Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 28, 2022

Methods of chemical analysis applied to the wood fire investigation: a review

  • Michal Paál , Aleš Ház , Jozef Sochr and Ján Labuda ORCID logo EMAIL logo
From the journal Holzforschung

Abstract

Wood fire residues can be found in various stages from less damaged material, pyrolysis products (a char) to deeply damaged material (ash). Moreover, wood burning can be influenced by fire accelerators and/or flame retardants. This paper provides a brief description and evaluation of conventional and comprehensive variants of analytical techniques with examples of their various applications at analyses of wood materials and wood fire residues. They include specificities of sampling, elemental chemical analysis, thermal analysis, extraction of compounds from fire debris, chromatographic methods and mass spectrometry, spectroscopic methods, chemometrics and quality assurance.


Corresponding author: Ján Labuda, Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava 81237, Slovakia, E-mail:

Award Identifier / Grant number: APVV-17-0005

Award Identifier / Grant number: 1/0159/20

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Financial support from the Grant Agency Vega of the Slovak Republic (Project No. 1/0159/20) and the Slovak Research and Development Agency under the Contract No. APVV-17-0005.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

Aernecke, M.J. and Walt, D.R. (2010). Detection and classification of ignitable liquid residues using a fluorescence-based vapor-sensitive microsphere array. J. Forensic Sci. 55: 178–184, https://doi.org/10.1111/j.1556-4029.2009.01223.x.Search in Google Scholar PubMed

Ahmed, R. and Baig, M.A. (2009). A comparative study of single and double pulse laser induced breakdown spectroscopy, J. Appl. Phys. 106: 033307, https://doi.org/10.1063/1.3190516.Search in Google Scholar

Akmeemana, A., Williams, M.R., and Sigman, M.E. (2017). Major chemical compounds in the ignitable liquids reference collection and substrate databases, Forensic Chem. 5: 91–108, https://doi.org/10.1016/j.forc.2017.07.002.Search in Google Scholar

Aliano-Gonzalez, M.J., Ferreiro-Gonzalez, M., Barbero, G.F., Palma, M., and Barroso, C.G. (2018). Application of headspace gas chromatography-ion mobility spectrometry for the determination of ignitable liquids from fire debris. Separations 5: 41, https://doi.org/10.3390/separations5030041.Search in Google Scholar

Aliano-Gonzalez, M.J., Ferreiro-Gonzalez, M., Barbero, G.F., and Palma, M. (2019). Novel method based on ion mobility spectrometry sum spectrum for the characterization of ignitable liquids in fire debris. Talanta 199: 189–194, https://doi.org/10.1016/j.talanta.2019.02.063.Search in Google Scholar PubMed

Almirall, J.R. and Furton, K.G. (2004). Analysis and interpretation of fire scene evidence. CRC Press LLC, Boca Raton, Florida.10.1201/9780203492727Search in Google Scholar

Analysis of fire debris, Reference list (2020). OSAC Organization of scientific area, fire debris and explosives subcommittee. Updated on February 18, 2020, Available at: <https://www.nist.gov/system/files/documents/2020/03/27/OSAC%20-%20Fire%20Debris%20References%20%20List%20Feb%2019%202020.pdf>.Search in Google Scholar

Andrew, E.R. (2010). Magic angle spinning. In: McDermott, A., and Polenova, T. (Eds.), Solid state NMR studies of biopolymers, Wiley, Chichester, pp. 83–97.10.1002/9780470034590.emrstm0283Search in Google Scholar

Anris, S.P.E., Athomo, A.B.B., Tchiama, R.S., Santiago-Medina, F.J., Pizzi, A., and Charrier, B. (2020). Maldi-ToF analysis and FTIR characterization of Aucoumea klaineana Pierre (Okoume) sapwood and heartwood condensed tannins from Gabon’s natural forest. Wood Sci. Technol. 54, 907–928, https://doi.org/10.1007/s00226-020-01193-2.Search in Google Scholar

ASTM D8146 – 18 (2018). Standard guide for evaluating test method capability and fitness for use. In: Annual book of ASTM standards. ASTM International, West Conshohocken, PA, USA.Search in Google Scholar

ASTM E1386 – 15 (2015). Standard practice for separation and concentration of ignitable liquid residues from fire debris samples by solvent extraction. West Conshohocken, PA, USA.Search in Google Scholar

ASTM E1618 – 19 (2014). Standard test method for ignitable liquid residues in extracts from fire debris samples by gas chromatography-mass spectrometry. In: Annual book of ASTM standards. ASTM International, West Conshohocken, PA, USA.Search in Google Scholar

ASTM E2067-20 (2020). Standard practice for full-scale oxygen consumption calorimetry fire tests. In: Annual book of ASTM standards. ASTM International, West Conshohocken, PA, USA.Search in Google Scholar

ASTM E2154 – 15a (2015). Standard practice for separation and concentration of ignitable liquid residues from fire debris samples by passive headspace concentration with solid phase microextraction (SPME). In: Annual book of ASTM standards. ASTM International, West Conshohocken, PA, USA.Search in Google Scholar

ASTM E800 – 20 (2020). Standard guide for measurement of gases present or generated during fires, In: Annual book of ASTM standards. ASTM International, West Conshohocken, PA, USA.Search in Google Scholar

ASTM E84 – 21a (2020). Standard test Method for surface burning characteristics of building materials. In: Annual book of ASTM standards. ASTM International, West Conshohocken, PA, USA.Search in Google Scholar

ASTM Int. Available at: <https://www.astm.org/quality-control-standards.html>.Search in Google Scholar

Babrauskas, V. (2016). The cone calorimeter. In: Hurley, M.J. (Ed.), SFPE handbook of fire protection engineering, 5th ed. Springer, New York, pp. 952–980. https://doi.org/10.1007/978-1-4939-2565-0_28.Search in Google Scholar

Baerncopf, J. and Hutches, K. (2014). A review of modern challenges in fire debris analysis. Forensic Sci. Int. 244: 12–20, https://doi.org/10.1016/j.forsciint.2014.08.006.Search in Google Scholar PubMed

Barwick, V. (Ed.) (2016). Eurachem guide: guide to quality in analytical chemistry: an aid to accreditation, 3rd ed. Available at: <www.eurachem.org>.Search in Google Scholar

Benson, S., Lennard, C., Maynard, P., and Roux, C. (2006). Forensic applications of isotope ratio mass spectrometry--a review. Forensic Sci. Int. 157: 1–22, https://doi.org/10.1016/j.forsciint.2005.03.012.Search in Google Scholar

Bird, M., Keitel, C., and Meredith, W. (2017). Analysis of biochars for C, H, N, O and S by elemental analyzer. In: Singh, B., Camps-Arbestain, M., and Lehmann, J. (Eds.). Biochar: a guide to analytical methods. CSIRO Publishing, Melbourne, pp. 39–50.Search in Google Scholar

Bourke, J., Manley-Harris, M., Fushimi, C., Dowaki, K., Nunoura, T., and Antal, M.J. (2007). Do all charcoals have the same chemical structure? A model of the chemical structure of carbonized charcoal. Ind. Eng. Chem. Res. 46: 5954–5967, https://doi.org/10.1021/ie070415u.Search in Google Scholar

Bovens, M., Ahrens, B., Alberink, I., Nordgaard, A., Salonen, T., and Huhtala, S. (2019). Chemometrics in forensic chemistry – part I: implications to the forensic workflow, Forensic Sci. Int. 301: 82–90, https://doi.org/10.1016/j.forsciint.2019.05.030.Search in Google Scholar

Braovac, S., Tamburini, D., Łucejko, J.J., McQueen, C., Kutzke, H., and Colombini, M.P. (2016). Chemical analyses of extremely degraded wood using analytical pyrolysis and inductively coupled plasma atomic emission spectroscopy. Microchem. J. 124: 368–379, https://doi.org/10.1016/j.microc.2015.09.016.Search in Google Scholar

Bryce, K.L., Stone, I.C., and Daugherty, K.E. (1981). Analysis of fire debris by nuclear magnetic resonance spectroscopy. J. Forensic Sci. 26: 678–685, https://doi.org/10.1520/jfs11422j.Search in Google Scholar

Buchanan, M. (2017). Solvent extractives of wood and pulp, test method T 204 cm-97. TAPPI Press, Atlanta. Available at: <https://tappi.micronexx.com/CD/TESTMETHODS/T204.PDF>.Search in Google Scholar

Bumbrah, G.S., Sarin, R.K. and Sharma, R.M. (2016). Derivative ultraviolet spectrophotometry: a rapid, screening tool for the detection of petroleum products residues in fire debris samples. Malaysian J. Forensic Sci. 7: 17–26.Search in Google Scholar

Carpenter, K. and Janssens, M. (2005). Using heat release rate to assess combustibility of building products in the cone calorimeter. Fire Technol. 41: 79–92, https://doi.org/10.1007/s10694-005-6390-z.Search in Google Scholar

Chen, Y.-H. and Chang, W.T. (2007). The identification of burnt matches by scanning electron microscopy/energy dispersive X-ray spectrometry. Forensic Sci. J. 6: 59–67.Search in Google Scholar

Choi, S., and Yoh, J.J. (2017). Fire debris analysis for forensic fire investigation using laser induced breakdown spectroscopy. Spectrochim. Acta Part B: At. Spectrosc. 134: 75–80, https://doi.org/10.1016/j.sab.2017.06.010.Search in Google Scholar

Daeid, N.N., and Stauffer, E. (2013). Chemistry/Trace/Fire investigation. In: Siegel, J., Saukko, P., and Houck, M.M. (Eds.), Encyclopedia of forensic sciences, 2nd ed. Elsevier, London, Waltham, pp. 177–182.Search in Google Scholar

de Araujo, W.R., Cardoso, T.M.G., da Rocha, R.G., Santana, M.H.P., Muñoz, R.A.A., Richter, E.M., Paixão, T.R.L.C., and Coltro, W.K.T. (2018). Portable analytical platforms for forensic chemistry: a review, Anal. Chim. Acta 1034: 1–21, https://doi.org/10.1016/j.aca.2018.06.014.Search in Google Scholar

