and was deposited as OTS organic-inorganic layers on wood cell walls. The hypothesis is supported by the results, according to which the OTS molecules are hydrolysed by the wood moisture and by free OH groups of the cell wall components. The hydrolysed OTS molecules react with the OH groups and elevate the hydrophobicity of wood.


The authors wish to acknowledge Project LO1605 funded by the Ministry of Education, Youth and Sports within National Sustainability Programme I, the Czech Republic. Financial support of the Slovenian Research Agency through the research programme P4-0015 “Wood and lignocellulose composites” is also gratefully acknowledged. The authors acknowledge the support of Dr. Andrijana Sever Škapin and Dr. Janez Kovač for conducting the SEM and XPS analyses of the wood samples.


Ahmed, G.S., Gilbert, M., Mainprize, S., Rogerson, M. (2009) FTIR analysis of silane grafted high density polyethylene. Plast. Rub. Comp. 38:13–20.10.1179/174328909X387711Search in Google Scholar

Bourlinos, A.B., Chowdhury, S.R., Jiang, D.D., An, Y.U., Zhang, Q., Archer, L.A., Giannelis, E.P. (2005) Layered organosilicate nanoparticles with liquid like behavior. Small 1:80–82.10.1002/smll.200400027Search in Google Scholar PubMed

Buchelt, B., Dietrich, T., Wagenführ, A. (2014) Testing of set recovery of unmodified and furfurylated densified wood by means of water storage and alternating climate tests. Holzforschung 68:23–28.10.1515/hf-2013-0049Search in Google Scholar

Chang, H., Tu, K., Wang, X., Liu, J. (2015) Facile preparation of stable superhydrophobic coatings on wood surfaces using silica-polymer nanocomposites. BioResources 10:2585–2596.10.15376/biores.10.2.2585-2596Search in Google Scholar

Defante, A.P., Burai, T.N., Becker, M.L., Dhinojwala, A. (2015) Consequences of water between two hydrophobic surfaces on adhesion and wetting. Langmuir 31:2398–2406.10.1021/la504564wSearch in Google Scholar PubMed

Derome, D., Zillig, W., Carmeliet, J. (2012) Variation of measured cross-sectional cell dimensions and calculated water vapor permeability across a single growth ring of spruce wood. Wood Sci. Technol. 46:827–840.10.1007/s00226-011-0445-8Search in Google Scholar

Faix, O. (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45:21–28.10.1515/hfsg.1991.45.s1.21Search in Google Scholar

Foisner, J., Glaser, A., Kattner, J., Hoffman, H., Friedbacher, G. (2003) Atomic force microscopy investigation of the growth of different alkylsiloxane monolayers from highly concentrated solution. Langmuir 19:3741–3746.10.1021/la026646hSearch in Google Scholar

Gan, W., Gao, L., Sun, Q., Jin, C., Lu, Y., Li, J. (2015) Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties. Appl. Surf. Sci. 332:565–572.10.1016/j.apsusc.2015.01.206Search in Google Scholar

Gao, L., Lu, Y., Cao, J., Li, J., Sun, Q. (2015) Reversible photo control of wood-surface wettability between superhydrophilicity and superhydrophobicity based on a TiO2 film. J. Wood Chem. Technol. 35:365–373.10.1080/02773813.2014.984078Search in Google Scholar

Gindl, W., Zargar-Yaghubi, F., Wimmer, R. (2003) Impregnation of softwood cell walls with melamine-formaldehyde resin. Bioresource Technol. 87:325–330.10.1016/S0960-8524(02)00233-XSearch in Google Scholar

Greenspan, L. (1977) Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bureau Stds A. Phys. Chem. 81:89–96.10.6028/jres.081A.011Search in Google Scholar

Hill, C.A. Wood Modification: Chemical, Thermal and Other Processes (Vol. 5). John Wiley & Sons, Chichester, England, 2007.10.1002/0470021748Search in Google Scholar

Hill, C.A.S., Curling, S.F., Kwon, J.H., Marty, V. (2009) Decay resistance of acetylated and hexanoylated hardwood and softwood species exposed to Coniophora puteana. Holzforschung 63:619–625.10.1515/HF.2009.124Search in Google Scholar

Hill, C.A., Ramsay, J., Gardiner, B. (2015) Variability in water vapour sorption isotherm in Japanese larch (Larix kaempferi Lamb.) earlywood and latewood influences. Inter. Wood Prod. J. 6:53–59.10.1179/2042645314Y.0000000090Search in Google Scholar

Hosseinpourpia, R., Mai, C. (2016) Mode of action of brown rot decay resistance of thermally modified wood: resistance to Fenton’s reagent. Holzforschung 70:691–697.10.1515/hf-2015-0141Search in Google Scholar

