Abstract
Wood fire residues can be found in various stages from less damaged material, pyrolysis products (a char) to deeply damaged material (ash). Moreover, wood burning can be influenced by fire accelerators and/or flame retardants. This paper provides a brief description and evaluation of conventional and comprehensive variants of analytical techniques with examples of their various applications at analyses of wood materials and wood fire residues. They include specificities of sampling, elemental chemical analysis, thermal analysis, extraction of compounds from fire debris, chromatographic methods and mass spectrometry, spectroscopic methods, chemometrics and quality assurance.
Funding source: Agentúra na Podporu Výskumu a Vývoja
Award Identifier / Grant number: APVV-17-0005
Funding source: Vedecká Grantová Agentúra MŠVVaŠSR a SAV
Award Identifier / Grant number: 1/0159/20
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Financial support from the Grant Agency Vega of the Slovak Republic (Project No. 1/0159/20) and the Slovak Research and Development Agency under the Contract No. APVV-17-0005.
-
Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.
References
Aernecke, M.J. and Walt, D.R. (2010). Detection and classification of ignitable liquid residues using a fluorescence-based vapor-sensitive microsphere array. J. Forensic Sci. 55: 178–184, https://doi.org/10.1111/j.1556-4029.2009.01223.x.Search in Google Scholar PubMed
Ahmed, R. and Baig, M.A. (2009). A comparative study of single and double pulse laser induced breakdown spectroscopy, J. Appl. Phys. 106: 033307, https://doi.org/10.1063/1.3190516.Search in Google Scholar
Akmeemana, A., Williams, M.R., and Sigman, M.E. (2017). Major chemical compounds in the ignitable liquids reference collection and substrate databases, Forensic Chem. 5: 91–108, https://doi.org/10.1016/j.forc.2017.07.002.Search in Google Scholar
Aliano-Gonzalez, M.J., Ferreiro-Gonzalez, M., Barbero, G.F., Palma, M., and Barroso, C.G. (2018). Application of headspace gas chromatography-ion mobility spectrometry for the determination of ignitable liquids from fire debris. Separations 5: 41, https://doi.org/10.3390/separations5030041.Search in Google Scholar
Aliano-Gonzalez, M.J., Ferreiro-Gonzalez, M., Barbero, G.F., and Palma, M. (2019). Novel method based on ion mobility spectrometry sum spectrum for the characterization of ignitable liquids in fire debris. Talanta 199: 189–194, https://doi.org/10.1016/j.talanta.2019.02.063.Search in Google Scholar PubMed
Almirall, J.R. and Furton, K.G. (2004). Analysis and interpretation of fire scene evidence. CRC Press LLC, Boca Raton, Florida.10.1201/9780203492727Search in Google Scholar
Analysis of fire debris, Reference list (2020). OSAC Organization of scientific area, fire debris and explosives subcommittee. Updated on February 18, 2020, Available at: <https://www.nist.gov/system/files/documents/2020/03/27/OSAC%20-%20Fire%20Debris%20References%20%20List%20Feb%2019%202020.pdf>.Search in Google Scholar
Andrew, E.R. (2010). Magic angle spinning. In: McDermott, A., and Polenova, T. (Eds.), Solid state NMR studies of biopolymers, Wiley, Chichester, pp. 83–97.10.1002/9780470034590.emrstm0283Search in Google Scholar
Anris, S.P.E., Athomo, A.B.B., Tchiama, R.S., Santiago-Medina, F.J., Pizzi, A., and Charrier, B. (2020). Maldi-ToF analysis and FTIR characterization of Aucoumea klaineana Pierre (Okoume) sapwood and heartwood condensed tannins from Gabon’s natural forest. Wood Sci. Technol. 54, 907–928, https://doi.org/10.1007/s00226-020-01193-2.Search in Google Scholar
ASTM D8146 – 18 (2018). Standard guide for evaluating test method capability and fitness for use. In: Annual book of ASTM standards. ASTM International, West Conshohocken, PA, USA.Search in Google Scholar
ASTM E1386 – 15 (2015). Standard practice for separation and concentration of ignitable liquid residues from fire debris samples by solvent extraction. West Conshohocken, PA, USA.Search in Google Scholar
ASTM E1618 – 19 (2014). Standard test method for ignitable liquid residues in extracts from fire debris samples by gas chromatography-mass spectrometry. In: Annual book of ASTM standards. ASTM International, West Conshohocken, PA, USA.Search in Google Scholar
ASTM E2067-20 (2020). Standard practice for full-scale oxygen consumption calorimetry fire tests. In: Annual book of ASTM standards. ASTM International, West Conshohocken, PA, USA.Search in Google Scholar