Dolan, J. (2004). Chapter 5 Analytical methods for the detection and characterization of ignitable liquid residues from fire debris. In: Almirall, J.R. and Furton, K.G., (Eds.). Analysis and interpretation of fire scene evidence. CRC Press, Boca Raton.10.1201/9780203492727.ch5Search in Google Scholar

Dolan, J. (2008). Chapter 26 Forensic analysis of fire debris. In: Bogusz, M.J. (Ed.). Handbook of analytical separations, Vol. 6. Forensic Science, Elsevier, pp. 873–922, https://doi.org/10.1016/s1567-7192(06)06026-8.Search in Google Scholar

Eiceman, G.A., Schmidt, H., and Cagan, A.A. (2007). Chapter 3 - explosives detection using differential mobility spectrometry. In: Yinon, J. (Ed.), Counterterrorist detection techniques of explosives, Elsevier Science B.V., Amsterdam, pp. 61–90.10.1016/B978-044452204-7/50022-5Search in Google Scholar

Einax, J.W. (2004). Chemometrics in analytical chemistry. Anal. Bioanal. Chem. 380: 368–369, https://doi.org/10.1007/s00216-004-2792-x.Search in Google Scholar PubMed

ENFSI (2020). European network on forensic science Institutes. Available at: <https://enfsi.eu/projects/other-running-projects>.Search in Google Scholar

Evans-Nguyen, K. (2019). Chapter 1 an introduction to instrumentation used in fire debris and explosive analysis. In: Evans-Nguyen, K. and Hutches, K. (Eds.). Forensic analysis of fire debris and explosives. Springer, Cham, pp. 1–43, https://doi.org/10.1007/978-3-030-25834-4_1.Search in Google Scholar

Fabbri, D., Rombolà, A.G., Torri, C., and Spokas, K.A. (2013). Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil. J. Anal. Appl. Pyrolysis, 103: 60–67, https://doi.org/10.1016/j.jaap.2012.10.003.Search in Google Scholar

Fabritius, M.M., Broillet, A., König, S., and Weinmann, W. (2018). Analysis of volatiles in fire debris by combination of activated charcoal strips (ACS) and automated thermal desorption-gas chromatography-mass spectrometry (ATD/GC-MS). Forensic Sci. Int. 289: 232–237, https://doi.org/10.1016/j.forsciint.2018.05.048.Search in Google Scholar PubMed

Faix, O., Fortman, D., Bremer, J., and Meier, D. (1990a). Thermal degradation products of wood. Gas chromatographic separation and mass spectrometric characterization of polysaccharide derived products. Eur. J. Wood Wood Prod. 49: 213–219.10.1007/BF02613278Search in Google Scholar

Faix, O., Meier, D., and Fortmann, I. (1990b). Thermal degradation products of wood. Gas chromatographic separation and mass spectrometric characterization of monomeric lignin derived product. Eur. J. Wood Wood Prod. 48: 281–285, https://doi.org/10.1007/bf02626519.Search in Google Scholar

Falatová, B., Ferreiro-González, M., Calle, J.L.P., Álvarez, J.Á., and Palma, M., (2021). Discrimination of ignitable liquid residues in burned petroleum-derived substrates by using HS-MS eNose and chemometrics. Sensors 21: 801, https://doi.org/10.3390/s21030801.Search in Google Scholar PubMed PubMed Central

Fann, N., Alman, B., Broome, R.A., Morgan, G.G., Johnston, F.H., Pouliot, G., and Rappold, A.G. (2018). The health impacts and economic value of wildland fire episodes in the U.S.: 2008–2012. Sci. Total Environ. 610–611: 802.10.1016/j.scitotenv.2017.08.024Search in Google Scholar PubMed PubMed Central

Farmer, N., Curran, J., Lucy, D., Daeid, N.N., and Meier-Augenstein, W. (2009). Stable isotope profiling of burnt wooden safety matches. Sci. Justice, 49: 107–113, https://doi.org/10.1016/j.scijus.2009.03.007.Search in Google Scholar PubMed

Fernandes, M.B., Skjemstad, J.O., Johnson, B.B., Wells, J.D., and Brooks, P. (2003). Characterization of carbonaceous combustion residues. I. Morphological, elemental and spectroscopic features, Chemosphere 51: 785–795, https://doi.org/10.1016/s0045-6535(03)00098-5.Search in Google Scholar

Ferreiro-González, M., Ayuso, J., Álvarez, J.A., Palma, M., and Barroso, C.G. (2015). Application of an HS–MS for the detection of ignitable liquids from fire debris. Talanta, 142: 150–156, https://doi.org/10.1016/j.talanta.2015.04.030.Search in Google Scholar PubMed

Ferreiro-González, M., Barbero, G.F., Palma, M., Ayuso, J., Álvarez, J.A., and Barroso, C.G. (2016). Determination of ignitable liquids in fire debris: direct analysis by electronic nose. Sensors 16: 695, https://doi.org/10.3390/s16050695.Search in Google Scholar PubMed PubMed Central