Hui, B., Li, Y., Huang, Q., Li, G., Li, J., Cai, L., Yu, H. (2015) Fabrication of smart coatings based on wood substrates with photo responsive behavior and hydrophobic performance. Mat. Design 84:277–284.10.1016/j.matdes.2015.06.125Search in Google Scholar

ISO 12572:2016 Hygrothermal performance of building materials and products – Determination of water vapour transmission properties – Cup method.Search in Google Scholar

Jung, C.Y., Kim, H.Y., Chang, T.S., Koo, S.M. (2009) Thermosensitive spherical organosilicate hybrid particles with a multilayered structure. Chem. Lett. 38:802–803.10.1246/cl.2009.802Search in Google Scholar

Kamdem, D.P., Pizzi, A., Jermannaud, A. (2002) Durability of heat-treated wood. Eur. J. Wood Wood Prod. 60:1–6.10.1007/s00107-001-0261-1Search in Google Scholar

Ke, Q., Li, G., Liu, Y., He, T., Li, X.M. (2009) Formation of superhydrophobic polymerized n-octadecylsiloxane nanosheets. Langmuir 26:3579–3584.10.1021/la902990vSearch in Google Scholar PubMed

Kovalev, A.I., Wainstein, D.L., Tetelbaum, D.I., Hornig, W., Kucherehko, Y.N. (2004) Investigation of the electronic structure of the phosphorus-doped Si and SiO2: Si quantum dots by XPS and HREELS methods. Surf. Interf. Anal. 36:959–962.10.1002/sia.1811Search in Google Scholar

Kudanga, T.E., Nugrohojo/Prasetyo, J., Sipilä, P., Nousiainen, P., Widsten, A., Kandelbauer, G.S., Nyanhongo, G., Guebitz, G. (2008) Laccase-mediated wood surface functionalization. Eng. Life Sci. 8:297–302.10.1002/elsc.200800011Search in Google Scholar

Kumar, A., Petrič, M., Kričej, B., Žigon, J., Tywoniak, J., Hajek, P., Pavlič, M. (2015) Liquefied wood based polyurethane-nanosilica hybrid coatings and hydrophobization by self-assembled monolayers of orthotrichlorosilane (OTS). ACS Sust. Chem. Eng. 3:2533–2541.10.1021/acssuschemeng.5b00723Search in Google Scholar

Kumar, A., Ryparová, P., Škapin, A.S., Humar, M., Pavlič, M., Tywoniak, J., Hajek, P., Žigon, J., Petrič, M. (2016a) Influence of surface modification of wood with octadecyltrichlorosilane on its dimensional stability and resistance against Coniophora puteana and molds. Cellulose 23:3249–3263.10.1007/s10570-016-1009-8Search in Google Scholar

Kumar, A., Staněk, K., Ryparová, P., Hajek, P., Tywoniak, J. (2016b) Hydrophobic treatment of wood fibrous thermal insulator by octadecyltrichlorosilane and its influence on hygric properties and resistance against moulds. Comp. Part B: Eng. 106:285–293.10.1016/j.compositesb.2016.09.034Search in Google Scholar

Kumar, A., Ryparovà, P., Petrič, M., Tywoniak, J., Hajek, P. (2016c) Coating of wood by means of electrospun nanofibers based on PVA/SiO2 and its hydrophobization with octadecyltrichlorosilane (OTS). Holzforschung 71:225–231.10.1515/hf-2016-0108Search in Google Scholar

Kunkun, T., Lizhuo, K., Xiaoqing, W., Junliang, L. (2016) Transparent, durable superhydrophobic polydimethylsiloxane/SiO2 nanocomposite coatings on varnished wood. Holzforschung 70:1039–1045.10.1515/hf-2016-0024Search in Google Scholar

Lekobou, W.P., Englund, K.R., Laborie, M.-P., Pedrow, P.D. (2016) Influence of atmospheric pressure plasma treatments on the surface properties of ligno-cellulosic substrates. Holzforschung 70:55–61.10.1515/hf-2014-0211Search in Google Scholar

Li, J., Sun, Q., Han, S., Wang, J., Wang, Z., Jin, C. (2015) Reversibly light-switchable wettability between superhydrophobicity and superhydrophilicity of hybrid ZnO/bamboo surfaces via alternation of UV irradiation and dark storage. Prog. Org. Coat. 87:155–160.10.1016/j.porgcoat.2015.05.028Search in Google Scholar

Li, T., Cai, J.-B., Avramidis, S., Cheng, D.-L., Wålinder, M.E.P., Zhou, D.-G. (2017) Effect of conditioning history on the characterization of hardness of thermo-mechanical densified and heat treated poplar wood. Holzforschung 71:515–520.10.1515/hf-2016-0178Search in Google Scholar

Liang, C.Y., Marchessault, R.H. (1959) Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. J. Pol. Sci. 37:385–395.10.1002/pol.1959.1203713209Search in Google Scholar

Liu, C., Wang, S., Shi, J., Wang, C. (2011). Fabrication of superhydrophobic wood surfaces via a solution-immersion process. Appl. Surf. Sci. 258:761–765.10.1016/j.apsusc.2011.08.077Search in Google Scholar

Liu, F., Gao, Z., Zang, D., Wang, C., Li, J. (2015) Mechanical stability of superhydrophobic epoxy/silica coating for better water resistance of wood. Holzforschung 69:367–374.10.1515/hf-2014-0077Search in Google Scholar

Lu, Q., Hao, T., Ke, Q., Wang, W., He, T., and Li, X. M. (2011) Morphological control of polymerized n-octadecylsiloxane. Appl. Surf. Sci. 257:2080–2085.10.1016/j.apsusc.2010.09.053Search in Google Scholar

Lu, Y., Feng, M., Zhan, H. (2014) Preparation of SiO2–wood composites by an ultrasonic-assisted sol-gel technique. Cellulose 21:4393–4403.10.1007/s10570-014-0437-6Search in Google Scholar

Mahltig, B., Arnold, M., Löthman, P. (2010) Surface properties of sol–gel treated thermally modified wood. J. Sol-Gel Sci. Techn. 55:221–227.10.1007/s10971-010-2236-3Search in Google Scholar

Mai, C., Militz, H. (2004) Modification of wood with silicon compounds. Inorganic silicon compounds and sol-gel systems: A review. Wood Sci. Technol. 37: 339–348.10.1007/s00226-003-0205-5Search in Google Scholar

Manifar, T., Rezaee, A., Sheikhzadeh, M., Mittler, S. (2008) Formation of uniform self-assembly monolayers by choosing the right solvent: OTS on silicon wafer, a case study. Appl. Surf. Sci. 254:4611–4619.10.1016/j.apsusc.2008.01.100Search in Google Scholar

McGovern, M.E., Kallury, K.M.R., Thompson, M. (1994) Role of solvent on the silanization of glass with octadecyltrichlorosilane. Langmuir 10:3607–3614.10.1021/la00022a038Search in Google Scholar

Moghaddam, M.S., Wålinder, M.E., Claesson, P.M., Swerin, A. (2013) Multicycle Wilhelmy plate method for wetting properties, swelling and liquid sorption of wood. Langmuir 29:12145–12153.10.1021/la402605qSearch in Google Scholar PubMed

Moghaddam, M.S., Wålinder, M.E.P., Claesson, P.M., Swerin, A. (2016a) Wettability and swelling of acetylated and furfurylated wood analyzed by multicycle Wilhelmy plate method. Holzforschung 70:69–77.10.1515/hf-2014-0196Search in Google Scholar

Moghaddam, M.S., Heydari, G., Tuominen, M., Fielden, M., Haapanen, J., Mäkelä, J.M., Wålinder, M.E.P., Claesson, P.M., Swerin, A. (2016b) Hydrophobisation of wood surfaces by combining liquid flame spray (LFS) and plasma treatment: dynamic wetting properties. Holzforschung 70:527–537.10.1515/hf-2015-0148Search in Google Scholar

Mohammed-Ziegler, I., Marosi, G., Matko S., Hórvölgyi, Z., Toth. A. (2003) Silylation of wood for potential protection against biodegradation. An ATR-FTIR, ESCA and Contact Angle Study. Pol. Adv. Technol. 14:790–795.10.1002/pat.396Search in Google Scholar

Mohammed-Ziegler, I., Oszlánczi, Á., Somfai, B., Hórvölgyi, Z., Pászli, I., Holmgren, A., Forsling, W. (2004) Surface free energy of natural and surface-modified tropical and European wood species. J. Adhes. Sci. Techn. 18: 687–713.10.1163/156856104839338Search in Google Scholar

Mohammed-Ziegler, I., Hórvölgyi, Z., Tóth, A., Forsling, W., Holmgren, A. (2006) Wettability and spectroscopic characterization of silylated wood samples. Pol. Adv. Techn. 17:932–939.10.1002/pat.778Search in Google Scholar

Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D. Handbook of X-Ray Photoelectron Spectroscopy. Physical Electronics Inc., Eden Prairie, Minnesota, USA, 1995.Search in Google Scholar

Ouyang, L., Huang, Y., Wang, X., Liu, J. (2014) Hygroscopicity and characterization of wood fibers modified by alkoxysilanes with different chain lengths. BioResources 9:7222–7233.10.15376/biores.9.4.7222-7233Search in Google Scholar

Panov, D., Terziev, N. (2009) Study on some alkoxysilanes used for hydrophobation and protection of wood against decay. Int. Biodet. Biodegr. 63:456–461.10.1016/j.ibiod.2008.12.003Search in Google Scholar

Parikh, A.N., Schivley, M.A., Koo, E., Seshadri, K., Aurentz, D., Mueller, K., Allara, D.L. (1997) n-Alkylsiloxanes: from single monolayers to layered crystals. The formation of crystalline polymers from the hydrolysis of n-octadecyltrichlorosilane. J. Am. Chem. Soc. 119:3135–3143.10.1021/ja963284pSearch in Google Scholar

Petrič, M. (2013) Surface modification of wood. Rev. Adhes. Adhes. 1/2:216–247.10.7569/RAA.2013.097308Search in Google Scholar

Petrič, M., Oven, P. (2015) Determination of wettability of wood and its significance in wood science and technology: a critical review. Rev. Adhes. Adhes. 3:121–187.10.7569/RAA.2015.097304Search in Google Scholar

Poaty, B., Riedl, B., Blanchet, P., Blanchard, V., Stafford, L. (2013) Improved water repellency of black spruce wood surfaces after treatment in carbon tetrafluoride plasmas. Wood Sci. Technol. 47:411–422.10.1007/s00226-012-0505-8Search in Google Scholar

Podgorski, L., Chevet, B., Onic, L., Merlin, A. (2000) Modification of wood wettability by plasma and corona treatments. Intern. J. Adhes. 20:103–111.10.1016/S0143-7496(99)00043-3Search in Google Scholar

Ross, R.J. Wood Handbook: Wood as an Engineering Material. Forest Products Laboratory, USDA Forest Service, 2010, 508 pp.10.2737/FPL-GTR-190Search in Google Scholar

Schwanninger, M., Rodrigues, J.C., Pereira, H., Hinterstoisser, B. (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibr. Spectr. 36:23–40.10.1016/j.vibspec.2004.02.003Search in Google Scholar

Sèbe, G., Brook, M.A. (2001) Hydrophobization of wood surfaces: covalent grafting of silicone polymers. Wood Sci. Technol. 35:269–282.10.1007/s002260100091Search in Google Scholar

Sonderegger, W., Mannes, D., Kaestner, A., Hovind, J., Lehmann, E. (2015) On-line monitoring of hygroscopicity and dimensional changes of wood during thermal modification by means of neutron imaging methods. Holzforschung 69:87–95.10.1515/hf-2014-0008Search in Google Scholar

Tjeerdsma, B.F., Boonstra, M., Pizzi, A., Tekely, P., Militz, H. (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Eur. J. Wood Wood Prod. 56:149–153.10.1007/s001070050287Search in Google Scholar

Tyrode, E., Liljeblad, J.F. (2013) Water structure next to ordered and disordered hydrophobic silane monolayers: a vibrational sum frequency spectroscopy study. J. Phys. Chem. C 117:1780–1790.10.1021/jp310732fSearch in Google Scholar

Vololonirina, O., Coutand, M., Perrin, B. (2014) Characterization of hygrothermal properties of wood-based products– Impact of moisture content and temperature. Const. Buil. Mat. 63:223–233.10.1016/j.conbuildmat.2014.04.014Search in Google Scholar

Wang, X., Chai, Y., Liu, J. (2013) Formation of highly hydrophobic wood surfaces using silica nanoparticles modified with long-chain alkylsilane. Holzforschung 67:667–672.10.1515/hf-2012-0153Search in Google Scholar

Willems, W., Lykidis, C., Altgen, M., Clauder, L. (2015) Quality control methods for thermally modified wood. Holzforschung 69:875–884.10.1515/hf-2014-0185Search in Google Scholar

Windeisen, E., Bächle, H., Zimmer, B., Wegener, G. (2009) Relations between chemical changes and mechanical properties of thermally treated wood 10th EWLP, Stockholm, Sweden, August 25–28, 2008. Holzforschung 63:773–778.10.1515/HF.2009.084Search in Google Scholar

Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788.10.1016/j.fuel.2006.12.013Search in Google Scholar

Zillig, W. (2009) Moisture transport in wood using a multiscale approach. PhD dissertation, Katholieke Universiteit Leuven, Leuven, Belgium.Search in Google Scholar

Received: 2017-5-23
Accepted: 2017-7-18
Published Online: 2017-8-21
Published in Print: 2017-12-20

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2023 from
Scroll to top button