Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 20, 2021

Mapping the biotic degradation hazard of wood in Europe – biophysical background, engineering applications, and climate change-induced prospects

  • Philip B. van Niekerk ORCID logo EMAIL logo , Brendan N. Marais , Christian Brischke , Luisa M.S. Borges , Magdalena Kutnik , Jonas Niklewski , David Ansard , Miha Humar ORCID logo , Simon M. Cragg and Holger Militz
From the journal Holzforschung

Abstract

Construction using timber has seen a resurgence in light of global climate mitigation policies. Wood is a renewable resource, and engineered wood products are proving to be competitive against concrete and steel while having several advantages. However, while the renewable nature of wood in construction is a beneficial property for climate mitigation policies, the process of biodegradation introduces a challenge for service life planning. A review of hazard mapping is presented while developing contemporary hazard maps, occurrence maps and projected hazard maps for 2050 using representative concentration pathways (RCP) 2.6 and 8.5. The risk of timber decay is expected to increase in most of Europe as the temperatures rise, with a decrease expected in dryer regions. Termites are likely to experience a range expansion as more areas become suitable, while human activity and an increase in extreme weather events like floods are expected to facilitate dispersion. Marine borer species already present a risk in most European coastal regions; however, the effect of changes in water temperatures are likely to shift the boundaries for individual borer species. Overall, warmer climates are expected to increase the metabolic activity of all of these organisms leading to a general reduction in service life.


Corresponding author: Philip B. van Niekerk, Wood Biology and Wood Products, University of Goettingen, Buesgenweg 4, D-37077 Goettingen, Germany, E-mail:

Funding source: Ministry of Education, Science and Sport (MIZS)—Slovenia

Funding source: The Ministry of the Environment (YM)—Finland

Funding source: The Forestry Commissioners (FC)—UK

Funding source: Research Council of Norway

Award Identifier / Grant number: 297899

Funding source: The French Environment and Energy Management Agency (ADEME) and The French National Research Agency (ANR)—France

Funding source: The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS), Swedish Energy Agency (SWEA), Swedish Governmental Agency for Innovation Systems (Vinnova)—Sweden

Funding source: Federal Ministry of Food and Agriculture (BMEL) and Agency for Renewable Resources (FNR)—Germany

Funding source: European Union’s Horizon 2020

Award Identifier / Grant number: 773324

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The first, third, fifth and sixth authors received funding in the frame of the research project CLICKdesign, which is supported under the umbrella of ERA-NET Cofund ForestValue by the Ministry of Education, Science and Sport (MIZS)—Slovenia; The Ministry of the Environment (YM)—Finland; The Forestry Commissioners (FC)—UK; Research Council of Norway (RCN, 297899)—Norway; The French Environment and Energy Management Agency (ADEME) and The French National Research Agency (ANR)—France; The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS), Swedish Energy Agency (SWEA), Swedish Governmental Agency for Innovation Systems (Vinnova)—Sweden; Federal Ministry of Food and Agriculture (BMEL) and Agency for Renewable Resources (FNR)—Germany. ForestValue has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 773324.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

American Wood Protection Association Standard (2021). Use category system: user specification for treated wood (AWPA U1). American Wood Protection Association Standard, Birmingham, AL.Search in Google Scholar

Appelqvist, C., Al-Hamdani, Z.K., Jonsson, P.R., and Havenhand, J.N. (2015). Climate envelope modeling and dispersal simulations show little risk of range extension of the shipworm, Teredo navalis (L.), in the Baltic Sea. PLoS One 10: 1–16, https://doi.org/10.1371/journal.pone.0119217.Search in Google Scholar

Arab, A., Costa-Leonardo, A.M., Casarin, F.E., de Camargo Guaraldo, A., and Chaves, R.C. (2005). Foraging activity and demographic patterns of two termite species (Isoptera: Rhinotermitidae) living in urban landscapes in southeastern Brazil. Eur. J. Entomol. 102: 691–697.10.14411/eje.2005.098Search in Google Scholar

Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E.A., and De Clerck, O. (2018). Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Global Ecol. Biogeogr. 27: 277–284, https://doi.org/10.1111/geb.12693.Search in Google Scholar

Austin, J.W., Szalanski, A.L., Scheffrahn, R.H., Messenger, M.T., Dronnet, S., and Bagn`res, A.-G. (2005). Genetic evidence for the synonymy of two Reticulitermes species: Reticulitermes flavipes and Reticulitermes santonensis. Ann. Entomol. Soc. Am. 98: 395–401.10.1603/0013-8746(2005)098[0395:GEFTSO]2.0.CO;2Search in Google Scholar

Beck, H.E., Zimmermann, N.E., McVicar, T.R., Vergopolan, N., Berg, A., and Wood, E.F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5: 1–12.10.1038/sdata.2018.214Search in Google Scholar

Becker, R. (2008). Fundamentals of performance-based building design. Build. Simul. 1: 356–371.10.1007/s12273-008-8527-8Search in Google Scholar