Ferreiro-González, M., Barbero, G.F., Ayuso-Vilacides, J.J., Álvarez, J.A., and Barroso, C.G. (2017). Validation of an HS-MS method for direct determination and classification of ignitable liquids. Microchem. J. 132: 358–364, https://doi.org/10.1016/j.microc.2017.02.022.Search in Google Scholar

Fettig, I., Krüger, S., Deubel, J.H., Werrel, M., Raspe, T., and Piechotta, C. (2014). Evaluation of a headspace solid-phase microextraction method for the analysis of ignitable liquids in fire debris. J. Forensic Sci. 59: 743–749, https://doi.org/10.1111/1556-4029.12342.Search in Google Scholar PubMed

Friquin, K.L. (2010). Material properties and external factors influencing the charring rate of solid wood and glue-laminated timber. Fire Mater. 35: 303–327, https://doi.org/10.1002/fam.1055.Search in Google Scholar

Frisch-Daiello, J.L., Williams, M.R., Waddell, E.E., and Sigman, M.E. (2014). Application of self-organizing feature maps to analyse the relationships between ignitable liquids and selected mass spectral ions. Forensic Sci. Int. 236: 84–89, https://doi.org/10.1016/j.forsciint.2013.12.026.Search in Google Scholar PubMed

Gentile, N., Besson, L., Pazos, D., Delemont, O., and Esseiva, P. (2011). On the use of IRMS in forensic science: proposals for a methodological approach. Forensic Sci. Int. 212: 260–271, https://doi.org/10.1016/j.forsciint.2011.07.003.Search in Google Scholar PubMed

González-Rodríguez, J., Sissons, N., and Robinson, S. (2011). Fire debris analysis by Raman spectroscopy and chemometrics. J. Anal. Appl. Pyrolysis. 91: 210–218, https://doi.org/10.1016/j.jaap.2011.02.012.Search in Google Scholar

Gorbett, G.E., Meacham, B.J., Wood, C.B., and Dembsey, N.A. (2015). Use of damage in fire investigation: a review of fire patterns analysis, research and future direction. Fire Sci. Rev. 4: 4, https://doi.org/10.1186/s40038-015-0008-4.Search in Google Scholar

Gruber, B., Weggler, B.A., Jaramillo, R., Murrell, K.A., Piotrowski, P.K., and Dorman, F.L. (2018). Comprehensive two-dimensional gas chromatography in forensic science: a critical review of recent trends, Trends Anal. Chem. 105: 292–301, https://doi.org/10.1016/j.trac.2018.05.017.Search in Google Scholar

Hagen, M., Hereid, J., Delichatsios, M.A., Zhang, J., and Bakirtzis, D. (2009). Flammability assessment of fire-retarded Nordic Spruce wood using thermogravimetric analyses and cone calorimetry. Fire Saf. J. 44: 1053–1066, https://doi.org/10.1016/j.firesaf.2009.07.004.Search in Google Scholar

He, W., Liu, Q., Shi, L., Liu, Z., Ci, D., Lievens, C., Guo, X., and Liu, M. (2014). Understanding the stability of pyrolysis tars from biomass in a view point of free radicals. Bioresour. Technol. 156: 372–375, https://doi.org/10.1016/j.biortech.2014.01.063.Search in Google Scholar PubMed

Hendrikse, J. (2007). ENFSI Collaborative testing programme for ignitable liquid analysis: a review. Forensic Sci. Int. 167: 213–219, https://doi.org/10.1016/j.forsciint.2006.06.058.Search in Google Scholar PubMed

Hendrikse, J., Grutters, M., and Schäfer, F. (2016). Chapter 4 Fire debris analysis methods. In: Hendrikse, J., Grutters, M., and Schäfer, F. (Eds.). Identifying of ignitable liquids in fire debris, A guideline for forensic experts, Elsevier, Amsterdam, pp. 17–22, https://doi.org/10.1016/b978-0-12-804316-5.00004-6.Search in Google Scholar

Hibbert, D.B. (2016). Vocabulary of concepts and terms in chemometrics (IUPAC Recommendations 2016). Pure Appl. Chem. 88: 407–443, https://doi.org/10.1515/pac-2015-0605.Search in Google Scholar

Hibbert, D.B., Korte, E.-H., and Örnemark, U. (2021). Metrological and quality concepts in analytical chemistry (IUPAC Provisional Recommendations 2021). Pure Appl. Chem. 93: 997.10.1515/pac-2019-0819Search in Google Scholar

Hilber, I., Schmidt, H.-P., and Bucheli, T.D. (2017). Sampling, storage and preparation of biochar for laboratory analysis. In: Singh, B., Camps-Arbestain, M., and Lehmann, J. (Eds.), Biochar: a guide to analytical methods. CSIRO Publishing, Clayton South, pp. 1–8.Search in Google Scholar

