Abstract
In this paper, benzoyl lignin (BzL) was prepared from alkali lignin (AL) by hydrophobic modification, and then nanospheres (BzLCN) were prepared by the reverse solvent method of BzL and λ-cyhalothrin (λC), while BzL served as the carrier material. BzLCN particle size was decreasing with the increasing amount of BzL reaching the minimum diameters of 90–100 nm. The emulsifier 600# further reduces the particle size to about 40 nm. The prepared BzLCN had a remarkable slow release property, while the emulsifier increased the release rate. The formation mechanism of BzLCN showed that BzL mainly contains carboxyl groups and acts as a carrier material. BzL tends to aggregate on the surface of BzLCN nanospheres and provides negative charge and contributes to maintaining its stability. The hydrophobic λC moves toward the interior of the nanospheres. The emulsifier adsorbed on the surface of BzLCN is a steric hindrance and enhances the stability of BzLCN.
Ackowledgments
We are grateful for the financial support from the General Program of National Natural Science Foundation of China (21476092) and the Science and Technology Program of Guangdong Province (2017A010103031, 2017B090903003).
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Employment or leadership: None declared.
Honorarium: None declared.
References
Ago, M., Huan, S., Borghei, M., Raula, J., Kauppinen, E.I., Rojas, O.J. (2016) High-throughput synthesis of lignin particles (~30 nm to ~2 μm) via aerosol flow reactor: size fractionation and utilization in pickering emulsions. ACS Appl. Mater. Inter. 8:23302–23310.10.1021/acsami.6b07900Search in Google Scholar PubMed
Ago, M., Tardy, B.L., Wang, L., Guo, J., Khakalo, A., Rojas, O.J. (2017) Supramolecular assemblies of lignin into nano- and microparticles. MRS Bull. 42:371–378.10.1557/mrs.2017.88Search in Google Scholar
Alan, K. (2008) Recent developments of safer formulations of agrochemicals. Environmentalist 28:35–44.10.1007/s10669-007-9045-4Search in Google Scholar
Anjali, C.H., Sudheer Khan, S., Margulis-Goshen, K., Magdassi, S., Mukherjee, A., Chandrasekaran, N. (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotox. Environ. Safe. 73:1932–1936.10.1016/j.ecoenv.2010.08.039Search in Google Scholar PubMed
Campos, E.V.R., de Oliveira, J.L., Fraceto, L.F. (2014) Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: a review. Adv. Sci. Eng. M. 6:373–387.10.1166/asem.2014.1538Search in Google Scholar
Chhipa, H. (2017) Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett. 15:15–22.10.1007/s10311-016-0600-4Search in Google Scholar
Chowdhury, M.A. (2014) The controlled release of bioactive compounds from lignin and lignin-based biopolymer matrices. Int. J. Biol. Macromol. 65:136–147.10.1016/j.ijbiomac.2014.01.012Search in Google Scholar PubMed
Deng, Y., Zhao, H., Qian, Y., Lü, L., Wang, B., Qiu, X. (2016) Hollow lignin azo colloids encapsulated avermectin with high anti-photolysis and controlled release performance. Ind. Crop. Prod. 87:191–197.10.1016/j.indcrop.2016.03.056Search in Google Scholar
Duval, A., Lawoko, M. (2014) A review on lignin-based polymeric, micro- and nano-structured materials. React. Funct. Polym. 85:78–96.10.1016/j.reactfunctpolym.2014.09.017Search in Google Scholar
Elek, N., Hoffman, R., Raviv, U., Resh, R., Ishaaya, I., Magdassi, S. (2010) Novaluron nanoparticles: Formation and potential use in controlling agricultural insect pests. Colloid. Surface. A. 372:66–72.10.1016/j.colsurfa.2010.09.034Search in Google Scholar
Enserink, M., Hines, P.J., Vignieri, S.N., Wigginton, N.S., Yeston, J.S. (2013) The pesticide paradox. Science. 341:728–729.10.1126/science.341.6147.728Search in Google Scholar PubMed
