Abstract
This study aimed to assess the natural durability of 20 Amazonian wood species preserved with chromated copper arsenate (CCA) after 30 years in ground contact in an experimental field test at National Forest of Tapajós, Pará state - Brazil. Heartwood samples with a cross-section of 5 × 5 cm and 50 cm of length were half-buried in soil and inspected every year for decay. The species were classified according to natural durability following the classification method proposed by Findlay (Findlay, W.P.K. (1985). The nature and durability of wood. In: Findlay, W.P.K. (Ed.), Preservation of timber in the tropics. Springer Science, Whitchurch, pp. 1–13). After 30 years in ground test, six species were classified as Perishable, seven as Non-durable, three as Durable and four as Very durable, namely: Trichilia lecointei, Lecythis pisonis, Pseudopiptadenia suaveolens, and Dipteryx odorata (Very durable), Protium tenuifolium, Dinizia excelsa, and Ormosia paraensis (Durable), Endopleura uchi, Goupia glabra, Pouteria egregia, Tachigali chrysophylla, Tachigali paraensis, Vatairea sericea, and Vochysia maxima (Non-durable) and Chrysophyllum lucentifolium, Couratari oblongifolia, Didymopanax morototoni, Lueheopsis duckeana, Sterculia excelsa, and Xylopia nitida (Perishable). CCA preservative treatment was effective to promote timber protection, even under harsh climatic conditions of the Amazon forest environment.
Funding source: Brazilian Institute of Environment and Renewable Natural Resources – IBAMA
Funding source: Brazilian Forest Service – SFB
Funding source: Forest Products Laboratory – LPF
Acknowledgments
We are especially grateful to Getúlio Ferreira de Almeida and Zenon Lopes de Sousa for their commitment and dedication along these years and the retired researchers and technicians who started this project.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: We gratefully acknowledge the Brazilian Institute of Environment and Renewable Natural Resources – IBAMA, the Brazilian Forest Service – SFB, and the Forest Products Laboratory – LPF for the financial support that enabled this work to be realized.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Ali, A.C. (2011). Physical-mechanical properties and natural durability of lesser used wood species from Mozambique, Doctoral thesis, Uppsala, Swedish University of Agricultural Science.Search in Google Scholar
Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M., and Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorol. Z. 22: 711–728, https://doi.org/10.1127/0941-2948/2013/0507.Search in Google Scholar
Baar, J., Paschová, Z., Hofmann, T., Kolář, T., Koch, G., Saake, B., and Rademacher, P. (2020). Natural durability of subfossil oak: wood chemical composition changes through the ages. Holzforschung 74: 47–59.10.1515/hf-2018-0309Search in Google Scholar
Barbosa, A.P., Nascimento, C.S., and Morais, J.W. (2007). Estudos de propriedades antitermíticas de extratos brutos de madeira e casca de espécies florestais da Amazônia Central, Brasil. Acta Amazonica 37: 213–218, https://doi.org/10.1590/s0044-59672007000200006.Search in Google Scholar
Becker, G. (1972). Suggested standard method for field tests with wooden stakes. PANS Int. J. Pest Manag. 18: 137–142.Search in Google Scholar
Beesley, J. (1985). Field testing of wood preservatives in tropical countries. In: Findlay, W.P.K. (Ed.). Preservation of timber in the tropics. Springer Science, Whitchurch, pp. 205–231.10.1007/978-94-017-2752-5_10Search in Google Scholar
Brischke, C., Meyer, L., and Olberding, S. (2014). Durability of wood exposed in ground - comparative field trials with different soil substrates. Int. Biodeterior. Biodegrad. 86: 108–114, https://doi.org/10.1016/j.ibiod.2013.06.022.Search in Google Scholar
Carneiro, J.S., Emmert, L., Sternadt, G.H., Mendes, J.C.J.C., and Almeida, G.F. (2009). Decay susceptibility of Amazon wood species from Brazil against white rot and brown rot decay fungi. Holzforschung 63: 767–772, https://doi.org/10.1515/hf.2009.119.Search in Google Scholar
Carvalho, I.M.M., Queirós, L.D., Brito, L.F., Santos, F.A., Bandeira, A.V.M., Souza, A.L., and Queiroz, J.H. (2012). Caracterização química da castanha de sapucaia (Lecythis pisonis Cambess.) da região da zona da mata mineira. Biosci. J. 28: 971–977.Search in Google Scholar
Cavalcante, M.S., Lopez, G.A.C., Montagna, R.G., and Mucci, E.S.F. (1987). Durabilidade natural de madeiras em contato com o solo - correlação entre testes de campo e de laboratório. In: Boletim ABPM, 62. Associação Brasileira de Preservadores de, Madeira, São Paulo.Search in Google Scholar
Chimelo, J.P. (1989). Controle de qualidade de madeiras da região amazônica. Acta Bot. Bras. 2: 43–53.10.1590/S0102-33061988000300005Search in Google Scholar
Chudnoff, M. (1984). Tropical timbers of the world. U.S. Department of Agriculture, Forest Service, Washington D.C.Search in Google Scholar
Costa, F.N., Cardoso, R.P., Mendes, C.S., Rodrigues, P.R.G., and Reis, A.R.S. (2019). Natural resistance of seven Amazon woods to xylophagous termite Nasutitermes octopilis (Banks). Floresta e Ambient 26: 3–9, https://doi.org/10.1590/2179-8087.014517.Search in Google Scholar
Da Silveira, M.F., Gouveia, F.N., Moreira, A.C.O., Oliveira, J.R.V., Silva, A.S.V.S., Almeida, G.F., and Costa, A.F. (2019). Natural resistance of eight Brazilian wood species from the region Caatinga determined by an accelerated laboratory decay test against four fungi. Holzforschung 73: 151–154, https://doi.org/10.1515/hf-2018-0051.Search in Google Scholar
Demoliner, F., Policarpi, P.B., Ramos, J.C., Bascuñan, V.L.A.F., Ferrari, R.A., Jachmanián, I., Casas, A.F., Vasconcelos, L.F.L., and Block, J.M. (2018). Sapucaia nut (Lecythis pisonis Cambess) and its by-products: a promising and underutilized source of bioactive compounds. Part I: nutritional composition and lipid profile. Food Res. Int. 108: 27–34, https://doi.org/10.1016/j.foodres.2018.03.028.Search in Google Scholar
Eaton, R.A. and Hale, M.D.C. (1993). Wood - decay, pests and protection, 1st ed. London: Chapman & Hall.Search in Google Scholar
Ferreira, E.L.F., Mascarenhas, T.S., Oliveira, J.P.C., Chaves, M.H., Araújo, B.Q., and Cavalheiro, A.J. (2014). Phytochemical investigation and antioxidant activity of extracts of Lecythis pisonis Camb. J. Medicinal Plants 8: 353–360.10.5897/JMPR2013.5153Search in Google Scholar
Findlay, W.P.K. (1985). The nature and durability of wood. In: Findlay, W.P.K. (Ed.). Preservation of timber in the tropics. Springer Science, Whitchurch, pp. 1–13.10.1007/978-94-017-2752-5_1Search in Google Scholar
Foliente, G.C., Leiceste, R.H., Wang, C.H., Mackenzi, C., and Cole, I. (2002). Durability design of wood construction. For. Prod. J. 52: 10–19.Search in Google Scholar
Fortin, Y. and Poliquin, J. (1976). Natural durability and preservation of one hundred Tropical African woods. International Development Research Centre, Ottawa.Search in Google Scholar
Freitas, R.R.D., Molina, J.C., and Calil Júnior, C. (2010). Mathematical model for timber decay in contact with the ground adjusted for the State of São Paulo. Brazil. Mat. Res. 13: 151–158.10.1590/S1516-14392010000200006Search in Google Scholar
Gambetta, A., Susco, D., and Zanuttini, R. (2004). Determination of the natural durability of larch wood (Larix decidua Mill.) from the Western Italian Alps. Holzforschung 58: 678–681.10.1515/HF.2004.123Search in Google Scholar
Gandolfi, A.Jr., Salvela, C., Macedo, D.R., and Vidal, J.M. (2008). Effectiveness of MOQ® OX 50 (CCB-Oxide) wood preservative – part 2: field tests. In: Proceedings of the IRG Americas Regional Meeting Playa Flamingo, 30 November–2 December: section 3 wood protecting chemicals. IRG Secretariat, Stockholm, Sweden, pp. 1–6.Search in Google Scholar
García-Gómez, A., Figueroa-Brito, R., García Serrano, L.A., and Jiménez-Pérez, A. (2018). Trichilia (Meliaceae) plants: an important source of biomolecules with insecticidal properties. Fla. Entomol. 101: 470–479.10.1653/024.101.0305Search in Google Scholar
Gérard, J., Guibal, D., Paradis, S., and Cerre, J. (2017). Tropical timber atlas: technological characteristics and uses. CIRAD, Versailles.Search in Google Scholar
Gomes, J.I., and Bandeira, A.G. (1984). Durabilidade natural de madeiras amazônicas em contato com o solo. In: Boletim ABPM, 15. Associação Brasileira de Preservadores de, São Paulo.Search in Google Scholar
Gomes, J.M., Varejão, M.J.C., and Nascimento, C.C. (2006). Avaliação da toxicidade nos extrativos de espécies arbóreas, provenientes de áreas de plantio. XV Jornada de Iniciação Científica do PIBIC/CNPq/FAPEAM/INPA. Instituto Nacional de Pesquisas da Amazônia, Manaus.Search in Google Scholar
Hall, C.R., Waterman, J.M., Vandegeer, R.K., Hartley, S.E., and Johnson, S.N. (2019). The role of silicon in antiherbivore phytohormonal signalling. Front. Plant Sci. 10: 1–7.10.3389/fpls.2019.01132Search in Google Scholar
Hayashi, T. and Thomson, R.H. (1974). Isoflavones from Dipteyx odorata. Phytochemistry 13: 1943–1946.10.1016/0031-9422(74)85121-6Search in Google Scholar
Hietala, A.M., Stefanczyk, E., Nagy, N.E., Fossdal, C.G., and Alfredsen, G. (2014). Influence of wood durability on the suppressive effect of increased temperature on wood decay by the brown-rot fungus Postia placenta. Holzforschung 68: 123–131.10.1515/hf-2012-0157Search in Google Scholar
IBDF (1988). Madeiras da Amazônia, características e utilização: estação experimental de Curuá-Una. Amazonian timbers, characteristics and utilization: Curuá-Una Experimental Forest Station. IBDF - Instituto Brasileiro de Desenvolvimento Florestal, Brasília.Search in Google Scholar
ITTO (2020). ITTO lesser used species: Faveira Amargosa (Vatairea sericea), Available at: http://www.tropicaltimber.info/pt-br/specie/faveira-amargosa-vatairea-sericea/#lower-content.Search in Google Scholar
Januário, A.H., Lourenço, M.V., Domézio, L.A., Pietro, R.C.L.R., Castilho, M.S., Tomazela, D.M., Silva, M.F.G.F., Vieira, P.C., Fernandes, S.J.B., and França, S.C. (2005). Isolation and structure determination of bioactive isoflavones from callus culture of Dipteryx odorata. Chem. Pharm. Bull. 53: 740–742.10.1248/cpb.53.740Search in Google Scholar PubMed
JBRJ (2020). Flora do Brasil 2020 em construção, Available at: http://floradobrasil.jbrj.gov.br/reflora/listaBrasil/ConsultaPublicaUC/ConsultaPublicaUC.do#CondicaoTaxonCP.Search in Google Scholar
Jebrane, M., Pockrandt, M., and Terziev, N. (2014). Natural durability of selected larch and Scots pine heartwoods in laboratory and field tests. Int. Biodeterior. Biodegrad. 91: 88–96.10.1016/j.ibiod.2014.03.018Search in Google Scholar
Jesus, M.A., Morais, J.W., Abreu, R.L.S., and Cardias, M.F.C. (1998). Durabilidade natural de 46 espécies de madeira amazônica em contato com o solo em ambiente florestal. Sci. For. 54: 81–92.Search in Google Scholar
Kirker, G.T., Lebow, S.L., and Mankowski, M.E. (2016). Comprehensive overview of FPL field testing conducted in the Tropics (1945–2005). In: Proceedings of the 112th American Wood Protection Association, May, 1-3, 2016. American Wood Protection Association, San Juan, USA.Search in Google Scholar
Lepage, E.S. (1983). Comparação da resistência natural de madeira através de ensaio de campo e de laboratório. In: Boletim ABPM, 69. Associação Brasileira de Preservadores de, Madeira, São Paulo.Search in Google Scholar
Maeglin, R.R. (1991). Forest products from Latin America - an almanac of the state of the knowledge and the state of the art. U.S. Department of Agriculture, Forest Service, Madison.10.2737/FPL-GTR-67Search in Google Scholar
McCarthy, K. and Cookson, L. (2008). Natural durability of five eucalypt species suitable for low rainfall areas: sugar gum, spotted gum, red ironbark, yellow gum and swamp yate, RIRDC Publication 08/162. Rural Industries Research and Development Corporation, Canberra.Search in Google Scholar
Oliveira, J.P.C., Ferreira, E.L.F., Chaves, M.H., Militão, G.C.G., Júnior, G.M.V., Costa, A.M., Pessoa, C.O., Moraes, M.O., and Costa-Lotufo, L.V. (2012). Chemical constituents of Lecythis pisonis and cytotoxic activity. Rev. Bras. Farmacogn. 22: 1140–1144.10.1590/S0102-695X2012005000053Search in Google Scholar
Oliveira Junior, , and Correa, J.R.V. (2001). Caracterização dos solos do município de Belterra, Estado do Pará, Documentos 88. Embrapa Amazônia Oriental. Belém.Search in Google Scholar
Paradis, S., Guibal, D., Gérard, J., Vernay, M., Beauchêne, J., Brancheriau, L., Châlon, I., Daigremont, C., Détienne, P., Fouquet, D., et al.. (2017). Tropix 7: the main technological characteristics of 245 tropical wood species, Available at: https://tropix.cirad.fr/en/technical-sheets-available.Search in Google Scholar
Pupo, M.T., Adorno, M.A.T., Vieira, P.C., Fernandes, J.B., Silva, M.F.G.F., and Pirani, J.R. (2002). Terpenoids and steroids from Trichilia species. J. Braz. Chem. Soc. 13: 382–388.10.1590/S0103-50532002000300014Search in Google Scholar
Realino, B.D. (1986). Durabilidade natural de madeiras em contato com o solo. In: Boletim ABPM, 44. Associação Brasileira de Preservadores de, Madeira, São Paulo.Search in Google Scholar
Reis, A.R.S., Reis, L.P., Alves Júnior, M., Carvalho, J.C., and Silva, J.R. (2017). Natural resistance of four Amazon woods submitted to xylophagous fungal infection under laboratory conditions. Madera Bosques 23: 155–162, https://doi.org/10.21829/myb.2017.232968.Search in Google Scholar
Rocha, F.T., Lopez, G.A.C., Spegeorin, L., Yokomizo, N.K.S., Montagna, R.G., and Flörsheim, S.M.B. (2000). Durabilidade natural de madeiras em contato com o solo V - avaliação final (20 ANOS). Rev. Ins. Flor. 12: 59–66.Search in Google Scholar
Rüdiger, A.L., Siani, A.C., and Veiga Junior, V.F. (2007). The chemistry and pharmacology of the South America genus Protium Burm. f. (Burseraceae). Phcog. Rev. 1: 93–104.Search in Google Scholar
Santana, M.A.E. and Okino, E.Y.A. (2007). Chemical composition of 36 Brazilian Amazon forest wood species. Holzforschung 61: 469–477.10.1515/HF.2007.084Search in Google Scholar
Scheffer, T.C. and Morrell, J.J. (1998). Natural durability of wood: a worldwide checklist of species. Forest Research Laboratory, Corvallis.Search in Google Scholar
Serpa, F.G. (1984). Durabilidade natural de madeiras do Nordeste em campo de apodrecimento. In: Boletim ABPM, 13. Associação Brasileira de Preservadores de, Madeira, São Paulo.Search in Google Scholar
Silva, J.F., Martins, V.A., Rebello, E.R.G., Alves, M.V.S., and Pinho, G.S.C. (2000). Climatologia aplicada ao uso da madeira. Revista de Política Agrícola 9: 50–53.Search in Google Scholar
Silva, S.J. (2015). Estudo químico em resíduos madeireiros e florestais de espécies secretoras: Protium tenuifolium (BURSERACEAE) e Manilkara huberi (SAPOTACEAE), M.Sc thesis. Universidade Federal do Amazonas. Manaus.Search in Google Scholar
Siqueira, J.B.G., Zoghbi, M.G.B., Cabral, J.A., and Filho, W.W. (1995). Lignans from Protium tenuifolium. J. Nat. Prod. 58: 730–732.10.1021/np50119a011Search in Google Scholar
Soetbeer, A., Meyer, L., Brischke, C., Larsson-Brelid, P., and Jermer, J. (2014). In-ground durability of wood-based products – comparative assessment of graveyard field tests and terrestrial microcosms. In: Proceedings of the 45th IRG Annual Meeting, May 11–15, 2014: section 2 test methodology and assessment. IRG Secretariat, Stockholm, Sweden, pp. 1–15.Search in Google Scholar
Stirling, R., Alfredsen, G., Brischke, C., De Windt, I., Francis, L.P., Frühwald Hansson, E., Humar, M., Jermer, J., Klamer, M., Kutnik, M., et al.. (2016). Global survey on durability variation – on the effect of the reference species. In: Proceedings of the 47th IRG Annual Meeting, May 15–19, 2016: section 2 test methodology and assessment. IRG Secretariat, Stockholm, Sweden.Search in Google Scholar
SUDAM (1972). Algumas informações úteis sobre madeiras amazônicas. Sudam Documenta 3: 135–178.Search in Google Scholar
Sundararaj, R., Shanbhag, R.R., Nagaveni, H.C., and Vijayalakshmi, G. (2015). Natural durability of timbers under indian environmental conditions - an overview. Int. Biodeterior. Biodegrad. 103: 196–214.10.1016/j.ibiod.2015.04.026Search in Google Scholar
Tellnes, L.G.F., Alfredsen, G., Flæte, P.O., and Gobakken, L.R. (2020). Effect of service life aspects on carbon footprint: a comparison of wood decking products. Holzforschung 74: 426–433, https://doi.org/10.1515/hf-2019-0055.Search in Google Scholar
Van Acker, J., Stevens, M., and Comvalius, L. (2000). Variation in field test performance of untreated and CCA-treated lesser-known Surinamese wood species. In: Proceedings of the 31st IRG Annual Meeting, May 14–19, 2000: section 2 test methodology and assessment. IRG Secretariat, Stockholm, Sweden.Search in Google Scholar
Vieira, I.J.C., Terra, W.S., Gonçalves, M.S., and Braz-Filho, R. (2014). Secondary metabolites of the genus Trichilia: contribution to the chemistry of Meliaceae family. Am. J. Anal. Chem. 5: 91–121.10.4236/ajac.2014.52014Search in Google Scholar
Wakeling, R. and Morris, P. (2014). Wood deterioration: ground contact hazards. In: Deterioration and protection of sustainable biomaterials. American Chemical Society, Washington D.C., pp. 131–136.10.1021/bk-2014-1158.ch007Search in Google Scholar
Wang, C. and Wang, X. (2012). Vulnerability of timber in ground contact to fungal decay under climate change. Clim. Change 115: 777–794.10.1007/s10584-012-0454-0Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston