Abstract
The objective of this study was to verify the effect of the hemicellulose content of commercial bleached pulps on the ease of mechanical fibrillation and on its energy consumption (EC). NaOH in concentrations of 5% with 2 h of reaction, and 10% with 1 and 2 h of reaction, was evaluated for the partial removal of hemicelluloses. Pulp fibrillation was influenced by hemicellulose removal, being less fibrillated when excessive removal occurred (in the range of 4–8.5%). Hemicellulose content in the range of 9–13% increased the water retention value (WRV) and led to nanofibrils with smaller diameter, while a stronger alkali concentration reduced the WRV. X-ray diffraction (XRD) showed that reaction time was a determining factor for the crystallinity of the samples and partial conversion of cellulose I to cellulose II in pretreatments with NaOH 10% (1 and 2 h), and was a factor that may also damage the fibrillation process. Pre-treatment with NaOH 5% for 2 h promoted energy savings for both pulps. This work demonstrated that hemicellulose content has a considerable influence on the mechanical fibrillation and is a key aspect of the balance between efficient fibrillation and the energy required for that.
Acknowledgments
The authors would like to thank FAPEMIG, CNPq, CAPES and Klabin S.A., Brazil. Also, thanks are due for the support by the Graduate Program in Wood Science and Technology (UFLA/Brazil); to the Laboratory of Electron Microscopy and Ultrastructural Analysis of the Federal University of Lavras (http://www.prp.ufla.br/labs/microscopiaeletronica/) for supplying the equipment and technical support for experiments involving SEM; and to the Center of Microscopy at the Federal University of Minas Gerais (http://www.microscopia.ufmg.br) for providing the equipment and technical support for experiments involving TEM.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Employment or leadership: None declared.
Honorarium: None declared.
References
Abe, K. (2016) Nanofibrillation of dried pulp in NaOH solutions using bead milling. Cellulose 23:1257–1261.10.1007/s10570-016-0891-4Search in Google Scholar
Abitbol, T., Rivkin, A., Cao, Y., Nevo, Y., Abraham, E., Ben-Shalom, T., Lapidot, S., Shoseyov, O. (2016) Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol. 39:76–88.10.1016/j.copbio.2016.01.002Search in Google Scholar PubMed
Alila, S., Besbes, I., Rei Vilar, M., Mutjé, P., Boufi, S. (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind. Crops Prod. 41:250–259.10.1016/j.indcrop.2012.04.028Search in Google Scholar
Alimadadi, M., Lindström, S.B., Kulachenko, A. (2018) Role of microstructures in the compression response of three-dimensional foam-formed wood fiber networks. Soft Matter 14:8945–8955.10.1039/C7SM02561KSearch in Google Scholar PubMed
Arantes, A.C.C., Almeida, C., das, G., Dauzacker, L.C.L., Bianchi, M.L., Wood, D.F., Williams, T.G., Orts, W.J., Tonoli, G.H.D. (2017) Renewable hybrid nanocatalyst from magnetite and cellulose for treatment of textile effluents. Carbohydr. Polym. 163:101–107.10.1016/j.carbpol.2017.01.007Search in Google Scholar PubMed
Bali, G., Meng, X., Deneff, J.I., Sun, Q., Ragauskas, A.J. (2015) The effect of alkaline pretreatment methods on cellulose structure and accessibility. ChemSusChem 8:275–279.10.1002/cssc.201402752Search in Google Scholar PubMed
Ballesteros, J.E.M., Santos, V., Mármol, G., Frías, M., Fiorelli, J. (2017) Potential of the hornification treatment on eucalyptus and pine fibers for fiber-cement applications. Cellulose 24:2275–2286.10.1007/s10570-017-1253-6Search in Google Scholar
Berglund, L., Noël, M., Aitomäki, Y., Öman, T., Oksman, K. (2016) Production potential of cellulose nanofibers from industrial residues: efficiency and nanofiber characteristics. Ind. Crops Prod. 92:84–92.10.1016/j.indcrop.2016.08.003Search in Google Scholar
Blomstedt, M., Kontturi, E., Vuorinen, T. (2007) Surface modification of eucalyptus pulp by carboxymethyl cellulose: effect of fiber properties and paper strength. Papel. 6:51–63.Search in Google Scholar
Borysiak, S., Garbarczyk, J. (2003) Applying the WAXS method to estimate the supermolecular structure of cellulose fibres after mercerisation. Fibres Text East Eur. 11:104–106.Search in Google Scholar
Bufalino, L., Mendes, L.M., Tonoli, G.H.D., Rodrigues, A., Fonseca, A., Cunha, P.I., Marconcini, J.M. (2014) New products made with lignocellulosic nanofibers from Brazilian amazon forest. IOP Conf. Ser.: Mater. Sci. Eng. 64:1–5.10.1088/1757-899X/64/1/012012Search in Google Scholar
Bufalino, L., Sena Neto, A.R., Tonoli, G.H.D., Souza, A.F., Costa, T.G., Marconcini, J.M., Colodette, J.L., Labory, C.R.G., Mendes, L.M. (2015) How the chemical nature of Brazilian hardwoods affects nanofibrillation of cellulose fibers and film optical quality. Cellulose 22:3657–3672.10.1007/s10570-015-0771-3Search in Google Scholar
Campos, A., Correa, A.C., Cannella, D., Teixeira, E.M., Marconcini, J.M., Dufresne, A., Mattoso, L.H.C., Cassland, P., Sanadi, A.R. (2013) Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20:1491–1500.10.1007/s10570-013-9909-3Search in Google Scholar
Chaker, A., Alila, S., Mutjé, P., Vilar, M.R., Boufi, S. (2013) Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose 20:2863–2875.10.1007/s10570-013-0036-ySearch in Google Scholar
Chandrasekar, M., Ishak, M.R., Sapuan, S.M., Leman, Z., Jawaid, M. (2017) A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plast. Rubber Compos. 46:119–136.10.1080/14658011.2017.1298550Search in Google Scholar
Cheng, Q., Wang, S., Rials, T.G. (2009) Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos. A: Appl. Sci. Manuf. 40:218–224.10.1016/j.compositesa.2008.11.009Search in Google Scholar
Cheng, S., Panthapulakkal, S., Sain, M., Asiri, A. (2014) Aloe vera rind cellulose nanofibers-reinforced films. J. Appl. Polym. Sci 131:1–10.Search in Google Scholar
Choi, K.H., Kim, A.R., Cho, B.U. (2016) Effects of alkali swelling and beating treatments on properties of kraft pulp fibers. BioResources 11:3769–3782.10.15376/biores.11.2.3769-3782Search in Google Scholar
Chung, D.D.L. (2005) Dispersion of short fibers in cement. J. Mater. Civil Eng. 17:379–383.10.1061/(ASCE)0899-1561(2005)17:4(379)Search in Google Scholar
Dahlman, O., Jacobs, A., Sjöberg, J. (2003) Molecular properties of hemicelluloses located in the surface and inner layers of hardwood and softwood pulps. Cellulose 10:325–334.10.1023/A:1027316926308Search in Google Scholar
Desmaisons, J., Boutonnet, E., Rueff, M., Dufresne, A., Bras, J. (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohydr. Polym. 174:318–329.10.1016/j.carbpol.2017.06.032Search in Google Scholar PubMed
Erbas Kiziltas, E., Kiziltas, A., Gardner, D.J. (2015) Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydr. Polym. 124:131–138.10.1016/j.carbpol.2015.01.036Search in Google Scholar PubMed
Espinosa, E., Domínguez-Robles, J., Sánchez, R., Tarrés, Q., Rodríguez, A. (2017) The effect of pre-treatment on the production of lignocellulosic nanofibers and their application as a reinforcing agent in paper. Cellulose 24:2605–2618.10.1007/s10570-017-1281-2Search in Google Scholar
Fonseca, C.S., Silva, T.F., Silva, M.F., Oliveira, I.R.C., Mendes, R.F., Hein, P.R.G., Mendes, L.M., Tonoli, G.H.D. (2016) Micro/nanofibrilas celulósicas de eucalyptus em fibrocimentos extrudados [Eucalyptus cellulosic micro/nanofibrils in extruted fiber-cement]. Cerne 22:59–68.10.1590/01047760201622012084Search in Google Scholar
Foston, M., Ragauskas, A.J. (2010) Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of Populus and switchgrass. Biomass. Bioenergy 34:1885–1895.10.1016/j.biombioe.2010.07.023Search in Google Scholar
French, A.D. (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896.10.1007/s10570-013-0030-4Search in Google Scholar
French, A.D., Santiago Cintrón, M. (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588.10.1007/s10570-012-9833-ySearch in Google Scholar
Guimarães, M., Botaro, V.R., Novack, K.M., Flauzino Neto, W.P., Mendes, L.M., Tonoli, G.H.D. (2015a) Preparation of cellulose nanofibrils from bamboo pulp by mechanical defibrillation for their applications in biodegradable composites. J. Nanosci. Nanotechnol 15:6751–6768.10.1166/jnn.2015.10854Search in Google Scholar PubMed
Guimarães, M., Botaro, V.R., Novack, K.M., Teixeira, F.G., Tonoli, G.H.D. (2015b) Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Ind. Crops Prod. 70:72–83.10.1016/j.indcrop.2015.03.014Search in Google Scholar
Guimarães, M., Botaro, V.R., Novack, K.M., Teixeira, F.G., Tonoli, G.H.D. (2015c) High moisture strength of cassava starch/polyvinyl alcohol-compatible blends for the packaging and agricultural sectors. J. Polym. Res. 22:1–18.10.1007/s10965-015-0834-zSearch in Google Scholar
Guimarães Junior, M., Teixeira, F.G., Tonoli, G.H.D. (2018) Effect of the nano-fibrillation of bamboo pulp on the thermal, structural, mechanical and physical properties of nanocomposites based on starch/poly(vinyl alcohol) blend. Cellulose 25:1823–1849.10.1007/s10570-018-1691-9Search in Google Scholar
Hamad, W.Y. (1997) Some microrheological aspects of wood-pulp fibres subjected to fatigue loading. Cellulose 4:51–56.10.1023/A:1018463117874Search in Google Scholar
Härdelin, L., Perzon, E., Hagström, B., Walkenström, P., Gatenholm, P. (2013) Influence of molecular weight and rheological behavior on electrospinning cellulose nanofibers from ionic liquids. J. Appl. Polym. Sci. 130:2303–2310.10.1002/app.39449Search in Google Scholar
Hassan, M.L., Mathew, A.P., Hassan, E.A., El-Wakil, N.A., Oksman, K. (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci. Technol. 46:193–205.10.1007/s00226-010-0373-zSearch in Google Scholar
He, M., Yang, G., Chen, J., Ji, X., Wang, Q. (2018) Production and Characterization of cellulose nanofibrils from different chemical and mechanical pulps. J. Wood Chem. Technol. 38:149–158.10.1080/02773813.2017.1411368Search in Google Scholar
Hosur, M., Maroju, H., Jeelani, S. (2015) Comparison of effects of alkali treatment on flax fibre reinforced polyester and polyester-biopolymer blend resins. Polym. Polym. Compos. 23:229–242.10.1177/096739111502300404Search in Google Scholar
Ioelovich, M. (2008) Cellulose as a nanostructured polymer: a short review. BioResources 3:1403–1418.10.15376/biores.3.4.IoelovichSearch in Google Scholar
Isogai, A. (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J. Wood Sci. 59:449–459.10.1007/s10086-013-1365-zSearch in Google Scholar
Iwamoto, S., Abe, K., Yano, H. (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026.10.1021/bm701157nSearch in Google Scholar PubMed
Ji, Y., Peng, Y., Strand, A., Fu, S., Sundberg, A., Retulainen, E. (2018) Fiber evolution during alkaline treatment and its impact on handsheet properties. BioResources 13:7310–7324.10.15376/biores.13.4.7310-7324Search in Google Scholar
Jin, E., Guo, J., Yang, F., Zhu, Y., Song, J., Jin, Y., Rojas, O.J. (2016) On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydr. Polym. 143:327–335.10.1016/j.carbpol.2016.01.048Search in Google Scholar PubMed
Jorfi, M., Foster, E.J. (2015) Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132:1–19.10.1002/app.41719Search in Google Scholar
Khalil, H.P.S.A., Davoudpour, Y., Islam, M.N., Mustapha, A., Sudesh, K., Dungani, R., Jawaid, M. (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr. Polym. 99:649–665.10.1016/j.carbpol.2013.08.069Search in Google Scholar PubMed
Klemm, D., Philip, B., Heinze, T., Heinze, U.W.W. (1998) Comprehensive Cellulose Chemistry. Volume 1, Fundamentals and Analytical Methods. Wiley-VCH, Weinheim.10.1002/3527601929Search in Google Scholar
Klemm, D., Heublein, B., Fink, H.P., Bohn, A. (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44:3358–3393.10.1002/anie.200460587Search in Google Scholar PubMed
Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., Dorris, A. (2011) Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50:5438–5466.10.1002/anie.201001273Search in Google Scholar PubMed
Lahtinen, P., Liukkonen, S., Pere, J., Sneck, A., Heli Kangas, H. (2014) A comparative study of fibrillated fibers from different mechanical and chemical pulps. BioResources 9:2115–2127.10.15376/biores.9.2.2115-2127Search in Google Scholar
Lavoine, N., Desloges, I., Dufresne, A., Bras, J. (2012) Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr. Polym. 90:735–764.10.1016/j.carbpol.2012.05.026Search in Google Scholar PubMed
Lund, K., Sjoström, K., Brelid, H. (2012) Alkali extraction of kraft pulp fibers: influence on fiber and fluff pulp properties. J. Eng. Fibers. Fabr. 7:30–39.10.1177/155892501200700206Search in Google Scholar
Ma, Z., Pan, G., Xu, H., Huang, Y., Yang, Y. (2015) Cellulosic fibers with high aspect ratio from cornhusks via controlled swelling and alkaline penetration. Carbohydr. Polym. 124:50–56.10.1016/j.carbpol.2015.02.008Search in Google Scholar PubMed
Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P.A. (2008) Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Cryst. 41:466–470.10.1107/S0021889807067908Search in Google Scholar
Mahfoudhi, N., Boufi, S. (2016) Poly (acrylic acid-co-acrylamide)/cellulose nanofibrils nanocomposite hydrogels: effects of CNFs content on the hydrogel properties. Cellulose 23:3691–3701.10.1007/s10570-016-1074-zSearch in Google Scholar
Martin-Sampedro, R., Eugenio, M.E., Moreno, J.A., Revilla, E., Villar, J.C. (2014) Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment. Bioresour. Technol. 153:236–244.10.1016/j.biortech.2013.11.088Search in Google Scholar PubMed
Mirmehdi, S., Hein, P.R.G., Luca Sarantópoulos, C.I.G., Dias, M.V., Tonoli, G.H.D. (2018a) Cellulose nanofibrils/nanoclay hybrid composite as a paper coating: effects of spray time, nanoclay content and corona discharge on barrier and mechanical properties of the coated papers. Food Pack. Shelf Life 15:87–94.10.1016/j.fpsl.2017.11.007Search in Google Scholar
Mirmehdi, S., Oliveira, M.L.C., Hein, P.R.G., Dias, M.V., Sarantópoulos, C.I.G.L., Tonoli, G.H.D. (2018b) Spraying cellulose nanofibrils for improvement of tensile and barrier properties of writing & printing (W&P) paper. J. Wood Chem. Technol. 38:233–245.10.1080/02773813.2018.1432656Search in Google Scholar
Nam, S., French, A.D., Condon, B.D., Concha, M. (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr. Polym. 135:1–9.10.1016/j.carbpol.2015.08.035Search in Google Scholar PubMed
Nishiyama, Y., Langan, P., Chanzy, H. (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124:9074–9082.10.1021/ja0257319Search in Google Scholar PubMed
Oksanen, T., Buchert, J., Viikari, L. (1997) The role of hemicelluloses in the hornification of bleached kraft pulps. Holzforschung 51:355–360.10.1515/hfsg.1997.51.4.355Search in Google Scholar
Olejnik, K., Skalski, B., Stanislawska, A., Wysocka-Robak, A. (2017) Swelling properties and generation of cellulose fines originating from bleached kraft pulp refined under different operating conditions. Cellulose 24:3955–3967.10.1007/s10570-017-1404-9Search in Google Scholar
Oudiani, A.E., Chaabouni, Y., Msahli, S., Sakli, F. (2011) Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohydr. Polym. 86:1221–1229.10.1016/j.carbpol.2011.06.037Search in Google Scholar
Pacaphol, K., Aht-Ong, D. (2017) Preparation of hemp nanofibers from agricultural waste by mechanical defibrillation in water. J. Clean. Prod. 142:1283–1295.10.1016/j.jclepro.2016.09.008Search in Google Scholar
Panthapulakkal, S., Sain, M. (2013) Isolation of nano fibres from hemp and flax and their thermoplastic composites. Plast. Polym. Technol. 2:9–16.Search in Google Scholar
Park, C.W., Han, S.Y., Choi, S.K., Lee, S.H. (2017) Preparation and properties of holocellulose nanofibrils with different hemicellulose content. BioResources 12:6298–6308.10.15376/biores.12.3.6298-6308Search in Google Scholar
Prado, N.R.T., Raabe, J., Mirmehdi, S., Lemos, A., Ramos, S., Junior, M.G., Tonoli, G.H.D. (2017) Strength improvement of hydroxypropyl methylcellulose/starch films using cellulose nanocrystals strength improvement of hydroxypropyl methylcellulose/starch films using cellulose nanocrystals. Cerne 23:423–434.10.1590/01047760201723042303Search in Google Scholar
Ramadevi, P., Sampathkumar, D., Srinivasa, C.V., Bennehalli, B. (2012) Effect of alkali treatment on water absorption of single cellulosic abaca fiber. BioResources 7:3515–3524.Search in Google Scholar
Rambabu, N., Panthapulakkal, S., Sain, M., Dalai, A.K. (2016) Production of nanocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Ind. Crops Prod. 83:746–754.10.1016/j.indcrop.2015.11.083Search in Google Scholar
Rol, F., Belgacem, M.N., Gandini, A., Bras, J. (2019) Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 88:241–264.10.1016/j.progpolymsci.2018.09.002Search in Google Scholar
SaifulAzry, S.O.A., Chuah, T.G., Paridah, M.T., Aung, M.M., Edi, S.Z. (2017) Effects of polymorph transformation via mercerisation on microcrystalline cellulose fibres and isolation of nanocrystalline cellulose fibres. J. Sci. Technol. 25:1275–1290.Search in Google Scholar
Scatolino, M.V., Silva, D.W., Bufalino, L., Tonoli, G.H.D., Mendes, L.M. (2017a) Influence of cellulose viscosity and residual lignin on water absorption of nanofibril films. Procedia. Eng. 200:155–161.10.1016/j.proeng.2017.07.023Search in Google Scholar
Scatolino, M.V., Bufalino, L., Mendes, L.M., Guimarães Júnior, M., Tonoli, G.H.D. (2017b) Impact of nanofibrillation degree of eucalyptus and Amazonian hardwood sawdust on physical properties of cellulose nanofibril films. Wood Sci. Technol. 51:1095–1115.10.1007/s00226-017-0927-4Search in Google Scholar
Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M. (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res. J. 29:786–794.10.1177/004051755902901003Search in Google Scholar
Shanmugam, K., Garnier, G. (2017) Rapid preparation of smooth nanocellulose films using spray coating. Cellulose 24:2669–2676.10.1007/s10570-017-1328-4Search in Google Scholar
Sharma, S., Nair, S.S., Zhang, Z., Ragauskas, A.J. (2015) Characterization of micro fibrillation process of cellulose and mercerized cellulose pulp. RSC Adv. 77:63111–63122.10.1039/C5RA09068GSearch in Google Scholar
Souza, L.O., Lessa, O.A., Dias, M.C., Tonoli, G.H.D., Rezende, D.V.B., Martins, M.A., Neves, I.C.O., Resende, J.V., Carvalho, E.E.N., Vilas Boas, E.V.B., Oliveira, J.R., Franco, M. (2019) Study of morphological properties and rheological parameters of cellulose nanofibrils of cocoa shell (Theobroma cacao L.). Carbohydr. Polym. 214:152–158.10.1016/j.carbpol.2019.03.037Search in Google Scholar PubMed
Syverud, K., Chinga-Carrasco, G., Toledo, J., Toledo, P.G. (2011) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr. Polym. 84:1033–1038.10.1016/j.carbpol.2010.12.066Search in Google Scholar
TAPPI Standard (1976) UM 250. Acid-soluble lignin in wood and pulp.Search in Google Scholar
Tonoli, G.H.D., Savastano, H., Fuente, E., Negro, C., Blanco, A., Rocco Lahr, F.A. (2010) Eucalyptus pulp fibres as alternative reinforcement to engineered cement-based composites. Ind. Crops Prod. 31:225–232.10.1016/j.indcrop.2009.10.009Search in Google Scholar
Tonoli, G.H.D., Teixeira, E.M., Corrêa, A.C., Marconcini, J.M., Caixeta, L.A., Pereira-Da-Silva, M.A., Mattoso, L.H.C. (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr. Polym. 89:80–88.10.1016/j.carbpol.2012.02.052Search in Google Scholar PubMed
Tonoli, G.H.D., Holtman, K.M., Glenn, G., Fonseca, A.S., Wood, D., Williams, T., Sa, V.A., Torres, L., Klamczynski, A., Orts, W.J. (2016) Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing. Cellulose 23:1239–1256.10.1007/s10570-016-0890-5Search in Google Scholar
Wallis, A., Wearne, R.H., Wright, P.J. (1996) Chemical analysis of polysaccharides in plantation eucalypt woods and pulp. Appita. J. 49:258–262.Search in Google Scholar
Wang, H., Li, D., Yano, H., Abe, K. (2014) Preparation of tough cellulose II nanofibers with high thermal stability from wood. Cellulose 21:1505–1515.10.1007/s10570-014-0222-6Search in Google Scholar
Xiong, Z., Chen, X., Liou, P., Lin, M. (2017) Development of nanofibrillated cellulose coated with gold nanoparticles for measurement of melamine by SERS. Cellulose 24:2801–2811.10.1007/s10570-017-1297-7Search in Google Scholar
Zhang, H., Tong, M. (2007) Influence of hemicelluloses on the structure and properties of lyocell fibers. Engineering 47:21–25.10.1002/pen.20743Search in Google Scholar
Zuluaga, R., Putaux, J.L., Cruz, J., Vélez, J., Mondragon, I., Gañán, P. (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr. Polym. 76:51–59.10.1016/j.carbpol.2008.09.024Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/hf-2018-0230).
© 2019 Walter de Gruyter GmbH, Berlin/Boston