Hong, J., Moon, H., Kim, J., Lee, B., Kim, G.-B., Lee, H., and Kim, Y. (2021). Differentiation of carbon black from black carbon using a ternary plot based on elemental analysis, Chemosphere 264: 128511, https://doi.org/10.1016/j.chemosphere.2020.128511.Search in Google Scholar PubMed

Ignitable liquids reference collection database (2021). National Center for Forensic Science, University of Central Florida, Orlando. Available at: <https://ilrc.ucf.edu/>.Search in Google Scholar

ISO 5660–1 (2015). Reaction-to-fire tests – heat release, smoke production and mass loss rate – Part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement). International Organization for Standardization, Switzerland.Search in Google Scholar

Jin, J., Chi, J., Xue, T., Xu, J., Liu, L., Li, Y., Deng, L., and Zhang, J. (2020). Influence of thermal environment in fire on the identification of gasoline combustion residues. Forensic Sci. Int. 315: 110430, https://doi.org/10.1016/j.forsciint.2020.110430.Search in Google Scholar PubMed

Karlsson, B. and Quintiere, J.G. (2000). Enclosure fire dynamics. CRS Press, London.Search in Google Scholar

Kates, L.N., Richards, P.I., and Sandau, C.D. (2020). The application of comprehensive two-dimensional gas chromatography to the analysis of wildfire debris for ignitable liquid residue. Forensic Sci. Int. 310: 110256, https://doi.org/10.1016/j.forsciint.2020.110256.Search in Google Scholar PubMed

Keto, R.O. (1995). GC/MS Data interpretation for petroleum distillate identification in contaminated arson debris. J. Forensic Sci. 40: 412–423, https://doi.org/10.1520/jfs13796j.Search in Google Scholar

Khan, R., Chu, J., Margrave, J., Hauge, R., and Smalley, R. (2005). Free radical chemistry during slow pyrolysis of solid fuels. Energy Sources 27: 309–318, https://doi.org/10.1080/009083190519005.Search in Google Scholar

Kim, H.S., Kim, S., Kim, H.J., and Yang, H.S. (2006). Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim. Acta 451: 181–188, https://doi.org/10.1016/j.tca.2006.09.013.Search in Google Scholar

Kowalski, B.R. (1975). Chemometrics: views and propositions. J. Chem. Inf. Comput. Sci. 15: 201–203, https://doi.org/10.1021/ci60004a002.Search in Google Scholar

Krüger, S., Deubel, J.H., Werrel, M., Fettig, I., and Raspe, T. (2015). Experimental studies on the effect of fire accelerants during living room fires and detection of ignitable liquids in fire debris. Fire Mater. 39: 636–646, https://doi.org/10.1002/fam.2263.Search in Google Scholar

Kuo, L.-J., Louchouarn, P., and Herbert, B.E. (2011). Influence of combustion conditions on yields of solvent-extractable anhydrosugars and lignin phenols in chars: implications for characterizations of biomass combustion residues. Chemosphere 85: 797–805, https://doi.org/10.1016/j.chemosphere.2011.06.074.Search in Google Scholar PubMed

Lentini, J. (2013). Fire scene investigation and laboratory analysis of fire debris. In: Ubelaker, D. (Ed.). Forensic science, current issues, future directions. Wiley, Hoboken.Search in Google Scholar

Lentini, J.J. (2018). Scientific protocols for fire investigation, 3rd ed. CRC Press, Boca Raton.10.4324/9781315178097Search in Google Scholar

Lever, T., Haines, P., Rouquerol, J., Charsley, E.L., Eckeren, P.V., and Burlett, D.J. (2014). ICTAC nomenclature of thermal analysis (IUPAC Recommendations 2014). Pure Appl. Chem. 86: 545–553, https://doi.org/10.1515/pac-2012-0609.Search in Google Scholar

Lopatka, M. (2012). Statistical interpretation of chemical evidence pertaining to fire debris, Doctoral thesis. University of Amsterdam, Amsterdam.Search in Google Scholar

Lopatka, M., Sigman, M.E., Sjerps, M.J., Williams, M.R., and Vivó-Truyols, G. (2015). Class-conditional feature modeling for ignitable liquid classification with substantial substrate contribution in fire debris analysis. Forensic Sci. Int. 252: 177–186, https://doi.org/10.1016/j.forsciint.2015.04.035.Search in Google Scholar PubMed

Lopatka, M., Sampat, A.A., Jonkers, S., Adutwum, L.A., Mol, H.G.J., van der Weg, G., Harynuk, J.J., Schoenmakers, P.J., van Asten, A., Sjerps, M.J., et al.. (2017). Local ion signatures (LIS) for the examination of comprehensive two-dimensional gas chromatography applied to fire debris analysis, Forensic Chem. 3: 1–13, https://doi.org/10.1016/j.forc.2016.10.003.Search in Google Scholar

Lowden, L.A., and Hull, T.R. (2013). Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci. Rev. 2: 4.10.1186/2193-0414-2-4Search in Google Scholar

Lyon, R.E. and Walters, R.N. (2004). Pyrolysis combustion flow calorimetry. J. Anal. Appl. Pyrolysis 71: 27–46, https://doi.org/10.1016/s0165-2370(03)00096-2.Search in Google Scholar

Mark, P., and Sandercock, L. (2019). Chapter 3 background interference in fire debris analysis. In: Evans-Nguyen, K., and Hutches, K. (Eds.), Forensic analysis of fire debris and explosives, Springer, Cham, pp. 75–104.Search in Google Scholar

Martín-Alberca, C., Sáiz, J., Ferrando, J.L., and García-Ruiz, C. (2012). Qualitative determination of inorganic anions in incendiary device residues by capillary electrophoresis. Anal. Methods 4: 2680–2686, https://doi.org/10.1039/c2ay25628b.Search in Google Scholar

Martín-Alberca, C., García-Ruiz, C., and Delémont, O. (2015). Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry. J. Separ. Sci. 38: 3218–3227, https://doi.org/10.1002/jssc.201500337.Search in Google Scholar

Martín-Alberca, C., Ortega-Ojeda, F.E., and García-Ruiz, C. (2016). Analytical tools for the analysis of fire debris, A review: 2008–2015. Anal. Chim. Acta, 928: 1–19, https://doi.org/10.1016/j.aca.2016.04.056.Search in Google Scholar

McCurdy, R.J., Atwell, T., and Cole, M.D. (2001). The use of vapour phase ultra-violet spectroscopy for the analysis of arson accelerants in fire scene debris. Forensic Sci. Int. 123: 191–201, https://doi.org/10.1016/s0379-0738(01)00549-7.Search in Google Scholar

NFPA 921 (2017). Guide for fire and explosion investigations. Part 17.10 Examination and testing of physical evidence. National Fire Protection Association, USA, Available at: https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=921.Search in Google Scholar

Nizio, K.D., Cochran, J.W., and Forbes, S.L. (2016). Achieving a near-theoretical maximum in peak capacity gain for the forensic analysis of ignitable liquids using GC×GC-TOFMS. Separations 3: 26, https://doi.org/10.3390/separations3030026.Search in Google Scholar

O’Sullivan, G. and Kalin, R.M. (2008). Investigation of the range of carbon and hydrogen isotopes within a global set of gasolines. Environ. Forensics 9: 166–176, https://doi.org/10.1080/15275920802119037.Search in Google Scholar

Pabelina, K.G., Lumban, C.O., and Ramos, H.J. (2012) Plasma impregnation of wood with fire retardants. Nucl. Instrum. Methods Phys. Res. B. 272: 365–369, https://doi.org/10.1016/j.nimb.2011.01.102.Search in Google Scholar

Poole, C., Mester, Z., Miró, M., Pedersen-Bjergaard, S., and Pawliszyn, J. (2016). Extraction for analytical scale sample preparation (IUPAC Technical report), Pure Appl. Chem. 88: 649–687, https://doi.org/10.1515/pac-2015-0705.Search in Google Scholar

Prebihalo, S.E., Berrier, K.L., Freye, C.E., Bahaghighat, H.D., Moore, N.R., Pinkerton, D.K., and Synovec, R.E. (2018). Multidimensional gas chromatography: advances in instrumentation, chemometrics, and applications. Anal. Chem. 90: 505–532, https://doi.org/10.1021/acs.analchem.7b04226.Search in Google Scholar

Pristaš, P., Kvasnová, S., Gáperová, S., Gašparcová, T., and Gáper, J. 2017. Application of MALDI‐TOF mass spectrometry for in vitro identification of wood decay polypores. For. Pathol. 47: e12352.10.1111/efp.12352Search in Google Scholar

Qin, R., Zhou, A., Chow, C.L., and Lau, D. (2021). Structural performance and charring of loaded wood under fire. Eng. Struct. 228: 111491, https://doi.org/10.1016/j.engstruct.2020.111491.Search in Google Scholar

Quintiere, J.G. (2016). Principles of fire behavior, 2nd ed. CRC Press, Boca Raton.Search in Google Scholar

Ragland, K.W. and Aerts, D.J. (1991). Properties of wood for combustion analysis. Bioresour. Technol. 37: 161–168, https://doi.org/10.1016/0960-8524(91)90205-x.Search in Google Scholar

Renneckar, S., Zink-Sharp, A.G., Ward, T.C., and Glasser, W.G. (2004). Compositional analysis of thermoplastic wood composites by TGA. J. Appl. Polym. Sci. 93: 1484–1492, https://doi.org/10.1002/app.20599.Search in Google Scholar

Sampat, A., Lopatka, M., Sjerps, M., Vivo-Truyols, G., Schoenmakers, P., and van Asten, A. (2016a). The forensic potential of comprehensive two-dimensional gas chromatography. Trends Anal. Chem. 80: 345–363, https://doi.org/10.1016/j.trac.2015.10.011.Search in Google Scholar

Sampat, A.A.S., Lopatka, M., Vivó-Truyols, G., Schoenmakers, P.J., and van Asten, A.C. (2016b). Towards chemical profiling of ignitable liquids with comprehensive two-dimensional gas chromatography: exploring forensic application to neat white spirits. Forensic Sci. Int. 267: 183–195, https://doi.org/10.1016/j.forsciint.2016.08.006.Search in Google Scholar PubMed

Schartel, B. and Hull, T.R. (2007). Development of fire-retarded materials – interpretation of cone calorimeter data. Fire Mater. 31: 327–354, https://doi.org/10.1002/fam.949.Search in Google Scholar

Schechter, I., Miziolek, A.W., and Palleschi, V. (Eds.) (2006). Laser-induced breakdown spectroscopy (LIBS): fundamentals and applications. Cambridge University Press. Cambridge.Search in Google Scholar

Schmidt, O. and Kallow, W. (2005). Differentiation of indoor wood decay fungi. Holzforschung 59: 374–377, https://doi.org/10.1515/hf.2005.062.Search in Google Scholar

Schmidt, M.W.I., Skjemstad, J.O., Czimczik, C.I., Glaser, B., Prentice, K.M., Gelinas, Y., and Kuhlbusch, T.A.J. (2001). Comparative analysis of black carbon in soils. Global Biogeochem. Cycles 15: 163–167, https://doi.org/10.1029/2000gb001284.Search in Google Scholar

Schwartz, Z., An, Y., Konstantynova, K.I., and Jackson, G.P., (2013) Analysis of household ignitable liquids and their post-combustion weathered residues using compound-specific gas chromatography-combustion-isotope ratio mass spectrometry. Forensic Sci. Int. 233: 365–373, https://doi.org/10.1016/j.forsciint.2013.10.010.Search in Google Scholar PubMed

Sebio-Puñal, T., Naya, S., López-Beceiro, J., Tarrío-Saavedra, J., and Ramón Artiaga, R. (2012). Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. J. Therm. Anal. Calorim. 109: 1163–1167, https://doi.org/10.1007/s10973-011-2133-1.Search in Google Scholar

Singh, J.P. and Thakur, S.N. (2007). Laser-induced breakdown spectroscopy. Elsevier Science, Amsterdam.Search in Google Scholar

Singh, B., Camps-Arbestain, M., and Lehmann, J. (Eds.) (2017). Biochar: a guide to analytical methods. CRC Press, Boca Raton, Florida, USA.10.1071/9781486305100Search in Google Scholar

Sinha, A., Gupta, R., and Nairn, J.A. (2011). Thermal degradation of bending properties of structural wood and wood-based composites. Holzforschung 65: 221–229, https://doi.org/10.1515/hf.2011.001.Search in Google Scholar

Sinkov, N.A., Sandercock, P.M.L., and Harynuk, J.J. (2014). Chemometric classification of casework arson samples based on gasoline content. Forensic Sci. Int. 235: 24–31, https://doi.org/10.1016/j.forsciint.2013.11.014.Search in Google Scholar PubMed

Smernik, R.J. (2017). Analysis of biochars by 13C nuclear magnetic resonance spectroscopy. In: Singh, B., Camps-Arbestain, M., and Lehmann, J. (Eds.), Biochar: a guide to analytical methods, Csiro Publishing, Clayton South, pp. 151–161.Search in Google Scholar

Smokeless Powders Database (2021). National center for forensic science, University of Central Florida, Orlando. Available at: <http://www.ilrc.ucf.edu/powders/>.Search in Google Scholar

Stark, N.M. and Cai, Z. (2021). Chapter 11 Wood-based composite materials: panel products, glued-laminated timber, structural composite lumber, and wood–nonwood composite materials. In: Ross, R. (Ed.). Forest product laboratory. Wood handbook—wood as an engineering material. General Technical Report FPL-GTR-282. Madison, WI: Forest Service, Forest Products Laboratory, p. 29.Search in Google Scholar

Stauffer, E. (2016). Forensic chemistry fire investigation and debris analysis, 2013 to 2016. In: 18th INTERPOL International forensic science managers symposium, 11–13 October 2016. Lyon, France, Review Papers, p. 163.Search in Google Scholar

Stauffer, É. (2020). Interpol review of fire investigation 2016–2019. Forensic Sci. Int. Synerg. 2: 368–381, https://doi.org/10.1016/j.fsisyn.2020.01.005.Search in Google Scholar PubMed PubMed Central

Stauffer, E., Dolan, J.A., and Newman, R. (Eds.) (2008a). Fire debris analysis. Academic Press, Elsevier, Amsterdam.Search in Google Scholar

Stauffer, E., Dolan, J.A., and Newman, R. (2008b). Chapter 13 Other techniques of analysis and the future of fire debris analysis. In: Stauffer, E., Dolan, J.A., and Newman, R. (Eds.). Fire debris analysis. Academic Press, Elsevier, Amsterdam, pp. 495–527, https://doi.org/10.1016/b978-012663971-1.50017-8.Search in Google Scholar

Stauffer, E., Dolan, J.A., Newman, R. (2008c). Chapter 11 Extraction of ignitable liquid residues from fire debris. In: Stauffer, E., Dolan, J.A., and Newman, R. (Eds.) (2008). Fire debris analysis. Academic Press, Elsevier, Amsterdam, pp. 377–439, https://doi.org/10.1016/b978-012663971-1.50015-4.Search in Google Scholar

Substrate Database (2021). National Center for Forensic Science, University of Central Florida, Orlando. Available at: <https://ilrc.ucf.edu/substrate/>.Search in Google Scholar

Taylor, C., Rosenhan, A., Raines, J., and Rodriguez, J. (2012). An arson investigation by using comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry. J. Forensic Res. 3: 169–179.Search in Google Scholar

Thurn, N.A., Wood, T., Williams, M.R., and Sigman, M.E. (2021). Classification of ground-truth fire debris samples using artificial neural networks. Forensic Chem. 23: 100113, https://doi.org/10.1016/j.forc.2021.100313.Search in Google Scholar

Tian, L., Koshland, C.P., Yano, J., Yachandra, V.K., Yu, I.T.S., Lee, S.C., and Lucas, D. (2009). Carboncentered free radicals in particulate matter emissions from wood and coal combustion. Energy Fuels 23: 2523–2526, https://doi.org/10.1021/ef8010096.Search in Google Scholar PubMed PubMed Central

Trouve’, A. and Minnich, T. (2008). 2008-DN-BX-K167 final technical report. Available at: <https://www.ojp.gov/pdffiles1/nij/grants/239047.pdf>.Search in Google Scholar

Trubetskaya, A., Jensen, P.A., Jensen, A.D., Glarborg, P., Larsen, F.H., and Andersen, M.L. (2016). Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperatures. Biomass Bioenergy 94: 117–129, https://doi.org/10.1016/j.biombioe.2016.08.020.Search in Google Scholar

Waddell, E.E., Song, E.T., Rinke, C.N., Willians, M.R., and Sigman, M.E. (2013). Progress toward the determination of correct classification rates in fire debris analysis. J. Forensic Sci. 58: 887–896, https://doi.org/10.1111/1556-4029.12159.Search in Google Scholar

Waddell, E.E., Willians, M.R., and Sigman, M.E. (2014a). Progress toward the determination of correct classification rates in fire debris analysis II: utilizing soft independent modelling of class analogy (SIMCA). J. Forensic Sci. 59: 927–935, https://doi.org/10.1111/1556-4029.12417.Search in Google Scholar

Waddell, E.E., Frisch-Daiello, J.L., Williams, M.R., and Sigman, M.E. (2014b). Hierarchical cluster analysis of ignitable liquids based on the total ion spectrum. J. Forensic Sci. 59: 1198–1204, https://doi.org/10.1111/1556-4029.12517.Search in Google Scholar

White, R.H., and Dietenberger, M.A. (2001). Wood products: thermal degradation and fire. In: Buschow, K.H.J., Cahn, R., Flemings, M., Ilschner, B., Kramer, E., Mahajan, S., and Veyssiere, P. (Eds.), Encyclopedia of materials: science and technology, Elsevier, Amsterdam, pp. 9712–9716.10.1016/B0-08-043152-6/01763-0Search in Google Scholar

Wineman, P.L., and Keto, R.O. (1994). Target-compound method for the analysis of accelerant residues in fire debris. Anal. Chim. Acta 288: 97–110, https://doi.org/10.1016/0003-2670(94)85119-0.Search in Google Scholar

Wood, M., Laloup, M., Samyn, N., del Mar Ramirez Fernandez, M., de Bruijn, E.A., Maes, R.A., and De Boeck, G. (2006). Recent applications of liquid chromatography-mass spectrometry in forensic science. J. Chromatogr. A 1130: 3–15, https://doi.org/10.1016/j.chroma.2006.04.084.Search in Google Scholar PubMed

Yadav, V.K., Harshey, A., Das, T., Nigam, K., Sharma, K., and Srivastava, A. (2020a). Effect of different matrices on the identification of ignitable liquid residue in post burn arson debris: a Multi-derivative UV-visible spectrophotometric approach. Asian J. Chem. 32: 2880–2886, https://doi.org/10.14233/ajchem.2020.22902.Search in Google Scholar

Yadav, V.K., Nigam, K., and Srivastava, A. (2020b). Forensic investigation of arson residue by infrared and Raman spectroscopy: from conventional to non-destructive techniques. Med. Sci. Law 60: 206–215, https://doi.org/10.1177/0025802420914807.Search in Google Scholar PubMed

Yang, Q. (2016). GC-MS analysis on the trace residue of gasoline combustion. Procedia Eng. 135: 322–326, https://doi.org/10.1016/j.proeng.2016.01.137.Search in Google Scholar

Zong, R., Liu, X., Li, F., and Ye, J. (2016). Influence of fire accelerant on the thermal degradation and ignition of wood chip. Aust. J. Forensic Sci. 48: 538–548, https://doi.org/10.1080/00450618.2015.1076035.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hf-2021-0136).


Received: 2021-07-21
Accepted: 2021-11-23
Published Online: 2022-01-28
Published in Print: 2022-04-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.3.2023 from https://www.degruyter.com/document/doi/10.1515/hf-2021-0136/html
Scroll Up Arrow