ASTM E2154 – 15a (2015). Standard practice for separation and concentration of ignitable liquid residues from fire debris samples by passive headspace concentration with solid phase microextraction (SPME). In: Annual book of ASTM standards. ASTM International, West Conshohocken, PA, USA.Search in Google Scholar
ASTM E800 – 20 (2020). Standard guide for measurement of gases present or generated during fires, In: Annual book of ASTM standards. ASTM International, West Conshohocken, PA, USA.Search in Google Scholar
ASTM E84 – 21a (2020). Standard test Method for surface burning characteristics of building materials. In: Annual book of ASTM standards. ASTM International, West Conshohocken, PA, USA.Search in Google Scholar
ASTM Int. Available at: <https://www.astm.org/quality-control-standards.html>.Search in Google Scholar
Babrauskas, V. (2016). The cone calorimeter. In: Hurley, M.J. (Ed.), SFPE handbook of fire protection engineering, 5th ed. Springer, New York, pp. 952–980. https://doi.org/10.1007/978-1-4939-2565-0_28.Search in Google Scholar
Baerncopf, J. and Hutches, K. (2014). A review of modern challenges in fire debris analysis. Forensic Sci. Int. 244: 12–20, https://doi.org/10.1016/j.forsciint.2014.08.006.Search in Google Scholar PubMed
Barwick, V. (Ed.) (2016). Eurachem guide: guide to quality in analytical chemistry: an aid to accreditation, 3rd ed. Available at: <www.eurachem.org>.Search in Google Scholar
Benson, S., Lennard, C., Maynard, P., and Roux, C. (2006). Forensic applications of isotope ratio mass spectrometry--a review. Forensic Sci. Int. 157: 1–22, https://doi.org/10.1016/j.forsciint.2005.03.012.Search in Google Scholar
Bird, M., Keitel, C., and Meredith, W. (2017). Analysis of biochars for C, H, N, O and S by elemental analyzer. In: Singh, B., Camps-Arbestain, M., and Lehmann, J. (Eds.). Biochar: a guide to analytical methods. CSIRO Publishing, Melbourne, pp. 39–50.Search in Google Scholar
Bourke, J., Manley-Harris, M., Fushimi, C., Dowaki, K., Nunoura, T., and Antal, M.J. (2007). Do all charcoals have the same chemical structure? A model of the chemical structure of carbonized charcoal. Ind. Eng. Chem. Res. 46: 5954–5967, https://doi.org/10.1021/ie070415u.Search in Google Scholar
Bovens, M., Ahrens, B., Alberink, I., Nordgaard, A., Salonen, T., and Huhtala, S. (2019). Chemometrics in forensic chemistry – part I: implications to the forensic workflow, Forensic Sci. Int. 301: 82–90, https://doi.org/10.1016/j.forsciint.2019.05.030.Search in Google Scholar
Braovac, S., Tamburini, D., Łucejko, J.J., McQueen, C., Kutzke, H., and Colombini, M.P. (2016). Chemical analyses of extremely degraded wood using analytical pyrolysis and inductively coupled plasma atomic emission spectroscopy. Microchem. J. 124: 368–379, https://doi.org/10.1016/j.microc.2015.09.016.Search in Google Scholar
Bryce, K.L., Stone, I.C., and Daugherty, K.E. (1981). Analysis of fire debris by nuclear magnetic resonance spectroscopy. J. Forensic Sci. 26: 678–685, https://doi.org/10.1520/jfs11422j.Search in Google Scholar
Buchanan, M. (2017). Solvent extractives of wood and pulp, test method T 204 cm-97. TAPPI Press, Atlanta. Available at: <https://tappi.micronexx.com/CD/TESTMETHODS/T204.PDF>.Search in Google Scholar
Bumbrah, G.S., Sarin, R.K. and Sharma, R.M. (2016). Derivative ultraviolet spectrophotometry: a rapid, screening tool for the detection of petroleum products residues in fire debris samples. Malaysian J. Forensic Sci. 7: 17–26.Search in Google Scholar
Carpenter, K. and Janssens, M. (2005). Using heat release rate to assess combustibility of building products in the cone calorimeter. Fire Technol. 41: 79–92, https://doi.org/10.1007/s10694-005-6390-z.Search in Google Scholar
Chen, Y.-H. and Chang, W.T. (2007). The identification of burnt matches by scanning electron microscopy/energy dispersive X-ray spectrometry. Forensic Sci. J. 6: 59–67.Search in Google Scholar
Choi, S., and Yoh, J.J. (2017). Fire debris analysis for forensic fire investigation using laser induced breakdown spectroscopy. Spectrochim. Acta Part B: At. Spectrosc. 134: 75–80, https://doi.org/10.1016/j.sab.2017.06.010.Search in Google Scholar
Daeid, N.N., and Stauffer, E. (2013). Chemistry/Trace/Fire investigation. In: Siegel, J., Saukko, P., and Houck, M.M. (Eds.), Encyclopedia of forensic sciences, 2nd ed. Elsevier, London, Waltham, pp. 177–182.Search in Google Scholar