Fernández-Pérez, M., Villafranca-Sánchez, M., Flores-Céspedes, F., Daza-Fernández, I. (2011) Ethylcellulose and lignin as bearer polymers in controlled release formulations of chloridazon. Carbohyd. Polym. 83:1672–1679.10.1016/j.carbpol.2010.10.024Search in Google Scholar
Fetoui, H., Makni, M., Mouldi Garoui, E., Zeghal, N. (2010) Toxic effects of lambda-cyhalothrin, a synthetic pyrethroid pesticide, on the rat kidney: involvement of oxidative stress and protective role of ascorbic acid. Exp. Toxicol. Pathol. 62:593–599.10.1016/j.etp.2009.08.004Search in Google Scholar PubMed
Frangville, C., Rutkevicius, M., Richter, A.P., Velev, O.D., Stoyanov, S.D., Paunov, V.N. (2012) Fabrication of environmentally biodegradable lignin nanoparticles. Chemphyschem. 13:4235–4243.10.1002/cphc.201200537Search in Google Scholar PubMed
Garrido-Herrera, F.J., Daza-Fernandez, I., Gonzalez-Pradas, E., Fernandez-Perez, M. (2009) Lignin-based formulations to prevent pesticides pollution. J. Hazard. Mater. 168:220–225.10.1016/j.jhazmat.2009.02.019Search in Google Scholar PubMed
Ghormade, V., Deshpande, M.V., Paknikar, K.M. (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 29:792–803.10.1016/j.biotechadv.2011.06.007Search in Google Scholar PubMed
Gilca, I.A., Popa, V.I., Crestini, C. (2015) Obtaining lignin nanoparticles by sonication. Ultrason. Sonochem. 23:369–375.10.1016/j.ultsonch.2014.08.021Search in Google Scholar PubMed
Gogos, A., Knauer, K., Bucheli, T.D. (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J. Agr. Food. Chem. 60:9781–9792.10.1021/jf302154ySearch in Google Scholar PubMed
He, L.M., Troiano, J., Wang, A., Goh, K. (2008) Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin. Rev. Environ. Contam. T. 195:71–91.10.1007/978-0-387-77030-7_3Search in Google Scholar PubMed
Jiang, C., He, H., Jiang, H., Ma, L., Jia, D.M. (2013) Nano-lignin filled natural rubber composites: Preparation and characterization. Express Polym. Lett. 7:480–493.10.3144/expresspolymlett.2013.44Search in Google Scholar
Kah, M., Beulke, S., Tiede, K., Hofmann, T. (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit. Rev. Env. Sci. Tec. 43:1823–1867.10.1080/10643389.2012.671750Search in Google Scholar
Khot, L.R., Sankaran, S., Maja, J.M., Ehsani, R., Schuster, E.W. (2012) Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot. 35:64–70.10.1016/j.cropro.2012.01.007Search in Google Scholar
Kumar, S., Bhanjana, G., Sharma, A., Sidhu, M.C., Dilbaghi, N. (2014) Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohyd. Polym. 101:1061–1067.10.1016/j.carbpol.2013.10.025Search in Google Scholar
Langer, R. (2007) Invited review polymeric delivery systems for controlled drug release. Chem. Eng. Commun. 6:1–48.10.1080/00986448008912519Search in Google Scholar
Lawrence, M.J., Rees, G.D. (2000) Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliver. Rev. 45:89–121.10.1016/S0169-409X(00)00103-4Search in Google Scholar
Li, Z.Z., Xu, S.A., Wen, L.X., Liu, F., Liu, A.Q., Wang, Q., Sun, H.Y., Yu, W., Chen, J.F. (2006) Controlled release of avermectin from porous hollow silica nanoparticles: influence of shell thickness on loading efficiency, UV-shielding property and release. J. Control. Release 111:81–88.10.1016/j.jconrel.2005.10.020Search in Google Scholar PubMed
Li, D., Liu, B., Yang, F., Wang, X., Shen, H., Wu, D. (2016a) Preparation of uniform starch microcapsules by premix membrane emulsion for controlled release of avermectin. Carbohyd. Polym. 136:341–349.10.1016/j.carbpol.2015.09.050Search in Google Scholar PubMed
Li, H., Deng, Y., Liu, B., Ren, Y., Liang, J., Qian, Y., Qiu, X., Li, C., Zheng, D. (2016b) Preparation of nanocapsules via the self-assembly of kraft lignin: a totally green process with renewable resources. ACS Sustain. Chem. Eng. 4:1946–1953.10.1021/acssuschemeng.5b01066Search in Google Scholar
Li, Y., Qiu, X., Qian, Y., Xiong, W., Yang, D. (2017a) pH-responsive lignin-based complex micelles: preparation, characterization and application in oral drug delivery. Chem. Eng. J. 327:1176–1183.10.1016/j.cej.2017.07.022Search in Google Scholar
Li, Y., Zhou, M., Pang, Y., Qiu, X. (2017b) Lignin-based microsphere: preparation and performance on encapsulating the pesticide avermectin. ACS Sustain. Chem. Eng. 5:3321–3328.10.1021/acssuschemeng.6b03180Search in Google Scholar
Lievonen, M., Valle-Delgado, J.J., Mattinen, M.-L., Hult, E.-L., Lintinen, K., Kostiainen, M.A., Paananen, A., Szilvay, G.R., Setälä, H., Österberg, M. (2016) A simple process for lignin nanoparticle preparation. Green Chem. 18:1416–1422.10.1039/C5GC01436KSearch in Google Scholar
Liu, Y., Tong, Z., Prud’homme, R.K. (2008) Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Manag. Sci. 64:808–12.10.1002/ps.1566Search in Google Scholar PubMed
Liu, B., Wang, Y., Yang, F., Wang, X., Shen, H., Cui, H., Wu, D. (2016) Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules. Colloid. Surface. B. 144:38–45.10.1016/j.colsurfb.2016.03.084Search in Google Scholar PubMed
Lora, J.H, Glasser, W.G. (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J. Polym. Environ. 10:39–48.10.1023/A:1021070006895Search in Google Scholar
Memarizadeh, N., Ghadamyari, M., Adeli, M., Talebi, K. (2014) Preparation, characterization and efficiency of nanoencapsulated imidacloprid under laboratory conditions. Ecotox. Environ. Safe. 107:77–83.10.1016/j.ecoenv.2014.05.009Search in Google Scholar PubMed
Moretto, A. (1991) Indoor spraying with the pyrethroid insecticide lambda-cyhalothrin: effects on spraymen and inhabitants of sprayed houses. B. World Health Organ. 69:591.Search in Google Scholar
Mostafalou, S., Abdollahi, M. (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol. Appl. Pharm. 268:157–177.10.1016/j.taap.2013.01.025Search in Google Scholar PubMed
Mulder, W.J., Gosselink, R.J.A., Vingerhoeds, M.H., Harmsen, P.F.H., Eastham, D. (2011) Lignin based controlled release coatings. Ind. Crop. Prod. 34:915–920.10.1016/j.indcrop.2011.02.011Search in Google Scholar
Norgren, M., Edlund, H. (2014) Lignin: Recent advances and emerging applications. Curr. Opin. Colloid In. 19:409–416.10.1016/j.cocis.2014.08.004Search in Google Scholar
Nuruzzaman, M., Rahman, M.M., Liu, Y., Naidu, R. (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J. Agr. Food Chem. 64:1447–1483.10.1021/acs.jafc.5b05214Search in Google Scholar PubMed
Paul, B.K, Moulik, S.P. (2001) Uses and applications of microemulsions. Curr. Sci. India. 80:990–1001.Search in Google Scholar
Qian, Y., Deng, Y., Qiu, X., Li, H., Yang, D. (2014) Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor. Green Chem. 16:2156–2163.10.1039/c3gc42131gSearch in Google Scholar
Qian, Y., Qiu, X., Zhu, S. (2015) Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens. Green Chem. 17:320–324.10.1039/C4GC01333FSearch in Google Scholar
Qian, Y., Qiu, X., Zhu, S. (2016) Sunscreen performance of lignin from different technical resources and their general synergistic effect with synthetic sunscreens. ACS Sustain. Chem. Eng. 4:4029–4035.10.1021/acssuschemeng.6b00934Search in Google Scholar
Rai, M., Ingle, A. (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl. Microbiol Biot. 94:287–293.10.1007/s00253-012-3969-4Search in Google Scholar PubMed
Ray, D.E., Fry, J.R. (2006) A reassessment of the neurotoxicity of pyrethroid insecticides. Pharmacol. Therapeut. 111:174–193.10.1016/j.pharmthera.2005.10.003Search in Google Scholar PubMed
Richter, A.P., Brown, J.S., Bharti, B., Wang, A., Gangwal, S., Houck, K., Cohen Hubal, E.A., Paunov, V.N., Stoyanov, S.D., Velev, O.D. (2015) An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat. Nanotechnol. 10:817–823.10.1038/nnano.2015.141Search in Google Scholar PubMed
Roy, A., Singh, S.K., Bajpai, J., Bajpai, A.K. (2014) Controlled pesticide release from biodegradable polymers. Cent. Eur. J. Chem. 12:453–469.10.2478/s11532-013-0405-2Search in Google Scholar
Sekhon, B.S. (2014) Nanotechnology in agri-food production: an overview. Nanotechno. Sci. Appl. 7:31–53.10.2147/NSA.S39406Search in Google Scholar PubMed PubMed Central
Servin, A.D., White, J.C. (2016) Nanotechnology in agriculture: Next steps for understanding engineered nanoparticle exposure and risk. NanoImpact. 1:9–12.10.1016/j.impact.2015.12.002Search in Google Scholar
Singh, B., Sharma, D.K., Kumar, R., Gupta, A. (2010) Controlled release of thiram from neem-alginate-clay based delivery systems to manage environmental and health hazards. Appl. Clay Sci. 47:384–391.10.1016/j.clay.2009.12.001Search in Google Scholar
Sun, C., Shu, K., Wang, W., Ye, Z., Liu, T., Gao, Y., Zheng, H., He, G., Yin, Y. (2014) Encapsulation and controlled release of hydrophilic pesticide in shell cross-linked nanocapsules containing aqueous core. Int. J. Pharm. 463:108–114.10.1016/j.ijpharm.2013.12.050Search in Google Scholar PubMed
Sun, Y., Ma, Y., Fang, G., Ren, S., Fu, Y. (2016) Controlled pesticide release from porous composite hydrogels based on lignin and polyacrylic acid. Bioresources. 11:2361–2371.10.15376/biores.11.1.2361-2371Search in Google Scholar
Thakur, V.K., Thakur, M.K. (2015) Recent advances in green hydrogels from lignin: a review. Int. J. Biol. Macromol. 72:834–847.10.1016/j.ijbiomac.2014.09.044Search in Google Scholar PubMed
Tsuji, K. (2001) Microencapsulation of pesticides and their improved handling safety. J. Microencapsul. 18:137–147.10.1080/026520401750063856Search in Google Scholar PubMed
Xiong, F., Han, Y., Wang, S., Li, G., Qin, T., Chen, Y., Chu, F. (2017) Preparation and formation mechanism of size-controlled lignin nanospheres by self-assembly. Ind. Crop. Prod. 100:146–152.10.1016/j.indcrop.2017.02.025Search in Google Scholar
Yiamsawas, D., Baier, G., Thines, E., Landfester, K., Wurm, F.R. (2014) Biodegradable lignin nanocontainers. RSC Adv. 4:11661–11663.10.1039/C3RA47971DSearch in Google Scholar
Yu, M., Yao, J., Liang, J., Zeng, Z., Cui, B., Zhao, X., Sun, C., Wang, Y., Liu, G., Cui, H. (2017) Development of functionalized abamectin poly(lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention. RSC Adv. 7:11271–11280.10.1039/C6RA27345ASearch in Google Scholar
Zeng, H., Li, X., Zhang, G., Dong, J. (2008) Preparation and Characterization of Beta Cypermethrin Nanosuspensions by Diluting O/W Microemulsions. J. Disper. Sci. Technol. 29:358–361.10.1080/01932690701716085Search in Google Scholar
Zhang, H., Qin, H., Li, L., Zhou, X., Wang, W., Kan, C. (2017) Preparation and characterization of controlled-release avermectin/castor oil-based polyurethane nanoemulsions. J. Agr. Food Chem.10.1021/acs.jafc.7b01401Search in Google Scholar PubMed
Zhao, X., Cui, H., Wang, Y., Sun, C., Cui, B., Zeng, Z. (2017) Development strategies and prospects of nano-based smart pesticide formulation. J. Agr. Food Chem.10.1021/acs.jafc.7b02004Search in Google Scholar PubMed
Zhou, M., Wang, W., Yang, D., Qiu, X. (2015) Preparation of a new lignin-based anionic/cationic surfactant and its solution behaviour. RSC Adv. 5:2441–2448.10.1039/C4RA10524ASearch in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston