Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 29, 2018

Electrochemical oxidation of lignin for the production of value-added chemicals on Ni-Co bimetallic electrocatalysts

  • Raziyeh Ghahremani and John A. Staser ORCID logo EMAIL logo
From the journal Holzforschung


Lignin has been submitted to electrochemical oxidation in the presence of nickel (Ni), cobalt (Co) and Ni-Co bimetallic electrocatalysts, which were prepared by a simple electrochemical deposition process. The composition and morphology of the catalyst were studied by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA). The effects of the three electrocatalysts on the electrochemical oxidation of lignin were observed by cyclic voltammetry and chronoamperometry. The degradation products were quantitatively analyzed by gas chromatography-mass spectrometry (GC-MS). The rate of electrochemical oxidation of lignin is higher with Ni-Co bimetallic electrocatalyst with higher Co contents and the main products obtained were vanillin, apocynin and 3-methylbenzaldehyde.


The research presented here was carried out at the Center for Electrochemical Engineering Research (CEER) at Ohio University.

  1. Author contributions: All authors contributed to this work.

  2. Research funding: The authors acknowledge the Russ Vision Fund and the NSF I/UCRC Center for Electrochemical Processes and Technology (award 1362075) for financial support.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.


Armstrong, R.D., Charles, E.A. (1989) Some effects of cobalt hydroxide upon the electrochemical behaviour of nickel hydroxide electrodes. J. Power Sources 25:89–97.10.1016/0378-7753(89)85001-3Search in Google Scholar

Barbier, J., Charon, N., Dupassieux, N., Loppinet-Serani, A., Mahéa, L., Ponthus, J., Courtiade, M., Ducrozet, A., Quoineaud, A.A., Cansell, F. (2012) Hydrothermal conversion of lignin compounds. A detailed study of fragmentation and condensation reaction pathways. Biomass Bioenergy 46:479–491.10.1016/j.biombioe.2012.07.011Search in Google Scholar

Behling, R., Valange, S., Chatel, G. (2016) Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem. 18:1839–1854.10.1039/C5GC03061GSearch in Google Scholar

Chan, J.M.W., Bauer, S., Sorek, H., Sreekumar, S., Wang, K., Toste, F.D. (2013) Studies on the vanadium-catalyzed nonoxidative depolymerization of Miscanthus giganteus-derived lignin. ACS Catal. 3:1369–1377.10.1021/cs400333qSearch in Google Scholar

Chatel, G., Rogers, R.D. (2014) Review: oxidation of lignin using ionic liquids – an innovative strategy to produce renewable chemicals. ACS Sustain. Chem. Eng. 2:322–339.10.1021/sc4004086Search in Google Scholar

Eliaz, N., Venkatakrishna, K., Chitharanjan Hegde, A. (2010) Electroplating and characterization of Zn-Ni, Zn-Co and Zn-Ni-Co alloys. Surf. Coat. Technol. 205:1969–1978.10.1016/j.surfcoat.2010.08.077Search in Google Scholar

Fargues, C., Mathias, A., Rodrigues, A. (1996) Kinetics of vanillin production from kraft lignin oxidation. Ind. Eng. Chem. Res. 35:28–36.10.1021/ie950267kSearch in Google Scholar

Furusawa, T., Sato, T., Sugito, H., Miura, Y., Ishiyama, Y., Sato, M., Itoh, N., Suzuki, N. (2007) Hydrogen production from the gasification of lignin with nickel catalysts in supercritical water. Int. J. Hydrog. Energy 32:699–704.10.1016/j.ijhydene.2006.08.001Search in Google Scholar

Ganesan, P., Sivanantham, A., Shanmugam, S. (2017) Nanostructured nickel-cobalt-titanium alloy grown on titanium substrate as efficient electrocatalyst for alkaline water electrolysis. ACS Appl. Mater. Interfaces 9:12416–12426.10.1021/acsami.7b00353Search in Google Scholar PubMed

Gao, Y., Mi, L., Wei, W., Cui, S., Zheng, Z., Hou, H., Chen, W. (2015) Double metal ions synergistic effect in hierarchical multiple sulfide microflowers for enhanced supercapacitor performance. ACS Appl. Mater. Interfaces 7:4311–4319.10.1021/am508747mSearch in Google Scholar PubMed

Ghatak, H.R. (2006) Electrolysis of black liquor for hydrogen production: some initial findings. Int. J. Hydrog. Energy 31:934–938.10.1016/j.ijhydene.2005.07.013Search in Google Scholar

Ghatak, H.R., Kumar, S., Kundu, P.P. (2008) Electrode processes in black liquor electrolysis and their significance for hydrogen production. Int. J. Hydrog. Energy 33:2904–2911.10.1016/j.ijhydene.2008.03.051Search in Google Scholar

Grestini, C. Conversion of Lignin: Chemical Technologies and Biotechnologies. EuroBioRef Summer School, Universita Degli Studi di Roma, Castro Marina, Lecce, Italy, 2011.Search in Google Scholar

Hürtig, C. (1988) The electrochemistry of biomass and derived materials ACS monograph 183 Washington: American Chemical Society, 1985. Acta Biotechnol. 8:206–207.10.1002/abio.370080218Search in Google Scholar

IOFI Working Group on Methods of Analysis. (2011) Guidelines for the quantitative gas chromatography of volatile flavouring substances, from the Working Group on Methods of Analysis of the International Organization of the Flavor Industry (IOFI). Flavour Fragr. J. 26:297–299.Search in Google Scholar

Irmak, S., Kurtuluş, M., Hasanoğlu, A.H., Erbatur, O. (2013) Gasification efficiencies of cellulose, hemicellulose and lignin fractions of biomass in aqueous media by using Pt on activated carbon catalyst. Biomass Bioenergy 49:102–108.10.1016/j.biombioe.2012.12.016Search in Google Scholar

Jenke, D., Odufu, A. (2012) Utilization of internal standard response factors to estimate the concentration of organic compounds leached from pharmaceutical packaging systems and application of such estimated concentrations to safety assessment. J. Chromatogr. Sci. 50:206–212.10.1093/chromsci/bmr048Search in Google Scholar PubMed

Kaiser, K., Benner, R. (2012) Characterization of lignin by gas chromatography and mass spectrometry using a simplified CuO oxidation method. Anal. Chem. 84:459–464.10.1021/ac202004rSearch in Google Scholar PubMed

Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B.A., Blanch, H.W. (2010) Technoeconomic analysis of biofuels: a wiki-based platform for lignocellulosic biorefineries. Biomass Bioenergy 34:1914–1921.10.1016/j.biombioe.2010.07.033Search in Google Scholar

Kloekhorst, A., Shen, Y., Yie, Y., Fang, M., Heeres, H.J. (2015) Catalytic hydrodeoxygenation and hydrocracking of Alcell® lignin in alcohol/formic acid mixtures using a Ru/C catalyst. Biomass Bioenergy 80:147–161.10.1016/j.biombioe.2015.04.039Search in Google Scholar

Lalvani, S.B., Rajagopal, P. (1993) Hydrogen production from lignin-water solution by electrolysis. Holzforschung 47:283–286.10.1515/hfsg.1993.47.4.283Search in Google Scholar

Li, D., Briens, C., Berruti, F. (2015a) Oxidative pyrolysis of kraft lignin in a bubbling fluidized bed reactor with air. Biomass Bioenergy 76:96–107.10.1016/j.biombioe.2015.03.007Search in Google Scholar

Li, C., Zhao, X., Wang, A., Huber, G.W., Zhang, T. (2015b) Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 115:11559–11624.10.1021/acs.chemrev.5b00155Search in Google Scholar PubMed

Movil-Cabrera, O., Garlock, M., Staser, J.A. (2015) Non-precious metal nanoparticle electrocatalysts for electrochemical modification of lignin for low-energy and cost-effective production of hydrogen. Int. J. Hydrog. Energy 40:4519–4530.10.1016/j.ijhydene.2015.02.023Search in Google Scholar

Movil-Cabrera, O., Rodriguez-Silva, A., Arroyo-Torres, C., Staser, J.A. (2016) Electrochemical conversion of lignin to useful chemicals. Biomass Bioenergy 88:89–96.10.1016/j.biombioe.2016.03.014Search in Google Scholar

Nguyen, T., Boudard, M., Carmezim, M.J., Montemor, M.F. (2017) Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors. Sci. Rep. 7:39980.10.1038/srep39980Search in Google Scholar PubMed PubMed Central

Pan, K., Tian, M., Jiang, Z.H., Kjartanson, B., Chen, A. (2012) Electrochemical oxidation of lignin at lead dioxide nanoparticles photoelectrodeposited on TiO2 nanotube arrays. Electrochim. Acta 60:147–153.10.1016/j.electacta.2011.11.025Search in Google Scholar

Pandey, M.P., Kim, C.S. (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem. Eng. Technol. 34:29–41.10.1002/ceat.201000270Search in Google Scholar

Panizza, M., Cerisola, G. (2009) Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 109:6541–6569.10.1007/978-1-4419-6996-5_126Search in Google Scholar

Pardini, V.L., Smith, C.Z., Utley, J.H.P., Vargas, R.R., Viertler, H. (1991) Electroorganic reactions. 38. Mechanism of electrooxidative cleavage of lignin model dimers. J. Org. Chem. 56: 7305–7313.10.1021/jo00026a022Search in Google Scholar

Parpot, P., Bettencourt, A.P., Carvalho, A.M., Belgsir, E.M. (2000) Biomass conversion: attempted electrooxidation of lignin for vanillin production. J. Appl. Electrochem. 30:727–731.10.1023/A:1004003613883Search in Google Scholar

Reddy, S.N., Nanda, S., Dalai, A.K., Kozinski, J.A. (2014) Supercritical water gasification of biomass for hydrogen production. Int. J. Hydrog. Energy 39:6912–6926.10.1016/j.ijhydene.2014.02.125Search in Google Scholar

Reichert, E., Wintringer, R., Volmer, D.A., Hempelmann, R. (2012) Electro-catalytic oxidative cleavage of lignin in a protic ionic liquid. Phys. Chem. Chem. Phys. 14:5214–5221.10.1039/c2cp23596jSearch in Google Scholar PubMed

Rodrigues Pinto, P.C., Borges da Silva, E.A., Rodrigues, A.E. (2011) Insights into oxidative conversion of lignin to high-added-value phenolic aldehydes. Ind. Eng. Chem. Res. 50:741–748.10.1021/ie102132aSearch in Google Scholar

Schmitt, D., Regenbrecht, C., Schubert, M., Schollmeyer, D., Waldvogel, S.R. (2017) Treatment of black liquor (BL) by adsorption on AE resins and a subsequent electrochemical degradation of BL to obtain vanillin. Holzforschung 71:35–41.10.1515/hf-2015-0210Search in Google Scholar

Shao, D., Liang, J., Cui, X., Xu, H., Yan, W. (2014) Electrochemical oxidation of lignin by two typical electrodes: Ti/SbSnO2 and Ti/PbO2. Chem. Eng. J. 244:288–295.10.1016/j.cej.2014.01.074Search in Google Scholar

Shiraishi, T., Takano, T., Kamitakahara, H., Nakatsubo, F. (2012a) Studies on electrooxidation of lignin and lignin model compounds. Part 1: direct electrooxidation of non-phenolic lignin model compounds. Holzforschung 66:303–309.10.1515/hf.2011.069Search in Google Scholar

Shiraishi, T., Takano, T., Kamitakahara, H., Nakatsubo, F. (2012b) Studies on electro-oxidation of lignin and lignin model compounds. Part 2: N-hydroxyphthalimide (NHPI)-mediated indirect electro-oxidation of non-phenolic lignin model compounds. Holzforschung 66:311–315.10.1515/hf.2011.140Search in Google Scholar

St. John, M.R. (1982) Hydrogen production by biomass product depolarized water electrolysis. United States Patent 4,341,608A.Search in Google Scholar

Tolba, R., Tian, M., Wen, J., Jiang, Z.H., Chen, A. (2010) Electrochemical oxidation of lignin at IrO2-based oxide electrodes. J. Electroanal. Chem. 649:9–15.10.1016/j.jelechem.2009.12.013Search in Google Scholar

Valle, B., Remiro, A., Aguayo, A.T., Bilbao, J., Gayubo, A.G. (2013) Catalysts of Ni/α-Al2O3 and Ni/La2O3-αAl2O3 for hydrogen production by steam reforming of bio-oil aqueous fraction with pyrolytic lignin retention. Int. J. Hydrog. Energy 38:1307–1318.10.1016/j.ijhydene.2012.11.014Search in Google Scholar

Van den Bosch, S., Schutyser, W., Vanholme, R., Driessen, T., Koelewijn, S.F., Renders, T., De Meester, B., Huijgen, W.J.J., Dehaen, W., Courtin, C.M., Lagrain, B., Boerjan, W., Sels, B.F. (2015) Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ. Sci. 8:1748–1763.10.1039/C5EE00204DSearch in Google Scholar

Vidotti, M., Silva, M.R., Salvador, R.P., de Torresi, S.I.C., Dall Antonia, L.H. (2008) Electrocatalytic oxidation of urea by nanostructured nickel/cobalt hydroxide electrodes. Electrochim. Acta 53:4030–4034.10.1016/j.electacta.2007.11.029Search in Google Scholar

Wang, L., Gao, Y., Xue, Q., Liu, H., Xu, T. (2005) Microstructure and tribological properties of electrodeposited Ni-Co alloy deposits. Appl. Surf. Sci. 242:326–332.10.1016/j.apsusc.2004.08.033Search in Google Scholar

Wang, H., Tucker, M., Ji, Y. (2013) Recent development in chemical depolymerization of lignin: a review. J. Appl. Chem. 2013:1–9.10.1155/2013/838645Search in Google Scholar

Wang, Y., Yang, F., Liu, Z., Yuan, L., Li, G. (2015) Electrocatalytic degradation of aspen lignin over Pb/PbO2 electrode in alkali solution. Catal. Commun. 67:49–53.10.1016/j.catcom.2015.03.033Search in Google Scholar

Yan, W., Wang, D., Botte, G.G. (2012) Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation. Electrochim. Acta. 61:25–30.10.1016/j.electacta.2011.11.044Search in Google Scholar

Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M. (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110:3552–3599.10.1021/cr900354uSearch in Google Scholar

Zamani, M., Amadeh, A., Baghal, S.M.L. (2016) Effect of Co content on electrodeposition mechanism and mechanical properties of electrodeposited Ni-Co alloy. Trans. Nonferrous. Met. Soc. China 26:484–491.10.1016/S1003-6326(16)64136-5Search in Google Scholar

Zhang, Y., Peng, Y., Yin, X., Liu, Z., Li, G. (2014) Degradation of lignin to BHT by electrochemical catalysis on Pb/PbO2 anode in alkaline solution. J. Chem. Technol. Biotechnol. 89:1954–1960.10.1002/jctb.4282Search in Google Scholar

Received: 2018-02-27
Accepted: 2018-06-07
Published Online: 2018-06-29
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.10.2023 from
Scroll to top button