de Araujo, W.R., Cardoso, T.M.G., da Rocha, R.G., Santana, M.H.P., Muñoz, R.A.A., Richter, E.M., Paixão, T.R.L.C., and Coltro, W.K.T. (2018). Portable analytical platforms for forensic chemistry: a review, Anal. Chim. Acta 1034: 1–21, https://doi.org/10.1016/j.aca.2018.06.014.Search in Google Scholar
Dolan, J. (2004). Chapter 5 Analytical methods for the detection and characterization of ignitable liquid residues from fire debris. In: Almirall, J.R. and Furton, K.G., (Eds.). Analysis and interpretation of fire scene evidence. CRC Press, Boca Raton.10.1201/9780203492727.ch5Search in Google Scholar
Dolan, J. (2008). Chapter 26 Forensic analysis of fire debris. In: Bogusz, M.J. (Ed.). Handbook of analytical separations, Vol. 6. Forensic Science, Elsevier, pp. 873–922, https://doi.org/10.1016/s1567-7192(06)06026-8.Search in Google Scholar
Eiceman, G.A., Schmidt, H., and Cagan, A.A. (2007). Chapter 3 - explosives detection using differential mobility spectrometry. In: Yinon, J. (Ed.), Counterterrorist detection techniques of explosives, Elsevier Science B.V., Amsterdam, pp. 61–90.10.1016/B978-044452204-7/50022-5Search in Google Scholar
Einax, J.W. (2004). Chemometrics in analytical chemistry. Anal. Bioanal. Chem. 380: 368–369, https://doi.org/10.1007/s00216-004-2792-x.Search in Google Scholar PubMed
ENFSI (2020). European network on forensic science Institutes. Available at: <https://enfsi.eu/projects/other-running-projects>.Search in Google Scholar
Evans-Nguyen, K. (2019). Chapter 1 an introduction to instrumentation used in fire debris and explosive analysis. In: Evans-Nguyen, K. and Hutches, K. (Eds.). Forensic analysis of fire debris and explosives. Springer, Cham, pp. 1–43, https://doi.org/10.1007/978-3-030-25834-4_1.Search in Google Scholar
Fabbri, D., Rombolà, A.G., Torri, C., and Spokas, K.A. (2013). Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil. J. Anal. Appl. Pyrolysis, 103: 60–67, https://doi.org/10.1016/j.jaap.2012.10.003.Search in Google Scholar
Fabritius, M.M., Broillet, A., König, S., and Weinmann, W. (2018). Analysis of volatiles in fire debris by combination of activated charcoal strips (ACS) and automated thermal desorption-gas chromatography-mass spectrometry (ATD/GC-MS). Forensic Sci. Int. 289: 232–237, https://doi.org/10.1016/j.forsciint.2018.05.048.Search in Google Scholar PubMed
Faix, O., Fortman, D., Bremer, J., and Meier, D. (1990a). Thermal degradation products of wood. Gas chromatographic separation and mass spectrometric characterization of polysaccharide derived products. Eur. J. Wood Wood Prod. 49: 213–219.10.1007/BF02613278Search in Google Scholar
Faix, O., Meier, D., and Fortmann, I. (1990b). Thermal degradation products of wood. Gas chromatographic separation and mass spectrometric characterization of monomeric lignin derived product. Eur. J. Wood Wood Prod. 48: 281–285, https://doi.org/10.1007/bf02626519.Search in Google Scholar
Falatová, B., Ferreiro-González, M., Calle, J.L.P., Álvarez, J.Á., and Palma, M., (2021). Discrimination of ignitable liquid residues in burned petroleum-derived substrates by using HS-MS eNose and chemometrics. Sensors 21: 801, https://doi.org/10.3390/s21030801.Search in Google Scholar PubMed PubMed Central
Fann, N., Alman, B., Broome, R.A., Morgan, G.G., Johnston, F.H., Pouliot, G., and Rappold, A.G. (2018). The health impacts and economic value of wildland fire episodes in the U.S.: 2008–2012. Sci. Total Environ. 610–611: 802.10.1016/j.scitotenv.2017.08.024Search in Google Scholar PubMed PubMed Central
Farmer, N., Curran, J., Lucy, D., Daeid, N.N., and Meier-Augenstein, W. (2009). Stable isotope profiling of burnt wooden safety matches. Sci. Justice, 49: 107–113, https://doi.org/10.1016/j.scijus.2009.03.007.Search in Google Scholar PubMed
Fernandes, M.B., Skjemstad, J.O., Johnson, B.B., Wells, J.D., and Brooks, P. (2003). Characterization of carbonaceous combustion residues. I. Morphological, elemental and spectroscopic features, Chemosphere 51: 785–795, https://doi.org/10.1016/s0045-6535(03)00098-5.Search in Google Scholar
Ferreiro-González, M., Ayuso, J., Álvarez, J.A., Palma, M., and Barroso, C.G. (2015). Application of an HS–MS for the detection of ignitable liquids from fire debris. Talanta, 142: 150–156, https://doi.org/10.1016/j.talanta.2015.04.030.Search in Google Scholar PubMed
Ferreiro-González, M., Barbero, G.F., Palma, M., Ayuso, J., Álvarez, J.A., and Barroso, C.G. (2016). Determination of ignitable liquids in fire debris: direct analysis by electronic nose. Sensors 16: 695, https://doi.org/10.3390/s16050695.Search in Google Scholar PubMed PubMed Central
Ferreiro-González, M., Barbero, G.F., Ayuso-Vilacides, J.J., Álvarez, J.A., and Barroso, C.G. (2017). Validation of an HS-MS method for direct determination and classification of ignitable liquids. Microchem. J. 132: 358–364, https://doi.org/10.1016/j.microc.2017.02.022.Search in Google Scholar
Fettig, I., Krüger, S., Deubel, J.H., Werrel, M., Raspe, T., and Piechotta, C. (2014). Evaluation of a headspace solid-phase microextraction method for the analysis of ignitable liquids in fire debris. J. Forensic Sci. 59: 743–749, https://doi.org/10.1111/1556-4029.12342.Search in Google Scholar PubMed
Friquin, K.L. (2010). Material properties and external factors influencing the charring rate of solid wood and glue-laminated timber. Fire Mater. 35: 303–327, https://doi.org/10.1002/fam.1055.Search in Google Scholar
Frisch-Daiello, J.L., Williams, M.R., Waddell, E.E., and Sigman, M.E. (2014). Application of self-organizing feature maps to analyse the relationships between ignitable liquids and selected mass spectral ions. Forensic Sci. Int. 236: 84–89, https://doi.org/10.1016/j.forsciint.2013.12.026.Search in Google Scholar PubMed
Gentile, N., Besson, L., Pazos, D., Delemont, O., and Esseiva, P. (2011). On the use of IRMS in forensic science: proposals for a methodological approach. Forensic Sci. Int. 212: 260–271, https://doi.org/10.1016/j.forsciint.2011.07.003.Search in Google Scholar PubMed
González-Rodríguez, J., Sissons, N., and Robinson, S. (2011). Fire debris analysis by Raman spectroscopy and chemometrics. J. Anal. Appl. Pyrolysis. 91: 210–218, https://doi.org/10.1016/j.jaap.2011.02.012.Search in Google Scholar
Gorbett, G.E., Meacham, B.J., Wood, C.B., and Dembsey, N.A. (2015). Use of damage in fire investigation: a review of fire patterns analysis, research and future direction. Fire Sci. Rev. 4: 4, https://doi.org/10.1186/s40038-015-0008-4.Search in Google Scholar
Gruber, B., Weggler, B.A., Jaramillo, R., Murrell, K.A., Piotrowski, P.K., and Dorman, F.L. (2018). Comprehensive two-dimensional gas chromatography in forensic science: a critical review of recent trends, Trends Anal. Chem. 105: 292–301, https://doi.org/10.1016/j.trac.2018.05.017.Search in Google Scholar
Hagen, M., Hereid, J., Delichatsios, M.A., Zhang, J., and Bakirtzis, D. (2009). Flammability assessment of fire-retarded Nordic Spruce wood using thermogravimetric analyses and cone calorimetry. Fire Saf. J. 44: 1053–1066, https://doi.org/10.1016/j.firesaf.2009.07.004.Search in Google Scholar
He, W., Liu, Q., Shi, L., Liu, Z., Ci, D., Lievens, C., Guo, X., and Liu, M. (2014). Understanding the stability of pyrolysis tars from biomass in a view point of free radicals. Bioresour. Technol. 156: 372–375, https://doi.org/10.1016/j.biortech.2014.01.063.Search in Google Scholar PubMed
Hendrikse, J. (2007). ENFSI Collaborative testing programme for ignitable liquid analysis: a review. Forensic Sci. Int. 167: 213–219, https://doi.org/10.1016/j.forsciint.2006.06.058.Search in Google Scholar PubMed
Hendrikse, J., Grutters, M., and Schäfer, F. (2016). Chapter 4 Fire debris analysis methods. In: Hendrikse, J., Grutters, M., and Schäfer, F. (Eds.). Identifying of ignitable liquids in fire debris, A guideline for forensic experts, Elsevier, Amsterdam, pp. 17–22, https://doi.org/10.1016/b978-0-12-804316-5.00004-6.Search in Google Scholar
Hibbert, D.B. (2016). Vocabulary of concepts and terms in chemometrics (IUPAC Recommendations 2016). Pure Appl. Chem. 88: 407–443, https://doi.org/10.1515/pac-2015-0605.Search in Google Scholar
Hibbert, D.B., Korte, E.-H., and Örnemark, U. (2021). Metrological and quality concepts in analytical chemistry (IUPAC Provisional Recommendations 2021). Pure Appl. Chem. 93: 997.10.1515/pac-2019-0819Search in Google Scholar
Hilber, I., Schmidt, H.-P., and Bucheli, T.D. (2017). Sampling, storage and preparation of biochar for laboratory analysis. In: Singh, B., Camps-Arbestain, M., and Lehmann, J. (Eds.), Biochar: a guide to analytical methods. CSIRO Publishing, Clayton South, pp. 1–8.Search in Google Scholar
Hong, J., Moon, H., Kim, J., Lee, B., Kim, G.-B., Lee, H., and Kim, Y. (2021). Differentiation of carbon black from black carbon using a ternary plot based on elemental analysis, Chemosphere 264: 128511, https://doi.org/10.1016/j.chemosphere.2020.128511.Search in Google Scholar PubMed
Ignitable liquids reference collection database (2021). National Center for Forensic Science, University of Central Florida, Orlando. Available at: <https://ilrc.ucf.edu/>.Search in Google Scholar
ISO 5660–1 (2015). Reaction-to-fire tests – heat release, smoke production and mass loss rate – Part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement). International Organization for Standardization, Switzerland.Search in Google Scholar
Jin, J., Chi, J., Xue, T., Xu, J., Liu, L., Li, Y., Deng, L., and Zhang, J. (2020). Influence of thermal environment in fire on the identification of gasoline combustion residues. Forensic Sci. Int. 315: 110430, https://doi.org/10.1016/j.forsciint.2020.110430.Search in Google Scholar PubMed
Karlsson, B. and Quintiere, J.G. (2000). Enclosure fire dynamics. CRS Press, London.Search in Google Scholar
Kates, L.N., Richards, P.I., and Sandau, C.D. (2020). The application of comprehensive two-dimensional gas chromatography to the analysis of wildfire debris for ignitable liquid residue. Forensic Sci. Int. 310: 110256, https://doi.org/10.1016/j.forsciint.2020.110256.Search in Google Scholar PubMed
Keto, R.O. (1995). GC/MS Data interpretation for petroleum distillate identification in contaminated arson debris. J. Forensic Sci. 40: 412–423, https://doi.org/10.1520/jfs13796j.Search in Google Scholar
Khan, R., Chu, J., Margrave, J., Hauge, R., and Smalley, R. (2005). Free radical chemistry during slow pyrolysis of solid fuels. Energy Sources 27: 309–318, https://doi.org/10.1080/009083190519005.Search in Google Scholar
Kim, H.S., Kim, S., Kim, H.J., and Yang, H.S. (2006). Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim. Acta 451: 181–188, https://doi.org/10.1016/j.tca.2006.09.013.Search in Google Scholar
Kowalski, B.R. (1975). Chemometrics: views and propositions. J. Chem. Inf. Comput. Sci. 15: 201–203, https://doi.org/10.1021/ci60004a002.Search in Google Scholar
Krüger, S., Deubel, J.H., Werrel, M., Fettig, I., and Raspe, T. (2015). Experimental studies on the effect of fire accelerants during living room fires and detection of ignitable liquids in fire debris. Fire Mater. 39: 636–646, https://doi.org/10.1002/fam.2263.Search in Google Scholar
Kuo, L.-J., Louchouarn, P., and Herbert, B.E. (2011). Influence of combustion conditions on yields of solvent-extractable anhydrosugars and lignin phenols in chars: implications for characterizations of biomass combustion residues. Chemosphere 85: 797–805, https://doi.org/10.1016/j.chemosphere.2011.06.074.Search in Google Scholar PubMed
Lentini, J. (2013). Fire scene investigation and laboratory analysis of fire debris. In: Ubelaker, D. (Ed.). Forensic science, current issues, future directions. Wiley, Hoboken.Search in Google Scholar
Lentini, J.J. (2018). Scientific protocols for fire investigation, 3rd ed. CRC Press, Boca Raton.10.4324/9781315178097Search in Google Scholar
Lever, T., Haines, P., Rouquerol, J., Charsley, E.L., Eckeren, P.V., and Burlett, D.J. (2014). ICTAC nomenclature of thermal analysis (IUPAC Recommendations 2014). Pure Appl. Chem. 86: 545–553, https://doi.org/10.1515/pac-2012-0609.Search in Google Scholar
Lopatka, M. (2012). Statistical interpretation of chemical evidence pertaining to fire debris, Doctoral thesis. University of Amsterdam, Amsterdam.Search in Google Scholar
Lopatka, M., Sigman, M.E., Sjerps, M.J., Williams, M.R., and Vivó-Truyols, G. (2015). Class-conditional feature modeling for ignitable liquid classification with substantial substrate contribution in fire debris analysis. Forensic Sci. Int. 252: 177–186, https://doi.org/10.1016/j.forsciint.2015.04.035.Search in Google Scholar PubMed
Lopatka, M., Sampat, A.A., Jonkers, S., Adutwum, L.A., Mol, H.G.J., van der Weg, G., Harynuk, J.J., Schoenmakers, P.J., van Asten, A., Sjerps, M.J., et al.. (2017). Local ion signatures (LIS) for the examination of comprehensive two-dimensional gas chromatography applied to fire debris analysis, Forensic Chem. 3: 1–13, https://doi.org/10.1016/j.forc.2016.10.003.Search in Google Scholar
Lowden, L.A., and Hull, T.R. (2013). Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci. Rev. 2: 4.10.1186/2193-0414-2-4Search in Google Scholar
Lyon, R.E. and Walters, R.N. (2004). Pyrolysis combustion flow calorimetry. J. Anal. Appl. Pyrolysis 71: 27–46, https://doi.org/10.1016/s0165-2370(03)00096-2.Search in Google Scholar
Mark, P., and Sandercock, L. (2019). Chapter 3 background interference in fire debris analysis. In: Evans-Nguyen, K., and Hutches, K. (Eds.), Forensic analysis of fire debris and explosives, Springer, Cham, pp. 75–104.Search in Google Scholar
Martín-Alberca, C., Sáiz, J., Ferrando, J.L., and García-Ruiz, C. (2012). Qualitative determination of inorganic anions in incendiary device residues by capillary electrophoresis. Anal. Methods 4: 2680–2686, https://doi.org/10.1039/c2ay25628b.Search in Google Scholar
Martín-Alberca, C., García-Ruiz, C., and Delémont, O. (2015). Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry. J. Separ. Sci. 38: 3218–3227, https://doi.org/10.1002/jssc.201500337.Search in Google Scholar
Martín-Alberca, C., Ortega-Ojeda, F.E., and García-Ruiz, C. (2016). Analytical tools for the analysis of fire debris, A review: 2008–2015. Anal. Chim. Acta, 928: 1–19, https://doi.org/10.1016/j.aca.2016.04.056.Search in Google Scholar
McCurdy, R.J., Atwell, T., and Cole, M.D. (2001). The use of vapour phase ultra-violet spectroscopy for the analysis of arson accelerants in fire scene debris. Forensic Sci. Int. 123: 191–201, https://doi.org/10.1016/s0379-0738(01)00549-7.Search in Google Scholar
NFPA 921 (2017). Guide for fire and explosion investigations. Part 17.10 Examination and testing of physical evidence. National Fire Protection Association, USA, Available at: https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=921.Search in Google Scholar
Nizio, K.D., Cochran, J.W., and Forbes, S.L. (2016). Achieving a near-theoretical maximum in peak capacity gain for the forensic analysis of ignitable liquids using GC×GC-TOFMS. Separations 3: 26, https://doi.org/10.3390/separations3030026.Search in Google Scholar
O’Sullivan, G. and Kalin, R.M. (2008). Investigation of the range of carbon and hydrogen isotopes within a global set of gasolines. Environ. Forensics 9: 166–176, https://doi.org/10.1080/15275920802119037.Search in Google Scholar
Pabelina, K.G., Lumban, C.O., and Ramos, H.J. (2012) Plasma impregnation of wood with fire retardants. Nucl. Instrum. Methods Phys. Res. B. 272: 365–369, https://doi.org/10.1016/j.nimb.2011.01.102.Search in Google Scholar
Poole, C., Mester, Z., Miró, M., Pedersen-Bjergaard, S., and Pawliszyn, J. (2016). Extraction for analytical scale sample preparation (IUPAC Technical report), Pure Appl. Chem. 88: 649–687, https://doi.org/10.1515/pac-2015-0705.Search in Google Scholar
Prebihalo, S.E., Berrier, K.L., Freye, C.E., Bahaghighat, H.D., Moore, N.R., Pinkerton, D.K., and Synovec, R.E. (2018). Multidimensional gas chromatography: advances in instrumentation, chemometrics, and applications. Anal. Chem. 90: 505–532, https://doi.org/10.1021/acs.analchem.7b04226.Search in Google Scholar
Pristaš, P., Kvasnová, S., Gáperová, S., Gašparcová, T., and Gáper, J. 2017. Application of MALDI‐TOF mass spectrometry for in vitro identification of wood decay polypores. For. Pathol. 47: e12352.10.1111/efp.12352Search in Google Scholar
Qin, R., Zhou, A., Chow, C.L., and Lau, D. (2021). Structural performance and charring of loaded wood under fire. Eng. Struct. 228: 111491, https://doi.org/10.1016/j.engstruct.2020.111491.Search in Google Scholar
Quintiere, J.G. (2016). Principles of fire behavior, 2nd ed. CRC Press, Boca Raton.Search in Google Scholar
Ragland, K.W. and Aerts, D.J. (1991). Properties of wood for combustion analysis. Bioresour. Technol. 37: 161–168, https://doi.org/10.1016/0960-8524(91)90205-x.Search in Google Scholar
Renneckar, S., Zink-Sharp, A.G., Ward, T.C., and Glasser, W.G. (2004). Compositional analysis of thermoplastic wood composites by TGA. J. Appl. Polym. Sci. 93: 1484–1492, https://doi.org/10.1002/app.20599.Search in Google Scholar
Sampat, A., Lopatka, M., Sjerps, M., Vivo-Truyols, G., Schoenmakers, P., and van Asten, A. (2016a). The forensic potential of comprehensive two-dimensional gas chromatography. Trends Anal. Chem. 80: 345–363, https://doi.org/10.1016/j.trac.2015.10.011.Search in Google Scholar
Sampat, A.A.S., Lopatka, M., Vivó-Truyols, G., Schoenmakers, P.J., and van Asten, A.C. (2016b). Towards chemical profiling of ignitable liquids with comprehensive two-dimensional gas chromatography: exploring forensic application to neat white spirits. Forensic Sci. Int. 267: 183–195, https://doi.org/10.1016/j.forsciint.2016.08.006.Search in Google Scholar PubMed
Schartel, B. and Hull, T.R. (2007). Development of fire-retarded materials – interpretation of cone calorimeter data. Fire Mater. 31: 327–354, https://doi.org/10.1002/fam.949.Search in Google Scholar
Schechter, I., Miziolek, A.W., and Palleschi, V. (Eds.) (2006). Laser-induced breakdown spectroscopy (LIBS): fundamentals and applications. Cambridge University Press. Cambridge.Search in Google Scholar
Schmidt, O. and Kallow, W. (2005). Differentiation of indoor wood decay fungi. Holzforschung 59: 374–377, https://doi.org/10.1515/hf.2005.062.Search in Google Scholar
Schmidt, M.W.I., Skjemstad, J.O., Czimczik, C.I., Glaser, B., Prentice, K.M., Gelinas, Y., and Kuhlbusch, T.A.J. (2001). Comparative analysis of black carbon in soils. Global Biogeochem. Cycles 15: 163–167, https://doi.org/10.1029/2000gb001284.Search in Google Scholar
Schwartz, Z., An, Y., Konstantynova, K.I., and Jackson, G.P., (2013) Analysis of household ignitable liquids and their post-combustion weathered residues using compound-specific gas chromatography-combustion-isotope ratio mass spectrometry. Forensic Sci. Int. 233: 365–373, https://doi.org/10.1016/j.forsciint.2013.10.010.Search in Google Scholar PubMed
Sebio-Puñal, T., Naya, S., López-Beceiro, J., Tarrío-Saavedra, J., and Ramón Artiaga, R. (2012). Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. J. Therm. Anal. Calorim. 109: 1163–1167, https://doi.org/10.1007/s10973-011-2133-1.Search in Google Scholar
Singh, J.P. and Thakur, S.N. (2007). Laser-induced breakdown spectroscopy. Elsevier Science, Amsterdam.Search in Google Scholar
Singh, B., Camps-Arbestain, M., and Lehmann, J. (Eds.) (2017). Biochar: a guide to analytical methods. CRC Press, Boca Raton, Florida, USA.10.1071/9781486305100Search in Google Scholar
Sinha, A., Gupta, R., and Nairn, J.A. (2011). Thermal degradation of bending properties of structural wood and wood-based composites. Holzforschung 65: 221–229, https://doi.org/10.1515/hf.2011.001.Search in Google Scholar
Sinkov, N.A., Sandercock, P.M.L., and Harynuk, J.J. (2014). Chemometric classification of casework arson samples based on gasoline content. Forensic Sci. Int. 235: 24–31, https://doi.org/10.1016/j.forsciint.2013.11.014.Search in Google Scholar PubMed
Smernik, R.J. (2017). Analysis of biochars by 13C nuclear magnetic resonance spectroscopy. In: Singh, B., Camps-Arbestain, M., and Lehmann, J. (Eds.), Biochar: a guide to analytical methods, Csiro Publishing, Clayton South, pp. 151–161.Search in Google Scholar
Smokeless Powders Database (2021). National center for forensic science, University of Central Florida, Orlando. Available at: <http://www.ilrc.ucf.edu/powders/>.Search in Google Scholar
Stark, N.M. and Cai, Z. (2021). Chapter 11 Wood-based composite materials: panel products, glued-laminated timber, structural composite lumber, and wood–nonwood composite materials. In: Ross, R. (Ed.). Forest product laboratory. Wood handbook—wood as an engineering material. General Technical Report FPL-GTR-282. Madison, WI: Forest Service, Forest Products Laboratory, p. 29.Search in Google Scholar
Stauffer, E. (2016). Forensic chemistry fire investigation and debris analysis, 2013 to 2016. In: 18th INTERPOL International forensic science managers symposium, 11–13 October 2016. Lyon, France, Review Papers, p. 163.Search in Google Scholar
Stauffer, É. (2020). Interpol review of fire investigation 2016–2019. Forensic Sci. Int. Synerg. 2: 368–381, https://doi.org/10.1016/j.fsisyn.2020.01.005.Search in Google Scholar PubMed PubMed Central
Stauffer, E., Dolan, J.A., and Newman, R. (Eds.) (2008a). Fire debris analysis. Academic Press, Elsevier, Amsterdam.Search in Google Scholar
Stauffer, E., Dolan, J.A., and Newman, R. (2008b). Chapter 13 Other techniques of analysis and the future of fire debris analysis. In: Stauffer, E., Dolan, J.A., and Newman, R. (Eds.). Fire debris analysis. Academic Press, Elsevier, Amsterdam, pp. 495–527, https://doi.org/10.1016/b978-012663971-1.50017-8.Search in Google Scholar
Stauffer, E., Dolan, J.A., Newman, R. (2008c). Chapter 11 Extraction of ignitable liquid residues from fire debris. In: Stauffer, E., Dolan, J.A., and Newman, R. (Eds.) (2008). Fire debris analysis. Academic Press, Elsevier, Amsterdam, pp. 377–439, https://doi.org/10.1016/b978-012663971-1.50015-4.Search in Google Scholar
Substrate Database (2021). National Center for Forensic Science, University of Central Florida, Orlando. Available at: <https://ilrc.ucf.edu/substrate/>.Search in Google Scholar
Taylor, C., Rosenhan, A., Raines, J., and Rodriguez, J. (2012). An arson investigation by using comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry. J. Forensic Res. 3: 169–179.Search in Google Scholar
Thurn, N.A., Wood, T., Williams, M.R., and Sigman, M.E. (2021). Classification of ground-truth fire debris samples using artificial neural networks. Forensic Chem. 23: 100113, https://doi.org/10.1016/j.forc.2021.100313.Search in Google Scholar
Tian, L., Koshland, C.P., Yano, J., Yachandra, V.K., Yu, I.T.S., Lee, S.C., and Lucas, D. (2009). Carboncentered free radicals in particulate matter emissions from wood and coal combustion. Energy Fuels 23: 2523–2526, https://doi.org/10.1021/ef8010096.Search in Google Scholar PubMed PubMed Central
Trouve’, A. and Minnich, T. (2008). 2008-DN-BX-K167 final technical report. Available at: <https://www.ojp.gov/pdffiles1/nij/grants/239047.pdf>.Search in Google Scholar
Trubetskaya, A., Jensen, P.A., Jensen, A.D., Glarborg, P., Larsen, F.H., and Andersen, M.L. (2016). Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperatures. Biomass Bioenergy 94: 117–129, https://doi.org/10.1016/j.biombioe.2016.08.020.Search in Google Scholar
Waddell, E.E., Song, E.T., Rinke, C.N., Willians, M.R., and Sigman, M.E. (2013). Progress toward the determination of correct classification rates in fire debris analysis. J. Forensic Sci. 58: 887–896, https://doi.org/10.1111/1556-4029.12159.Search in Google Scholar
Waddell, E.E., Willians, M.R., and Sigman, M.E. (2014a). Progress toward the determination of correct classification rates in fire debris analysis II: utilizing soft independent modelling of class analogy (SIMCA). J. Forensic Sci. 59: 927–935, https://doi.org/10.1111/1556-4029.12417.Search in Google Scholar
Waddell, E.E., Frisch-Daiello, J.L., Williams, M.R., and Sigman, M.E. (2014b). Hierarchical cluster analysis of ignitable liquids based on the total ion spectrum. J. Forensic Sci. 59: 1198–1204, https://doi.org/10.1111/1556-4029.12517.Search in Google Scholar
White, R.H., and Dietenberger, M.A. (2001). Wood products: thermal degradation and fire. In: Buschow, K.H.J., Cahn, R., Flemings, M., Ilschner, B., Kramer, E., Mahajan, S., and Veyssiere, P. (Eds.), Encyclopedia of materials: science and technology, Elsevier, Amsterdam, pp. 9712–9716.10.1016/B0-08-043152-6/01763-0Search in Google Scholar
Wineman, P.L., and Keto, R.O. (1994). Target-compound method for the analysis of accelerant residues in fire debris. Anal. Chim. Acta 288: 97–110, https://doi.org/10.1016/0003-2670(94)85119-0.Search in Google Scholar
Wood, M., Laloup, M., Samyn, N., del Mar Ramirez Fernandez, M., de Bruijn, E.A., Maes, R.A., and De Boeck, G. (2006). Recent applications of liquid chromatography-mass spectrometry in forensic science. J. Chromatogr. A 1130: 3–15, https://doi.org/10.1016/j.chroma.2006.04.084.Search in Google Scholar PubMed
Yadav, V.K., Harshey, A., Das, T., Nigam, K., Sharma, K., and Srivastava, A. (2020a). Effect of different matrices on the identification of ignitable liquid residue in post burn arson debris: a Multi-derivative UV-visible spectrophotometric approach. Asian J. Chem. 32: 2880–2886, https://doi.org/10.14233/ajchem.2020.22902.Search in Google Scholar
Yadav, V.K., Nigam, K., and Srivastava, A. (2020b). Forensic investigation of arson residue by infrared and Raman spectroscopy: from conventional to non-destructive techniques. Med. Sci. Law 60: 206–215, https://doi.org/10.1177/0025802420914807.Search in Google Scholar PubMed
Yang, Q. (2016). GC-MS analysis on the trace residue of gasoline combustion. Procedia Eng. 135: 322–326, https://doi.org/10.1016/j.proeng.2016.01.137.Search in Google Scholar
Zong, R., Liu, X., Li, F., and Ye, J. (2016). Influence of fire accelerant on the thermal degradation and ignition of wood chip. Aust. J. Forensic Sci. 48: 538–548, https://doi.org/10.1080/00450618.2015.1076035.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/hf-2021-0136).
© 2022 Walter de Gruyter GmbH, Berlin/Boston