Accessible Unlicensed Requires Authentication Published by De Gruyter October 17, 2018

Novel protein-repellent and antimicrobial polysaccharide multilayer thin films

Matea Korica, Lidija Fras Zemljič, Matej Bračič, Rupert Kargl, Stefan Spirk, David Reishofer, Katarina Mihajlovski and Mirjana Kostić ORCID logo
From the journal Holzforschung

Abstract

Nanostructured and bio-active polysaccharide-based thin films were manufactured by means of subsequent spin-coated deposition of a regenerated cellulose (RC) layer and a 2,2,6,6-Tetramethylpiperidine-1-oxyl radical (TEMPO) oxidised cellulose nanofibril (TOCN) layer. The bio-activity of the bilayer was achieved by addition of chitosan (CS). The chitosan was either mixed with the TOCN (TOCN+CS) and deposited on the RC layer by spin-coating, or deposited on the RC and TOCN bilayer by pumping its aqueous solution with various pH over the surface of the bilayer. The water content of the thin films and the CS interactions with the bilayer during deposition were studied in situ by means of a quartz crystal microbalance with dissipation (QCM-D). The pH dependent charging behaviour of the TOCN, TOCN+CS and CS dispersions was evaluated by pH-potentiometric titrations. The surface morphology of the thin films was characterised by atomic force microscopy (AFM). The bio-activity of the thin films was evaluated by studying their protein-repellent properties in situ with a continuous flow of bovine serum albumin (BSA) by means of QCM-D and by evaluating their antibacterial properties in vitro against Staphylococcus aureus and Escherichia coli. These polysaccharide-based thin films are high value-added products because of their multifunctionality, high water absorbance capacity, protein-repellence and antimicrobial activity, and have the potential for medical application as a wound dressing material.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors wish to thank the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support through the project OI 172029.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

References

Alarcón, B., Lacal, J.C., Fernández-Sousa, J.M., Carrasco, L. (1984) Screening for new compounds with antiherpes activity. Antiviral Res. 4:234–244.Search in Google Scholar

Aulin, C., Ahola, S., Josefsson, P., Nishino, T., Hirose, Y., Österberg, M., Wågberg, L. (2009) Nanoscale cellulose films with different crystallinities and mesostructures – their surface properties and interaction with water. Langmuir 25:7675–7685.Search in Google Scholar

Chung, Y.C., Chen, C.Y. (2008) Antibacterial characteristics and activity of acid-soluble chitosan. Bioresour. Technol. 99:2806–2814.Search in Google Scholar

Dimilla, P.A., Albelda, S.M., Quinn, J.A. (1992) Adsorption and elution of extracellular matrix proteins on non-tissue culture polystyrene Petri dishes. J. Colloid Interface Sci. 153:212–225.Search in Google Scholar

Elschner, T., Bračič, M., Mohan, T., Kargl, R., Stana-Kleinschek, K. (2018) Modification of cellulose thin films with lysine moieties: a promising approach to achieve antifouling performance. Cellulose 25:537–547.Search in Google Scholar

Fulton, J.A., Blasiole, K.N., Cottingham, T., Tornero, M., Graves, M., Smith, L.G., Mirza, S., Mostow, E.N. (2012) Wound dressing absorption: a comparative study. Adv. Skin Wound Care 25:315–320.Search in Google Scholar

Genco, T., Zemljič, L., Bračič, M., Stana-Kleinschek, K., Heinze, T. (2012) Characterization of viscose fibers modified with 6-deoxy-6-amino cellulose sulfate. Cellulose 19:2057–2067.Search in Google Scholar

Gupta, B.S., Edwards, J.V. (2009) Textile materials and structures for wound care products. In: Advanced Textiles for Wound Care. Ed. Rajendran, S. Woodhead Publishing Limited, Boca Raton FL. pp. 48–96.Search in Google Scholar

Hirano, S., Noshiki, Y., Kinugawa, J., Higashijima, H., Hayashi, T. (1987) Chitin and chitosan for use as novel biomedical materials. In: Advances in Biomedical Polymers. Ed. Gebelein, L.G. Plenum, New York, NY. pp. 285–297.Search in Google Scholar

Hosokawa, J., Nishiyama, M., Yoshihara, K., Kubo, T., Terabe, A. (1991) Reaction between chitosan and cellulose on biodegradable composite film formation. Ind. Eng. Chem. Res. 30:788–792.Search in Google Scholar

Hussain, Z., Khalaf, M., Adil, H., Zageer, D., Hassan, F., Mohammed, S., Yousif, E. (2016) Metal complexes of Schiff’s bases containing sulfonamides nucleus: a review. Res. J. Pharm. Biol. Chem. Sci. 7:1008–1025.Search in Google Scholar

Isogai, A., Saito, T., Fukuzumi, H. (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85.Search in Google Scholar

Jocić, D., Topalović, T. (2004) Biopolymer chitosan: properties, interactions and its use in the treatment of textiles, review paper. Hem. Ind. 58:457–469.Search in Google Scholar

Khalil, A., Bhat, A., Yusra, I. (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym. 87:963–979.Search in Google Scholar

Kingkaew, J., Kirdponpattara, S., Sanchavanakit, N., Pavasant, P., Phisalaphong, M. (2014) Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan-impregnated bacterial cellulose films. Biotechnol. Bioprocess Eng. 19:534–544.Search in Google Scholar

Kittle, J.D., Du, X., Jiang, F., Qian, C., Heinze, T., Roman, M., Esker, A.R. (2011) Equilibrium water contents of cellulose films determined via solvent exchange and quartz crystal microbalance with dissipation monitoring. Biomacromolecules 12:2881–2887.Search in Google Scholar

Klemm, D., Kramer, F., Moritz, S., Lindström, T., Aknerfors, M., Gray, D., Dorris A. (2012) Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50: 5438–5466.Search in Google Scholar

Lin, N., Dufresne, A. (2014) Nanocellulose in biomedicine: current status and future Prospect. Eur. Polym. J. 59:302–325.Search in Google Scholar

Milanović, J., Kostić, M., Škundrić, P. (2012) Structure and properties of TEMPO-oxidized cotton fibers. CI&CEQ 18:473–481.Search in Google Scholar

Mishima, T., Hisamatsu, M., York, W.S., Teranishi, K., Yamada, T. (1998) Adhesion on β-D-glucans to cellulose. Carboxydr. Res. 308:389–395.Search in Google Scholar

Mohan, T., Spirk, S., Kargl, R., Doliska, A., Vessel, A., Salzmann, I., Resel, R., Ribitsch, V., Stana-Kleinschek, K. (2012) Exploring the rearrangement of amorphous cellulose model thin films upon heat treatment. Soft Matter 8:9807–9815.Search in Google Scholar

Mohan, T., Findenig, G., Höllbacher, S., Cerny, C., Ristić, T., Kargl, R., Spirk, S., Maver, U., Stana-Kleinschek, K., Ribitsch, V. (2014) Interaction and enrichment of protein on cationic polysaccharide surfaces. Colloids Surf. B Biointerfaces 123:533–541.Search in Google Scholar

Myllytie, P., Salmi, J., Laine, J. (2009) The influence of pH on the adsorption and interaction of chitosan with cellulose. BioRes. 4:1647–1662.Search in Google Scholar

Naseri-Nosar, M., Ziora, Z.M. (2018) Wound dressings from naturally-occurring polymers: a review on homopolysaccharide-based composites. Carbohydr. Polym. 189:379–398.Search in Google Scholar

Nikolic, T., Kostic, M., Praskalo, J., Pejic, B., Petronijevic, Z., Skundric, P. (2010) Sodium periodate oxidized cotton yarn as carrier for immobilization of trypsin. Carbohydr. Polym. 82:976–981.Search in Google Scholar

Nikolic, T., Milanovic, J., Kramar, A., Petronijevic, Z., Milenkovic, L., Kostic, M. (2014) Preparation of cellulosic fibers with biological activity by immobilization of trypsin on periodate oxidized viscose fibers. Cellulose 21:1369–1380.Search in Google Scholar

Orelma, H., Filpponen, I., Johansson, L.S., Laine, J., Rojas, O.J. (2012) Modification of cellulose films by adsorption of CMC and chitosan for controlled attachment of biomolecules. Biomacromolecules 12:4311–4318.Search in Google Scholar

Peršin, Z., Mavera, U., Pivec, T., Maver, T., Vesela, A., Mozetič, M., Stana-Kleinschek, K. (2014) Novel cellulose based materials for safe and efficient wound treatment. Carbohydr. Polym. 100:55–64.Search in Google Scholar

Phaechamud, T., Yodkhum, K., Charoenteeraboon, J., Tabata, Y. (2015) Chitosan-aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound. Mater. Sci. Eng. C Mater. Biol. Appl. 50:210–25.Search in Google Scholar

Pillai, C.K.S., Paul, W., Sharma, C.P. (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci. 34:641–678.Search in Google Scholar

Rabe, M., Verdes, D., Seeger, S. (2011) Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 162:87–106.Search in Google Scholar

Ravi Kumar, M.N.V., Muzzarelli, R.A.A., Muzzarelli, C., Sashiwa, H., Domb, A.J. (2004) Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 104:6017–6084.Search in Google Scholar

Ristić, T., Mohan, T., Kargl, R., Hribernik, S., Doliška, A., Stana-Kleinschek, K., Fras, L. (2014) A study on the interaction of cationized chitosan with cellulose surfaces. Cellulose 21:2315–2325.Search in Google Scholar

Ristić, T., Hribernik, S., Fras-Zemljič, L. (2015) Electrokinetic properties of fibres functionalised by chitosan and chitosan nanoparticles. Cellulose 22:3811–3823.Search in Google Scholar

Roemhild, K., Niemz, F., Mohan, T., Hribernik, S., Kurecic, M., Ganser, C., Teichert, C., Spirk, S. (2016) The cellulose source matters-hollow semi spheres or fibers by needleless electrospinning. Macromol. Mater. Eng. 301:42–47.Search in Google Scholar

Sauerbrey, G. (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155:206–222.Search in Google Scholar

Shahid-Ul-Islam, Shahid, M., Mohammad, F. (2013) Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers-a review. Ind. Eng. Chem. Res. 52:5245–5260.Search in Google Scholar

Stana-Kleinschek, K., Ehmann, H.M.A., Spirk, S., Doliška, A., Fasl, H., Fras-Zemljič, L., Kargl, R., Mohan, T., Breitwieser, D., Ribitsch V. (2012) Cellulose and other polysaccharides surface properties and their characterisation. In: The European Polysaccharide Network of Excellence (EPNOE). Ed. Navard, P. Springer-Verlag, Wien. pp. 215–251.Search in Google Scholar

Strnad, S., Šauperl, O., Fras-Zemljič, L. (2010) Cellulose fibres functionalised by chitosan: characterization and application. In: Biopolymers. Ed. Elnashar, M. InTech, Rijeka. pp. 181–200.Search in Google Scholar

Suzuki, S., Ogawa, Y., Ohura, Y., Hashimoto, K., Suzuki, M. (1982) Chitin/Chitosan. In: Proceedings of the 2nd International Conference on Chitin/Chitosan, Tottori, Japan, Eds. Hirano, S., Tokura, S. Japan Soc. p. 210.Search in Google Scholar

Teramoto, A., Takagi, Y., Hachimori, A., Abe, K. (1999) Interaction of albumin with polysaccharides containing ionic groups. Polym. Adv. Technol. 10:681–686.Search in Google Scholar

Tokura, S., Ueno, K., Miyazaki, S., Nishi, N. (1997) Molecular weight dependent antimicrobial activity by chitosan. Macromol. Symp. 120:1–9.Search in Google Scholar

Vallée, A., Humblot, V., Al Housseiny, R., Boujday, S., Pradier, C-M. (2013) BSA adsorption on aliphatic and aromatic acid SAMs: investigating the effect of residual surface charge and sublayer nature. Colloids Surf. B Biointerfaces 109:136–142.Search in Google Scholar

Windler, L., Height, M., Nowack, B. (2013) Comparative evaluation of antimicrobials for textile applications. Environ. Int. 53:62–73.Search in Google Scholar

Zeronian, S.H., Inglesby, M.K. (1995) Bleaching of cellulose by hydrogen peroxide. Cellulose 2:265–272.Search in Google Scholar

Zhang, S., Wang, P., Wu, R., Peng, H., Wu, R. (2016) Preparation and properties of oxidized regenerated cellulose by hydrogen peroxide. CIESC J. 67:2401–2409.Search in Google Scholar

Zhou, Q., Rutland, M.W., Teeri, T.T., Brumer, H. (2007) Xyloglucan in cellulose modification. Cellulose 14:625–641.Search in Google Scholar

Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hf-2018-0094).

Received: 2018-04-26
Accepted: 2018-09-27
Published Online: 2018-10-17
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston