Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 17, 2019

Influence of hemicellulose content of Eucalyptus and Pinus fibers on the grinding process for obtaining cellulose micro/nanofibrils

  • Matheus Cordazzo Dias ORCID logo EMAIL logo , Maressa Carvalho Mendonça , Renato A.P. Damásio , Uasmim Lira Zidanes , Fábio Akira Mori , Saulo Rocha Ferreira and Gustavo H.D. Tonoli
From the journal Holzforschung


The objective of this study was to verify the effect of the hemicellulose content of commercial bleached pulps on the ease of mechanical fibrillation and on its energy consumption (EC). NaOH in concentrations of 5% with 2 h of reaction, and 10% with 1 and 2 h of reaction, was evaluated for the partial removal of hemicelluloses. Pulp fibrillation was influenced by hemicellulose removal, being less fibrillated when excessive removal occurred (in the range of 4–8.5%). Hemicellulose content in the range of 9–13% increased the water retention value (WRV) and led to nanofibrils with smaller diameter, while a stronger alkali concentration reduced the WRV. X-ray diffraction (XRD) showed that reaction time was a determining factor for the crystallinity of the samples and partial conversion of cellulose I to cellulose II in pretreatments with NaOH 10% (1 and 2 h), and was a factor that may also damage the fibrillation process. Pre-treatment with NaOH 5% for 2 h promoted energy savings for both pulps. This work demonstrated that hemicellulose content has a considerable influence on the mechanical fibrillation and is a key aspect of the balance between efficient fibrillation and the energy required for that.


The authors would like to thank FAPEMIG, CNPq, CAPES and Klabin S.A., Brazil. Also, thanks are due for the support by the Graduate Program in Wood Science and Technology (UFLA/Brazil); to the Laboratory of Electron Microscopy and Ultrastructural Analysis of the Federal University of Lavras ( for supplying the equipment and technical support for experiments involving SEM; and to the Center of Microscopy at the Federal University of Minas Gerais ( for providing the equipment and technical support for experiments involving TEM.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.


Abe, K. (2016) Nanofibrillation of dried pulp in NaOH solutions using bead milling. Cellulose 23:1257–1261.10.1007/s10570-016-0891-4Search in Google Scholar

Abitbol, T., Rivkin, A., Cao, Y., Nevo, Y., Abraham, E., Ben-Shalom, T., Lapidot, S., Shoseyov, O. (2016) Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol. 39:76–88.10.1016/j.copbio.2016.01.002Search in Google Scholar PubMed

Alila, S., Besbes, I., Rei Vilar, M., Mutjé, P., Boufi, S. (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind. Crops Prod. 41:250–259.10.1016/j.indcrop.2012.04.028Search in Google Scholar

Alimadadi, M., Lindström, S.B., Kulachenko, A. (2018) Role of microstructures in the compression response of three-dimensional foam-formed wood fiber networks. Soft Matter 14:8945–8955.10.1039/C7SM02561KSearch in Google Scholar PubMed

Arantes, A.C.C., Almeida, C., das, G., Dauzacker, L.C.L., Bianchi, M.L., Wood, D.F., Williams, T.G., Orts, W.J., Tonoli, G.H.D. (2017) Renewable hybrid nanocatalyst from magnetite and cellulose for treatment of textile effluents. Carbohydr. Polym. 163:101–107.10.1016/j.carbpol.2017.01.007Search in Google Scholar PubMed

Bali, G., Meng, X., Deneff, J.I., Sun, Q., Ragauskas, A.J. (2015) The effect of alkaline pretreatment methods on cellulose structure and accessibility. ChemSusChem 8:275–279.10.1002/cssc.201402752Search in Google Scholar PubMed

Ballesteros, J.E.M., Santos, V., Mármol, G., Frías, M., Fiorelli, J. (2017) Potential of the hornification treatment on eucalyptus and pine fibers for fiber-cement applications. Cellulose 24:2275–2286.10.1007/s10570-017-1253-6Search in Google Scholar

Berglund, L., Noël, M., Aitomäki, Y., Öman, T., Oksman, K. (2016) Production potential of cellulose nanofibers from industrial residues: efficiency and nanofiber characteristics. Ind. Crops Prod. 92:84–92.10.1016/j.indcrop.2016.08.003Search in Google Scholar

Blomstedt, M., Kontturi, E., Vuorinen, T. (2007) Surface modification of eucalyptus pulp by carboxymethyl cellulose: effect of fiber properties and paper strength. Papel. 6:51–63.Search in Google Scholar

Borysiak, S., Garbarczyk, J. (2003) Applying the WAXS method to estimate the supermolecular structure of cellulose fibres after mercerisation. Fibres Text East Eur. 11:104–106.Search in Google Scholar

Bufalino, L., Mendes, L.M., Tonoli, G.H.D., Rodrigues, A., Fonseca, A., Cunha, P.I., Marconcini, J.M. (2014) New products made with lignocellulosic nanofibers from Brazilian amazon forest. IOP Conf. Ser.: Mater. Sci. Eng. 64:1–5.10.1088/1757-899X/64/1/012012Search in Google Scholar

Bufalino, L., Sena Neto, A.R., Tonoli, G.H.D., Souza, A.F., Costa, T.G., Marconcini, J.M., Colodette, J.L., Labory, C.R.G., Mendes, L.M. (2015) How the chemical nature of Brazilian hardwoods affects nanofibrillation of cellulose fibers and film optical quality. Cellulose 22:3657–3672.10.1007/s10570-015-0771-3Search in Google Scholar

Campos, A., Correa, A.C., Cannella, D., Teixeira, E.M., Marconcini, J.M., Dufresne, A., Mattoso, L.H.C., Cassland, P., Sanadi, A.R. (2013) Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20:1491–1500.10.1007/s10570-013-9909-3Search in Google Scholar

Chaker, A., Alila, S., Mutjé, P., Vilar, M.R., Boufi, S. (2013) Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose 20:2863–2875.10.1007/s10570-013-0036-ySearch in Google Scholar

Chandrasekar, M., Ishak, M.R., Sapuan, S.M., Leman, Z., Jawaid, M. (2017) A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plast. Rubber Compos. 46:119–136.10.1080/14658011.2017.1298550Search in Google Scholar

Cheng, Q., Wang, S., Rials, T.G. (2009) Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos. A: Appl. Sci. Manuf. 40:218–224.10.1016/j.compositesa.2008.11.009Search in Google Scholar

Cheng, S., Panthapulakkal, S., Sain, M., Asiri, A. (2014) Aloe vera rind cellulose nanofibers-reinforced films. J. Appl. Polym. Sci 131:1–10.Search in Google Scholar

Choi, K.H., Kim, A.R., Cho, B.U. (2016) Effects of alkali swelling and beating treatments on properties of kraft pulp fibers. BioResources 11:3769–3782.10.15376/biores.11.2.3769-3782Search in Google Scholar

Chung, D.D.L. (2005) Dispersion of short fibers in cement. J. Mater. Civil Eng. 17:379–383.10.1061/(ASCE)0899-1561(2005)17:4(379)Search in Google Scholar

Dahlman, O., Jacobs, A., Sjöberg, J. (2003) Molecular properties of hemicelluloses located in the surface and inner layers of hardwood and softwood pulps. Cellulose 10:325–334.10.1023/A:1027316926308Search in Google Scholar

Desmaisons, J., Boutonnet, E., Rueff, M., Dufresne, A., Bras, J. (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohydr. Polym. 174:318–329.10.1016/j.carbpol.2017.06.032Search in Google Scholar PubMed

Erbas Kiziltas, E., Kiziltas, A., Gardner, D.J. (2015) Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydr. Polym. 124:131–138.10.1016/j.carbpol.2015.01.036Search in Google Scholar PubMed

Espinosa, E., Domínguez-Robles, J., Sánchez, R., Tarrés, Q., Rodríguez, A. (2017) The effect of pre-treatment on the production of lignocellulosic nanofibers and their application as a reinforcing agent in paper. Cellulose 24:2605–2618.10.1007/s10570-017-1281-2Search in Google Scholar

Fonseca, C.S., Silva, T.F., Silva, M.F., Oliveira, I.R.C., Mendes, R.F., Hein, P.R.G., Mendes, L.M., Tonoli, G.H.D. (2016) Micro/nanofibrilas celulósicas de eucalyptus em fibrocimentos extrudados [Eucalyptus cellulosic micro/nanofibrils in extruted fiber-cement]. Cerne 22:59–68.10.1590/01047760201622012084Search in Google Scholar

Foston, M., Ragauskas, A.J. (2010) Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of Populus and switchgrass. Biomass. Bioenergy 34:1885–1895.10.1016/j.biombioe.2010.07.023Search in Google Scholar

French, A.D. (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896.10.1007/s10570-013-0030-4Search in Google Scholar

French, A.D., Santiago Cintrón, M. (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588.10.1007/s10570-012-9833-ySearch in Google Scholar

Guimarães, M., Botaro, V.R., Novack, K.M., Flauzino Neto, W.P., Mendes, L.M., Tonoli, G.H.D. (2015a) Preparation of cellulose nanofibrils from bamboo pulp by mechanical defibrillation for their applications in biodegradable composites. J. Nanosci. Nanotechnol 15:6751–6768.10.1166/jnn.2015.10854Search in Google Scholar PubMed

Guimarães, M., Botaro, V.R., Novack, K.M., Teixeira, F.G., Tonoli, G.H.D. (2015b) Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Ind. Crops Prod. 70:72–83.10.1016/j.indcrop.2015.03.014Search in Google Scholar

Guimarães, M., Botaro, V.R., Novack, K.M., Teixeira, F.G., Tonoli, G.H.D. (2015c) High moisture strength of cassava starch/polyvinyl alcohol-compatible blends for the packaging and agricultural sectors. J. Polym. Res. 22:1–18.10.1007/s10965-015-0834-zSearch in Google Scholar

Guimarães Junior, M., Teixeira, F.G., Tonoli, G.H.D. (2018) Effect of the nano-fibrillation of bamboo pulp on the thermal, structural, mechanical and physical properties of nanocomposites based on starch/poly(vinyl alcohol) blend. Cellulose 25:1823–1849.10.1007/s10570-018-1691-9Search in Google Scholar

Hamad, W.Y. (1997) Some microrheological aspects of wood-pulp fibres subjected to fatigue loading. Cellulose 4:51–56.10.1023/A:1018463117874Search in Google Scholar

Härdelin, L., Perzon, E., Hagström, B., Walkenström, P., Gatenholm, P. (2013) Influence of molecular weight and rheological behavior on electrospinning cellulose nanofibers from ionic liquids. J. Appl. Polym. Sci. 130:2303–2310.10.1002/app.39449Search in Google Scholar

Hassan, M.L., Mathew, A.P., Hassan, E.A., El-Wakil, N.A., Oksman, K. (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci. Technol. 46:193–205.10.1007/s00226-010-0373-zSearch in Google Scholar

He, M., Yang, G., Chen, J., Ji, X., Wang, Q. (2018) Production and Characterization of cellulose nanofibrils from different chemical and mechanical pulps. J. Wood Chem. Technol. 38:149–158.10.1080/02773813.2017.1411368Search in Google Scholar

Hosur, M., Maroju, H., Jeelani, S. (2015) Comparison of effects of alkali treatment on flax fibre reinforced polyester and polyester-biopolymer blend resins. Polym. Polym. Compos. 23:229–242.10.1177/096739111502300404Search in Google Scholar

Ioelovich, M. (2008) Cellulose as a nanostructured polymer: a short review. BioResources 3:1403–1418.10.15376/biores.3.4.IoelovichSearch in Google Scholar

Isogai, A. (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J. Wood Sci. 59:449–459.10.1007/s10086-013-1365-zSearch in Google Scholar

Iwamoto, S., Abe, K., Yano, H. (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026.10.1021/bm701157nSearch in Google Scholar PubMed

Ji, Y., Peng, Y., Strand, A., Fu, S., Sundberg, A., Retulainen, E. (2018) Fiber evolution during alkaline treatment and its impact on handsheet properties. BioResources 13:7310–7324.10.15376/biores.13.4.7310-7324Search in Google Scholar

Jin, E., Guo, J., Yang, F., Zhu, Y., Song, J., Jin, Y., Rojas, O.J. (2016) On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydr. Polym. 143:327–335.10.1016/j.carbpol.2016.01.048Search in Google Scholar PubMed

Jorfi, M., Foster, E.J. (2015) Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132:1–19.10.1002/app.41719Search in Google Scholar

Khalil, H.P.S.A., Davoudpour, Y., Islam, M.N., Mustapha, A., Sudesh, K., Dungani, R., Jawaid, M. (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr. Polym. 99:649–665.10.1016/j.carbpol.2013.08.069Search in Google Scholar PubMed

Klemm, D., Philip, B., Heinze, T., Heinze, U.W.W. (1998) Comprehensive Cellulose Chemistry. Volume 1, Fundamentals and Analytical Methods. Wiley-VCH, Weinheim.10.1002/3527601929Search in Google Scholar

Klemm, D., Heublein, B., Fink, H.P., Bohn, A. (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44:3358–3393.10.1002/anie.200460587Search in Google Scholar PubMed

Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., Dorris, A. (2011) Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50:5438–5466.10.1002/anie.201001273Search in Google Scholar PubMed

Lahtinen, P., Liukkonen, S., Pere, J., Sneck, A., Heli Kangas, H. (2014) A comparative study of fibrillated fibers from different mechanical and chemical pulps. BioResources 9:2115–2127.10.15376/biores.9.2.2115-2127Search in Google Scholar

Lavoine, N., Desloges, I., Dufresne, A., Bras, J. (2012) Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr. Polym. 90:735–764.10.1016/j.carbpol.2012.05.026Search in Google Scholar PubMed

Lund, K., Sjoström, K., Brelid, H. (2012) Alkali extraction of kraft pulp fibers: influence on fiber and fluff pulp properties. J. Eng. Fibers. Fabr. 7:30–39.10.1177/155892501200700206Search in Google Scholar

Ma, Z., Pan, G., Xu, H., Huang, Y., Yang, Y. (2015) Cellulosic fibers with high aspect ratio from cornhusks via controlled swelling and alkaline penetration. Carbohydr. Polym. 124:50–56.10.1016/j.carbpol.2015.02.008Search in Google Scholar PubMed

Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P.A. (2008) Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Cryst. 41:466–470.10.1107/S0021889807067908Search in Google Scholar

Mahfoudhi, N., Boufi, S. (2016) Poly (acrylic acid-co-acrylamide)/cellulose nanofibrils nanocomposite hydrogels: effects of CNFs content on the hydrogel properties. Cellulose 23:3691–3701.10.1007/s10570-016-1074-zSearch in Google Scholar

Martin-Sampedro, R., Eugenio, M.E., Moreno, J.A., Revilla, E., Villar, J.C. (2014) Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment. Bioresour. Technol. 153:236–244.10.1016/j.biortech.2013.11.088Search in Google Scholar PubMed

Mirmehdi, S., Hein, P.R.G., Luca Sarantópoulos, C.I.G., Dias, M.V., Tonoli, G.H.D. (2018a) Cellulose nanofibrils/nanoclay hybrid composite as a paper coating: effects of spray time, nanoclay content and corona discharge on barrier and mechanical properties of the coated papers. Food Pack. Shelf Life 15:87–94.10.1016/j.fpsl.2017.11.007Search in Google Scholar

Mirmehdi, S., Oliveira, M.L.C., Hein, P.R.G., Dias, M.V., Sarantópoulos, C.I.G.L., Tonoli, G.H.D. (2018b) Spraying cellulose nanofibrils for improvement of tensile and barrier properties of writing & printing (W&P) paper. J. Wood Chem. Technol. 38:233–245.10.1080/02773813.2018.1432656Search in Google Scholar

Nam, S., French, A.D., Condon, B.D., Concha, M. (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr. Polym. 135:1–9.10.1016/j.carbpol.2015.08.035Search in Google Scholar PubMed

Nishiyama, Y., Langan, P., Chanzy, H. (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124:9074–9082.10.1021/ja0257319Search in Google Scholar PubMed

Oksanen, T., Buchert, J., Viikari, L. (1997) The role of hemicelluloses in the hornification of bleached kraft pulps. Holzforschung 51:355–360.10.1515/hfsg.1997.51.4.355Search in Google Scholar

Olejnik, K., Skalski, B., Stanislawska, A., Wysocka-Robak, A. (2017) Swelling properties and generation of cellulose fines originating from bleached kraft pulp refined under different operating conditions. Cellulose 24:3955–3967.10.1007/s10570-017-1404-9Search in Google Scholar

Oudiani, A.E., Chaabouni, Y., Msahli, S., Sakli, F. (2011) Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohydr. Polym. 86:1221–1229.10.1016/j.carbpol.2011.06.037Search in Google Scholar

Pacaphol, K., Aht-Ong, D. (2017) Preparation of hemp nanofibers from agricultural waste by mechanical defibrillation in water. J. Clean. Prod. 142:1283–1295.10.1016/j.jclepro.2016.09.008Search in Google Scholar

Panthapulakkal, S., Sain, M. (2013) Isolation of nano fibres from hemp and flax and their thermoplastic composites. Plast. Polym. Technol. 2:9–16.Search in Google Scholar

Park, C.W., Han, S.Y., Choi, S.K., Lee, S.H. (2017) Preparation and properties of holocellulose nanofibrils with different hemicellulose content. BioResources 12:6298–6308.10.15376/biores.12.3.6298-6308Search in Google Scholar

Prado, N.R.T., Raabe, J., Mirmehdi, S., Lemos, A., Ramos, S., Junior, M.G., Tonoli, G.H.D. (2017) Strength improvement of hydroxypropyl methylcellulose/starch films using cellulose nanocrystals strength improvement of hydroxypropyl methylcellulose/starch films using cellulose nanocrystals. Cerne 23:423–434.10.1590/01047760201723042303Search in Google Scholar

Ramadevi, P., Sampathkumar, D., Srinivasa, C.V., Bennehalli, B. (2012) Effect of alkali treatment on water absorption of single cellulosic abaca fiber. BioResources 7:3515–3524.Search in Google Scholar

Rambabu, N., Panthapulakkal, S., Sain, M., Dalai, A.K. (2016) Production of nanocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Ind. Crops Prod. 83:746–754.10.1016/j.indcrop.2015.11.083Search in Google Scholar

Rol, F., Belgacem, M.N., Gandini, A., Bras, J. (2019) Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 88:241–264.10.1016/j.progpolymsci.2018.09.002Search in Google Scholar

SaifulAzry, S.O.A., Chuah, T.G., Paridah, M.T., Aung, M.M., Edi, S.Z. (2017) Effects of polymorph transformation via mercerisation on microcrystalline cellulose fibres and isolation of nanocrystalline cellulose fibres. J. Sci. Technol. 25:1275–1290.Search in Google Scholar

Scatolino, M.V., Silva, D.W., Bufalino, L., Tonoli, G.H.D., Mendes, L.M. (2017a) Influence of cellulose viscosity and residual lignin on water absorption of nanofibril films. Procedia. Eng. 200:155–161.10.1016/j.proeng.2017.07.023Search in Google Scholar

Scatolino, M.V., Bufalino, L., Mendes, L.M., Guimarães Júnior, M., Tonoli, G.H.D. (2017b) Impact of nanofibrillation degree of eucalyptus and Amazonian hardwood sawdust on physical properties of cellulose nanofibril films. Wood Sci. Technol. 51:1095–1115.10.1007/s00226-017-0927-4Search in Google Scholar

Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M. (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res. J. 29:786–794.10.1177/004051755902901003Search in Google Scholar

Shanmugam, K., Garnier, G. (2017) Rapid preparation of smooth nanocellulose films using spray coating. Cellulose 24:2669–2676.10.1007/s10570-017-1328-4Search in Google Scholar

Sharma, S., Nair, S.S., Zhang, Z., Ragauskas, A.J. (2015) Characterization of micro fibrillation process of cellulose and mercerized cellulose pulp. RSC Adv. 77:63111–63122.10.1039/C5RA09068GSearch in Google Scholar

Souza, L.O., Lessa, O.A., Dias, M.C., Tonoli, G.H.D., Rezende, D.V.B., Martins, M.A., Neves, I.C.O., Resende, J.V., Carvalho, E.E.N., Vilas Boas, E.V.B., Oliveira, J.R., Franco, M. (2019) Study of morphological properties and rheological parameters of cellulose nanofibrils of cocoa shell (Theobroma cacao L.). Carbohydr. Polym. 214:152–158.10.1016/j.carbpol.2019.03.037Search in Google Scholar PubMed

Syverud, K., Chinga-Carrasco, G., Toledo, J., Toledo, P.G. (2011) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr. Polym. 84:1033–1038.10.1016/j.carbpol.2010.12.066Search in Google Scholar

TAPPI Standard (1976) UM 250. Acid-soluble lignin in wood and pulp.Search in Google Scholar

Tonoli, G.H.D., Savastano, H., Fuente, E., Negro, C., Blanco, A., Rocco Lahr, F.A. (2010) Eucalyptus pulp fibres as alternative reinforcement to engineered cement-based composites. Ind. Crops Prod. 31:225–232.10.1016/j.indcrop.2009.10.009Search in Google Scholar

Tonoli, G.H.D., Teixeira, E.M., Corrêa, A.C., Marconcini, J.M., Caixeta, L.A., Pereira-Da-Silva, M.A., Mattoso, L.H.C. (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr. Polym. 89:80–88.10.1016/j.carbpol.2012.02.052Search in Google Scholar PubMed

Tonoli, G.H.D., Holtman, K.M., Glenn, G., Fonseca, A.S., Wood, D., Williams, T., Sa, V.A., Torres, L., Klamczynski, A., Orts, W.J. (2016) Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing. Cellulose 23:1239–1256.10.1007/s10570-016-0890-5Search in Google Scholar

Wallis, A., Wearne, R.H., Wright, P.J. (1996) Chemical analysis of polysaccharides in plantation eucalypt woods and pulp. Appita. J. 49:258–262.Search in Google Scholar

Wang, H., Li, D., Yano, H., Abe, K. (2014) Preparation of tough cellulose II nanofibers with high thermal stability from wood. Cellulose 21:1505–1515.10.1007/s10570-014-0222-6Search in Google Scholar

Xiong, Z., Chen, X., Liou, P., Lin, M. (2017) Development of nanofibrillated cellulose coated with gold nanoparticles for measurement of melamine by SERS. Cellulose 24:2801–2811.10.1007/s10570-017-1297-7Search in Google Scholar

Zhang, H., Tong, M. (2007) Influence of hemicelluloses on the structure and properties of lyocell fibers. Engineering 47:21–25.10.1002/pen.20743Search in Google Scholar

Zuluaga, R., Putaux, J.L., Cruz, J., Vélez, J., Mondragon, I., Gañán, P. (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr. Polym. 76:51–59.10.1016/j.carbpol.2008.09.024Search in Google Scholar

Supplementary Material

The online version of this article offers supplementary material (

Received: 2018-10-02
Accepted: 2019-04-25
Published Online: 2019-06-17
Published in Print: 2019-10-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.12.2023 from
Scroll to top button