Blanchette, R.A., Held, B.W., Jurgens, J.A., McNew, D.L., Harrington, T.C., Duncan, S.M., and Farrell, R.L. (2004). Wood-destroying soft rot fungi in the historic expedition huts of Antarctica. Appl. Environ. Microbiol. 70: 1328–1335.10.1128/AEM.70.3.1328-1335.2004Search in Google Scholar

Blocken, B. and Carmeliet, J. (2004). A review of wind-driven rain research in building science. J. Wind Eng. Ind. Aerod. 92: 1079–1130.10.1016/j.jweia.2004.06.003Search in Google Scholar

Borges, L.M.S. (2014). Biodegradation of wood exposed in the marine environment: evaluation of the hazard posed by marine wood-borers in fifteen European sites. Int. Biodeterior. Biodegrad. 96: 97–104, https://doi.org/10.1016/j.ibiod.2014.10.003.Search in Google Scholar

Borges, L.M.S. and Costa, F.O. (2014). New records of marine wood borers (Bivalvia: Teredinidae and Isopoda: Limnoriidae) from São Miguel, Azores, with a discussion of some aspects of their biogeography. Açoreana 10: 109–116.Search in Google Scholar

Borges, L.M.S. and Merckelbach, L.M. (2018). Lyrodus mersinensis sp. nov. (Bivalvia: Teredinidae) another cryptic species in the Lyrodus pedicellatus (Quatrefages, 1849) complex. Zootaxa 4442: 441–457.10.11646/zootaxa.4442.3.6Search in Google Scholar

Borges, L.M.S., Valente, A.A., Palma, P., and Nunes, L. (2010). Changes in the wood boring community in the Tagus Estuary: a case study. Mar. Biodivers. Rec. 3: 1–7, https://doi.org/10.1017/S1755267210000370.Search in Google Scholar

Borges, L.M.S., Sivrikaya, H., Le Roux, A., Shipway, J.R., Cragg, S.M., and Costa, F.O. (2012). Investigating the taxonomy and systematics of marine wood borers (Bivalvia: Teredinidae) combining evidence from morphology, DNA barcodes and nuclear locus sequences. Invertebr. Systemat. 26: 572–582, https://doi.org/10.1071/IS12028.Search in Google Scholar

Borges, L.M.S., Merckelbach, L.M., and Cragg, S.M. (2014a). Biogeography of wood-boring crustaceans (isopoda: Limnoriidae) established in European Coastal waters. PLoS One 9, https://doi.org/10.1371/journal.pone.0109593.Search in Google Scholar PubMed PubMed Central

Borges, L.M.S., Merckelbach, L.M., Sampaio, Í., and Cragg, S.M. (2014b). Diversity, environmental requirements, and biogeography of bivalve wood-borers (Teredinidae) in European coastal waters. Front. Zool. 11: 1–13, https://doi.org/10.1186/1742-9994-11-13.Search in Google Scholar PubMed PubMed Central

Borges, L.M.S., Sivrikaya, H., and Cragg, S.M. (2014c). First records of the warm water shipworm Teredo bartschi Clapp, 1923 (Bivalvia, Teredinidae) in Mersin, southern Turkey and in Olhão, Portugal. BioInvasions Rec. 3: 25–28, https://doi.org/10.3391/bir.2014.3.1.04.Search in Google Scholar

Borges, L.M.S., Pfeifer, B., Pandur, S., Toubarro, D., Tanase, A.-M., Chiciudean, I., Menzel, M.N., Hoppert, M., Daniel, R., Simões, N., et al.. (2021a). A picture is worth a thousand words: novel photographic evidence on the anatomy of the digestive system of three shipworm species (Bivalvia, Teredinidae). Zoomorphology, 140: 469–485 https://doi.org/10.1007/s00435-021-00540-6.Search in Google Scholar

Borges, L.M.S., Treneman, N.C., Haga, T., Shipway, J.R., Raupach, M.J., Altermark, B., and Carlton, J.T. (2021b). Out of taxonomic crypsis: a new trans-arctic cryptic species pair corroborated by phylogenomics and molecular evidence. Mol. Phylogenet. Evol. 166: 107312, https://doi.org/10.1016/j.ympev.2021.107312.Search in Google Scholar PubMed

Bosch, S. (2020). sdmpredictors: species distribution modelling predictor datasets. R package version 0.2.9, Available at: <https://CRAN.R-project.org/package=sdmpredictors>.Search in Google Scholar

Botti, D. (2018). A phytoclimatic map of Europe. Cybergeo: Eur. J. Geogr, https://doi.org/10.4000/cybergeo.29495.Search in Google Scholar

Brischke, C. and Alfredsen, G. (2020). Wood-water relationships and their role for wood susceptibility to fungal decay. Appl. Microbiol. Biotechnol. 104: 3781–3795.10.1007/s00253-020-10479-1Search in Google Scholar PubMed PubMed Central

Brischke, C. and Meyer-Veltrup, L. (2016). Modelling timber decay caused by brown rot fungi. Mater. Struct. 49: 3281–3291.10.1617/s11527-015-0719-ySearch in Google Scholar

Brischke, C. and Rapp, A.O. (2008). Dose–response relationships between wood moisture content, wood temperature and fungal decay determined for 23 European field test sites. Wood Sci. Technol. 42: 507–518.10.1007/s00226-008-0191-8Search in Google Scholar

Brischke, C. and Rapp, A.O. (2010). Potential impacts of climate change on wood deterioration. Int. Wood Prod. J. 1: 85–92.10.1179/2042645310Y.0000000006Search in Google Scholar

Brischke, C. and Selter, V. (2020). Mapping the decay hazard of wooden structures in topographically divergent regions. Forests 11: 510.10.3390/f11050510Search in Google Scholar

Brischke, C., Rapp, A.O., and Bayerbach, R. (2006). Decay influencing factors: a basis for service life prediction of wood and wood-based products. Wood Mater. Sci. Eng. 1: 91–107.10.1080/17480270601019658Search in Google Scholar

Brischke, C., Frühwald Hansson, E., Kavurmaci, D., and Thelandersson, S. (2011). Decay hazard mapping for Europe. In: Proceedings of the international research group on wood protection, Stockholm, Sweden. IRG-WP 11-20463.Search in Google Scholar

Brischke, C., Alfredsen, G., Humar, M., Conti, E., Cookson, L., Emmerich, L., Flæte, P.O., Fortino, S., Francis, L., Hundhausen, U., et al.. (2021). Modelling the material resistance of wood – Part 3: relative resistance in above and in ground situations – results of a global survey. Forests 12: 590.10.3390/f12050590Search in Google Scholar

Buczkowski, G. and Bertelsmeier, C. (2017). Invasive termites in a changing climate: a global perspective. Ecol. Evol. 7: 974–985.10.1002/ece3.2674Search in Google Scholar PubMed PubMed Central

Carll, C.G. (2009). Decay hazard (Scheffer) index values calculated from 1971–2000 climate normal data. Technical Report FPL-GTR-179. Madison, WI, USA: United States Department of Agriculture, Forest Service, Forest Products Laboratory.10.2737/FPL-GTR-179Search in Google Scholar

Castelló, J. (2011). The genus Limnoria (Limnoriidae, Isopoda, Crustacea) in Europe, including a key to species. Zootaxa 25: 1–25, https://doi.org/10.11646/zootaxa.2968.1.1.Search in Google Scholar

Castelló Escandell, J., Bitar, G., and Zibrowius, H. (2020). Isopoda (Crustacea) from the Levantine Sea with comments on the biogeography of Mediterranean isopods. Mediterr. Mar. Sci. 21: 308–339.10.12681/mms.20329Search in Google Scholar

Clarke, M.W., Thompson, G.J., and Sinclair, B.J. (2013). Cold tolerance of the eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae), in Ontario. Environ. Entomol. 42: 805–810.10.1603/EN12348Search in Google Scholar PubMed

Clément, J.L., Bagnères, A.G., Uva, P., Wilfert, L., Quintana, A., Reinhard, J., and Dronnet, S. (2001). Biosystematics of Reticulitermes termites in Europe: morphological, chemical and molecular data. Insectes Sociaux 48: 202–215.10.1007/PL00001768Search in Google Scholar

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J. (2015). System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 8: 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015.Search in Google Scholar

Cookson, L.J. and Trajstman, A.C. (2002). Termite survey and hazard mapping. Clayton South: CSIRO Forestry and Forest Products.Search in Google Scholar

Cornelius, M.L. (2005). Effect of particle size of different sands on the tunneling behavior of the Formosan subterranean termite (Isoptera: Rhinotermitidae). Sociobiology 45: 173–184.Search in Google Scholar

Cragg, S.M., Jumel, M.-C., Al-Horani, F.A., and Hendi, I.W. (2009). The life history characteristics of the wood-boring bivalve Teredo bartschi are suited to the elevated salinity, oligotrophic circulation in the Gulf of Aqaba, Red Sea. J. Exp. Mar. Biol. Ecol. 375: 99–105.10.1016/j.jembe.2009.05.014Search in Google Scholar

Curling, S.F. and Ormondroyd, G.A. (2018). Potential effects of climate change on durability of timber and wood based building materials. Proc. Timber 2018: 193–200.Search in Google Scholar

Curling, S.F. and Ormondroyd, G.A. (2020). Observed and projected changes in the climate based decay hazard of timber in the United Kingdom. Sci. Rep. 10: 1–9.10.1038/s41598-020-73239-1Search in Google Scholar PubMed PubMed Central

Defaut, B. (1996). Un système d’étages phytoclimatiques pour le domaine paléarctique. Corrélations entre végétation et paramètres climatiques. Matériaux Entomocénotiques 1: 5–46.Search in Google Scholar

De Groot, R.C. (1982). An assessment climate index in predicting wood decay in houses. Durab. Build. Mater. 1: 169–174.Search in Google Scholar

Eaton, R.A., Ampong, F., Barnacle, J., Beesley, J., Bultman, D., Cookson, L., Cragg, S., de Palma, J., Gambeta, A., Henningsson, B., et al.. (1989). An international collaborative marine trial to investigate the effect of timber substrate on the efficacy of CCA and CCB wood preservatives. Mater. Org. (Berl.) 24: 51–79.Search in Google Scholar

Eltringham, S. and Hockley, A. (1958). Coexistence of three species of the wood-boring isopod Limnoria in Southampton Water. Nature 181: 1659–1660.10.1038/1811659b0Search in Google Scholar

European Committee for Standardization (1992). Wood preservatives – determination of the protective effectiveness against marine borers (EN 275). Brussels: CEN (European Committee for Standardization.Search in Google Scholar

European Committee for Standardization (2003). (English): Eurocode 1: actions on structures – part 1–3: general actions – snow loads [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC] (EN 1991-1-3). Brussels: CEN (European Committee for Standardization.Search in Google Scholar

European Committee for Standardization (2015). Field test method for determining the relative protective effectiveness of a wood preservative in ground contact (EN 252). CEN (European Committee for Standardization, Brussels.Search in Google Scholar

European Environment Agency (2016). World digital elevation model (ETOPO5). Brussels: CEN (European Committee for Standardization), Available at: <https://www.eea.europa.eu/data-and-maps/data/world-digital-elevation-model-etopo5> (Accessed 15 August 2021).Search in Google Scholar

Eurostat (2021). GISCO: geographical information and maps, Available at: <https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/countries> (Accessed 15 August 2021).Search in Google Scholar

Evans, T.A. (2003). The influence of soil heterogeneity on exploratory tunnelling by the subterranean termite Coptotermes frenchi (Isoptera: Rhinotermitidae). Bull. Entomol. Res. 93: 413–423.10.1079/BER2003254Search in Google Scholar

Ewart, D., Nunes, L., de Troya, T., and Kutnik, M. (2016). Termites and a changing climate. In: Dhang, P. (Ed.), Climate change impacts on urban pests. CAB International, pp. 80–94.10.1079/9781780645377.0080Search in Google Scholar

Fernandez-Golfin, J., Larrumbide, E., Ruano, A., Galvan, J., and Conde, M. (2016). Wood decay hazard in Spain using the Scheffer index: proposal for an improvement. Eur. J. Wood Wood Prod. 74: 591–599.10.1007/s00107-016-1036-zSearch in Google Scholar

Foliente, G.C. (2000). Developments in performance-based building codes and standards. For. Prod. J. 50: 12.Search in Google Scholar

Frühwald Hansson, E., Brischke, C., Meyer, L., Isaksson, T., Thelandersson, S., and Kavurmaci, D. (2012). Durability of timber outdoor structures – modelling performance and climate impacts. In: Proceedings of the World conference on timber engineering, Auckland, New Zealand, pp. 295–303, 16–19 July 2012.Search in Google Scholar

Gathorne-Hardy, F. and Eggleton, P. (2001). The effects of altitude and rainfall on the composition of the termites (Isoptera) of the Leuser Ecosystem (Sumatra, Indonesia). J. Trop. Ecol. 17: 379–393.10.1017/S0266467401001262Search in Google Scholar

Geldiay, R. and Kocatas, A. (1972). Isopods collected in Izmir Bay, Aegean Sea. Crustaceana Supplement: 19/30.Search in Google Scholar

Ghesini, S., and Marini, M. (2015). Description of a new termite species from Cyprus and the Aegean area: Reticulitermes aegeus sp. nov. Bull. Insectology 68: 207–210.Search in Google Scholar

Green, J.M., Scharf, M.E., and Bennett, G.W. (2005). Impacts of soil moisture level on consumption and movement of three sympatric subterranean termites (Isoptera: Rhinotermitidae) in a laboratory assay. J. Econ. Entomol. 98: 933–937.10.1603/0022-0493-98.3.933Search in Google Scholar PubMed

Hasegawa, M. (1996). Relationships between wood protection and climate indexes. Mokuzai Hozon 22: 2–9.Search in Google Scholar

Helali, J., Momenzadeh, H., Saeidi, V., Ebrahimi, G., Brischke, C., and Lotfi, M. (In press). Decadal variations of wood decay hazard and El Nino Southern oscillation Phases in Iran. Front. For. Glob. Change.10.3389/ffgc.2021.693833Search in Google Scholar

Houseman, R.M. and Gold, R.E. (2003). Factors that influence tunneling in the eastern subterranean termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). J. Agric. Urban Entomol. 20: 69–81.Search in Google Scholar

Humar, M. and Lesar, B. (2020). Monitoring the moisture content of roofing elements on the golobar cable yarding-preliminary results. Acta Silvae et Ligni 122: 19–28.10.20315/ASetL.122.2Search in Google Scholar

Humar, M., Lesar, B., and Krzisnik, D. (2021). Influence of climate change on the dynamics of the fungal decay of wood in Slovenia. Acta Silvae et Ligni 125: 53–59.10.20315/ASetL.125.5Search in Google Scholar

IPCC (2014). Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. In: Core Writing Team: Pachauri, R.K. and Meyer, L.A. (Eds.), Geneva, Switzerland: IPCC.Search in Google Scholar

Isaksson, T., Brischke, C., and Thelandersson, S. (2013). Development of decay performance models for outdoor timber structures. Mater. Struct. 46: 1209–1225.10.1617/s11527-012-9965-4Search in Google Scholar

International Organization for Standardization (2011). Buildings and constructed assets – service life planning – part 1: general principles and framework (ISO 15686-1). International Organization for Standardization, Geneva, Switzerland.Search in Google Scholar

Kim, T.G. and Ra, J.B. (2014). Change of decay hazard index (Scheffer index) for exterior aboveground wood in Korea. J. Korean Wood Sci. Technol. 42: 732–739.10.5658/WOOD.2014.42.6.732Search in Google Scholar

Kim, T.G., Ra, J.B., Kang, S.M., and Wang, J. (2011). Determination of decay hazard index (Scheffer index) in Korea for exterior aboveground wood. J. Korean Wood Sci. Technol. 39: 531–537.10.5658/WOOD.2011.39.6.531Search in Google Scholar

Kirkim, F., Kocatafi, A., Katagan, T., and Sezgin, M. (2006). Contribution to the knowledge of the free-living isopods of the Aegean Sea Coast of Turkey. Turk. J. Zool. 30: 361–372.Search in Google Scholar

Koponen, H. (1984). Dependences of moisture diffusion coefficients of wood and wooden panels on moisture content and wood properties. Pap. Ja Puu 66: 740–745.Search in Google Scholar

Koponen, H. (1985). Dependence of moisture transfer and diffusion coefficients on temperature. Pap. Ja Puu 8: 428–439.Search in Google Scholar

Köppen, W. (1884). Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorol. Z. 1: 215–226.Search in Google Scholar

Kourgialas, N.N. (2020). Hydroclimatic impact on mediterranean tree crops area–mapping hydrological extremes (drought/flood) prone parcels. J. Hydrol. 596: 125684.10.1016/j.jhydrol.2020.125684Search in Google Scholar

Küchler, A.W. and Zonneveld, I.S. (2012). Vegetation mapping, Vol. 10. Kluwer Academic Publishers Group, Dordrecht, The Netherlands, pp. 393–468.Search in Google Scholar

Kutnik, M., Uva, P., Brinkworth, L., and Bagnères, A.G. (2004). Phylogeography of two European Reticulitermes (Isoptera) species: the Iberian refugium. Mol. Ecol. 13: 3099–3113.10.1111/j.1365-294X.2004.02294.xSearch in Google Scholar PubMed

Lacasse, M.A., Gaur, A., and Moore, T.V. (2020). Durability and climate change – implications for service life prediction and the maintainability of buildings. Buildings 10: 53.10.3390/buildings10030053Search in Google Scholar

Laine, L.V. (2003). Biological studies on two European termite species: establishment risk in the UK, PhD thesis. Silwood Park, Ascot, SL5 7PY, Berkshire: Department of Biological Sciences, Imperial College.Search in Google Scholar

Larkin, G.M. and Laks, P.E. (2008). To decay or not to decay: an accelerated field test of the validity of the Scheffer Index. In: Proceedings of the International Research Group on Wood Protection, Stockholm, Sweden. Document IRG-WP 08-20392.Search in Google Scholar

Lefebvre, T., Châline, N., Limousin, D., Dupont, S., and Bagnères, A.G. (2008). From speciation to introgressive hybridization: the phylogeographic structure of an island subspecies of termite, Reticulitermes lucifugus corsicus. BMC Evol. Biol. 8: 1–13.10.1186/1471-2148-8-38Search in Google Scholar PubMed PubMed Central

Leicester, R.H. (2001). Engineered durability for timber construction. Prog. Struct. Eng. Mater. 3: 216–227.10.1002/pse.72Search in Google Scholar

Leicester, R.H., Wang, C.-H., and Nguyen, M.N. (2008). Termite attack. Manual no. 8. Highett, Victoria: CSIRO Sustainable Ecosystems, Urban Systems Program.Search in Google Scholar

Leniaud, L., Pichon, A., Uva, P., and Bagnères, A.G. (2009). Unicoloniality in Reticulitermes urbis: a novel feature in a potentially invasive termite species. Bull. Entomol. Res. 99: 1–10.10.1017/S0007485308006032Search in Google Scholar PubMed

Leniaud, L., Dedeine, F., Pichon, A., Dupont, S., and Bagnères, A.G. (2010). Geographical distribution, genetic diversity and social organization of a new European termite, Reticulitermes urbis (Isoptera: Rhinotermitidae). Biol. Invasions 12: 1389–1402.10.1007/s10530-009-9555-8Search in Google Scholar

Lippert, H., Weigelt, R., Glaser, K., Krauss, R., Bastrop, R., and Karsten, U. (2017). Teredo navalis in the Baltic Sea: larval dynamics of an invasive wood-boring bivalve at the edge of its distribution. Front. Mar. Sci. 4(OCT) 1–12, https://doi.org/10.3389/fmars.2017.00331.Search in Google Scholar

Lisø, K.R., Hygen, H.O., Kvande, T., and Thue, J.V. (2006). Decay potential in wood structures using climate data. Build. Res. Inf. 34: 546–551.10.1080/09613210600736248Search in Google Scholar

Luchetti, A., Marini, M., and Mantovani, B. (2007). Filling the European gap: biosystematics of the eusocial system Reticulitermes (Isoptera, Rhinotermitidae) in the Balkanic Peninsula and aegean area. Mol. Phylogenet. Evol. 45: 377–383.10.1016/j.ympev.2007.07.015Search in Google Scholar PubMed

MacKenzie, C., Wang, C.H., Leicester, R.H., Foliente, G.C., and Nguyen, M.N. (2013). Timber service life design-design guide for durability, Revised version. Victoria: Forest and Wood Products Australia Limited.Search in Google Scholar

Maia, M., Morais, R., and Silva, A. (2020). Application of the factor method to the service life prediction of window frames. Eng. Fail. Anal. 109: 104245.10.1016/j.engfailanal.2019.104245Search in Google Scholar

McDonnell, E. and Jones, B. (2020). Performance-based engineering provides path to more compelling mass timber projects. Technol. Architect. Des. 4: 9–13.10.1080/24751448.2020.1705709Search in Google Scholar

Meier, H.E.M., Andersson, H.C., Arheimer, B., Blenckner, T., Chubarenko, B., Donnelly, C., Eilola, K., Gustafsson, B.G., Hansson, A., Havenhand, J., et al.. (2012). Comparing reconstructed past variations and future projections of the Baltic Sea ecosystem – first results from multi-model ensemble simulations. Environ. Res. Lett. 7: 034005, https://doi.org/10.1088/1748-9326/7/3/034005.Search in Google Scholar

Menzies, R.J. and Becker, G. (1957). Holzzerstörende Limnoria-Arten (Crustacea, Isopoda) aus dem Mittelmeer mit Neubeschreibung von L. carinata. Z. Angew. Zool. 44: 85–92.Search in Google Scholar

Meteotest (2021). Meteonorm version 8 [WWW Document]. Meteonorm version 8 updated historic, current and future data, Available at: <https://meteonorm.com/en/meteonorm-version-8> (Accessed 15 August 2021).Search in Google Scholar

Meyer-Veltrup, L., Brischke, C., Niklewski, J., and Frühwald Hansson, E. (2018). Design and performance prediction of timber bridges based on a factorization approach. Wood Mater. Sci. Eng. 13: 167–173.10.1080/17480272.2018.1424729Search in Google Scholar

Morris, P.I., McFarling, S., and Wang, J. (2008). A new decay hazard map for North America using the Scheffer Index. In: Proceedings of the International Research Group on Wood Protection, Stockholm, Sweden. Document IRG-WP 08-10672.Search in Google Scholar

Morris, P.I. and Wang, J. (2011). Scheffer index as preferred method to define decay risk zones for above ground wood in building codes. Int. Wood Prod. J. 2: 67–70.10.1179/2042645311Y.0000000012Search in Google Scholar

Natural Earth (2021). Free vector and raster map data at 1:10m, 1:50m, and 1:110m scales, Available at: <https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-physical-labels> (Accessed 15 August 2021).Search in Google Scholar

Nguyen, M.N., Leicester, R.H., and Wang, C.-H. (2008). Marine borer attack on timber structures. Manual No. 7. Highett, Victoria: CSIRO Sustainable Ecosystems, Urban Systems Program.Search in Google Scholar

Nguyen, M.N., Leicester, R.H., Wang, C.H., and Cookson, L.J. (2009). Service life design for timber piles attacked by marine borers. Aust. J. Struct. Eng. 9: 241–248.10.1080/13287982.2009.11465026Search in Google Scholar

Niklewski, J. and Fredriksson, M. (2021). The effects of joints on the moisture behaviour of rain exposed wood: a numerical study with experimental validation. Wood Mater. Sci. Eng. 16: 1–11.10.1080/17480272.2019.1600163Search in Google Scholar

Niklewski, J., Fredriksson, M., and Isaksson, T. (2016a). Moisture content prediction of rain-exposed wood: test and evaluation of a simple numerical model for durability applications. Build. Environ. 97: 126–136, https://doi.org/10.1016/j.buildenv.2015.11.037.Search in Google Scholar

Niklewski, J., Frühwald-Hansson, E., Brischke, C., and Kavurmaci, D. (2016b). Development of decay hazard maps based on decay prediction models. In: Proceedings of the international research group on wood protection, Stockholm, Sweden. IRG-WP 16-20588.Search in Google Scholar

Niklewski, J., Brischke, C., and Frühwald Hansson, E. (2021). Numerical study on the effects of macro climate and detailing on the relative decay hazard of Norway spruce. Wood Mater. Sci. Eng. 16: 12–20.10.1080/17480272.2019.1608296Search in Google Scholar

Nikolitsa, G. and Giarma, C. (2019). Estimation of decay potential of wooden elements above ground in Greece. Build. Environ. 154: 155–166.10.1016/j.buildenv.2019.03.001Search in Google Scholar

Norén, J. (2001). Assessment and mapping of environmental degradation factors in outdoor applications, Ph.D. thesis. Stockholm, Sweden: KTH Stockholm.Search in Google Scholar

Norman, E. (1977). The geographical distribution and growth of the wood-boring molluscs Teredo navalis L., Psiloteredo megotara (Hanley) and Xylophaga dorsalis (Turton) on the Swedish west coast. Ophelia 16: 233–250.10.1080/00785326.1977.10425473Search in Google Scholar

Nunes, L. (2008). Termite infestation risk in Portuguese historic buildings. Cost Action IE0601 “Wood Science for Conservation of Cultural Heritage”, Braga, Portugal, 5–7 November 2008, p. 6, Available at: <http://www.woodculther.org/>.Search in Google Scholar

Orkin, LCC (2021). Termite infestation probability zones map, Available at: <https://www.orkin.com/pests/termites/termite-infestation-probability-zones-map> (Accessed 07 December 2021).Search in Google Scholar

Oxman, R. (2008). Performance-based design: current practices and research issues. Int. J. Arch. Comput. 6: 1–17.10.1260/147807708784640090Search in Google Scholar

Patlakas, P., Menendez, J., and Hairstans, R. (2015). The potential, requirements, and limitations of BIM for offsite timber construction. Int. J. 3-D Inf. Model. (IJ3DIM) 4: 54–70.10.4018/IJ3DIM.2015010104Search in Google Scholar

Peterson, C., Wagner, T.L., Mulrooney, J.E., and Shelton, T.G. (2006). Subterranean termites – their prevention and control in buildings. Home and Garden Bullletin 64 (revised October 2006). USDA Forest Service.Search in Google Scholar

Pichon, A., Kutnik, M., Leniaud, L., Darrouzet, E., Chaline, N., Dupont, S., and Bagnères, A.G. (2007). Development of experimentally orphaned termite worker colonies of two Reticulitermes species (Isoptera: Rhinotermitidae). Sociobiology 50: 1015–1034.Search in Google Scholar

QGIS.org (2021). QGIS geographic information system. QGIS Association, Available at: <http://www.qgis.org>.Search in Google Scholar

R Core Team (2019). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, Available at: <https://www.R-project.org/>.Search in Google Scholar

Roch, F. (1940). Die Terediniden des Mittelmeeres. Thalassia 4: 1–147.Search in Google Scholar

Romano, C., Voight, J.R., Pérez-Portela, R., and Martin, D. (2014). Morphological and genetic diversity of the wood-boring Xylophaga (Mollusca, Bivalvia): new species and records from deep-sea Iberian canyons. PLoS One 9, https://doi.org/10.1371/journal.pone.0102887.Search in Google Scholar PubMed PubMed Central

Romano, C., Nunes-Jorge, A., Le Bris, N., Rouse, G.W., Martin, D., and Borowski, C. (2020). Wooden stepping stones: diversity and biogeography of deep-sea wood boring Xylophagaidae (Mollusca: Bivalvia) in the North-East Atlantic Ocean, with the description of a new genus. Front. Mar. Sci. 7(November), https://doi.org/10.3389/fmars.2020.579959.Search in Google Scholar

Santana-Sosa, A. and Fadai, A. (2019). A holistic approach for industrialising timber construction. IOP Conf. Ser.: Earth Environ. Sci. 323: 012015.10.1088/1755-1315/323/1/012015Search in Google Scholar

Santhakumaran, L.N. and Sneli, J.-A. (1984). Studies on the marine fouling and wood-boring organisms of the Trondheimsfjord. Gunneria 48: 1–36.Search in Google Scholar

Scheffer, T.C. (1971). A climate index for estimating the potential for decay in wood structures above ground. For. Prod. J. 21: 25–31.Search in Google Scholar

Schmidt, H. (1956). Die Termitenfraßschäden in Hamburg-Altona. Holz als Roh- Werkst. 14: 325–328, https://doi.org/10.1007/BF02619024.Search in Google Scholar

Setliff, E.C. (1986). Wood decay hazard in Canada based on Scheffer’s climate index formula. For. Chron. 62: 456–459.10.5558/tfc62456-5Search in Google Scholar

Shi, X. (2010). Performance-based and performance-driven architectural design and optimisation. Front. Architect. Civ. Eng. China 4: 512–518.10.1007/s11709-010-0090-6Search in Google Scholar

Shipway, J.R., Borges, L.M., Müller, J., and Cragg, S.M. (2014). The broadcast spawning Caribbean shipworm, Teredothyra dominicensis (Bivalvia, Teredinidae), has invaded and become established in the eastern Mediterranean Sea. Biol. Invasions 16: 2037–2048.10.1007/s10530-014-0646-9Search in Google Scholar

Sivrikaya, H., Cragg, S.M., Borges, L.M.S., Sivrikaya, H., Cragg, S.M., and Borges, L.M.S. (2009). Variation in resistance to marine borers in commercial timbers from Turkey, as assessed by marine trial and laboratory. Turk. J. Agric. For. 33: 569–576, https://doi.org/10.3906/tar-0902-28.Search in Google Scholar

Sømme, O. (1940). A study of the life history of the gribble Limnoira lignorum (Rathke) in Norway. NYTT Mag. Nautuvuidensk. 81: 145–205.Search in Google Scholar

Standards Australia (2005). Timber – natural durability ratings (ASSouth 5604). NewWales: Homebush.Search in Google Scholar

Su, N.Y. and Puche, H. (2003). Tunneling activity of subterranean termites (Isoptera: Rhinotermitidae) in sand with moisture gradients. J. Econ. Entomol. 96: 88–93.10.1093/jee/96.1.88Search in Google Scholar PubMed

Svavarsson, J. (1982). Limnoria borealis (Isopoda, Flabellifera) and its commensal, Caecijaera borealis (Isopoda, Aselota), found in Icelandic waters. Sarsia 67: 223–226.10.1080/00364827.1982.10421337Search in Google Scholar

Tagliapietra, D., Guarneri, I., Guastadisegni, A., Sigovini, M., Keppel, E., Bergamasco, A., Lio, D.C., and Tosi, L. (2015). Limnoria carinata Menzies & Becker 1957 (isopoda: Limnoriidae) in the Adriatic.Search in Google Scholar

Tagliapietra, D., Sigovini, M., Keppel, E., Guarneri, I., Palanti, S., Veronese, N., and Abbate, A. (2019). Bioerosion effects of sea-level rise on the Doge’s Palace water doors in Venice (Italy). Facies 65: 1/16, https://doi.org/10.1007/s10347-019-0577-0.Search in Google Scholar

Tagliapietra, D., Guarneri, I., Keppel, E., and Sigovini, M. (2021). After a century in the Mediterranean, the warm-water shipworm Teredo bartschi invades the Lagoon of Venice (Italy), overwintering a few degrees above zero. Biol. Invasions 3, https://doi.org/10.1007/s10530-021-02461-3.Search in Google Scholar

Tajet, H.T.T. and Hygen, H.O. (2017). Potential risk of wood decay. MET report no. 8/2017. Norwegian Meteorological Institute.Search in Google Scholar

Taylor, K.E., Stouffer, R.J., and Meehl, G.A. (2012). An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93: 485–498.10.1175/BAMS-D-11-00094.1Search in Google Scholar

Treneman, N.C., Borges, L., Shipway, R., Raupach, M.J., Altermark, B., and Carlton, J.T. (2018). A molecular phylogeny of wood-borers (Teredinidae) from Japanese Tsunami marine debris. Aquat. Invasions 13: 101–112.10.3391/ai.2018.13.1.08Search in Google Scholar

Turner, R.D. (1966). A survey and illustrated catalogue of the Teredinidae, Vol. 140. The Museum of Comparative Zoology, Harvard University, pp. 469–485.Search in Google Scholar

Tyberghein, L., Verbruggen, H., Pauly, K., Troupin, C., Mineur, F., and De Clerck, O. (2012). Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecol. Biogeogr. 21: 272–281, https://doi.org/10.1111/j.1466-8238.2011.00656.x.Search in Google Scholar

Uva, P., Clément, J.L., Austin, J.W., Aubert, J., Zaffagnini, V., Quintana, A., and Bagnères, A.G. (2004). Origin of a new Reticulitermes termite (Isoptera, Rhinotermitidae) inferred from mitochondrial and nuclear DNA data. Mol. Phylogenet. Evol. 30: 344–353.10.1016/S1055-7903(03)00202-1Search in Google Scholar

van Niekerk, P.B., Brischke, C., and Niklewski, J. (2021). Estimating the service life of timber structures concerning risk and influence of fungal decay – a review of existing theory and modelling approaches. Forests 12: 588, https://doi.org/10.3390/f12050588.Search in Google Scholar

Viitanen, H., Toratti, T., Makkonen, L., Peuhkuri, R., Ojanen, T., Ruokolainen, L., and Räisänen, J. (2010). Towards modelling of decay risk of wooden materials. Eur. J. Wood Wood Prod. 68: 303–313.10.1007/s00107-010-0450-xSearch in Google Scholar

von Sordyl, H., Bonsch, R., Gercken, J., Gosselck, F., Kreuzberg, M., and Schulze, H. (1998). Verbeitung und Reproduktion des Schiffsbohrwurms Teredo navalis L. an der Küste Mecklenburg-Vorpommerns. Deutsche Gewässerkundliche Mitteilungen 42: 142–149.Search in Google Scholar

Wang, C.-H., Leicester, R.H., and Nguyen, M.N. (2008a). Decay above ground. Manual no. 4. Highett, Victoria: CSIRO Sustainable Ecosystems, Urban Systems Program.Search in Google Scholar

Wang, C.-H., Leicester, R.H., and Nguyen, M.N. (2008b). Decay in ground contact. Manual no. 3. Highett, Victoria: CSIRO Sustainable Ecosystems, Urban Systems Program.Search in Google Scholar

Wang, C.-H., Leicester, R.H., and Nguyen, M.N. (2008c). Probabilistic procedure for design of untreated timber poles in-ground under attack of decay fungi. Reliab. Eng. Syst. Saf. 93: 476–481.10.1016/j.ress.2006.12.007Search in Google Scholar

Wang, J. and Morris, P.I. (2008). Effect of climate change on above ground decay hazard for wood products according to the Scheffer index. In: Proceedings of the 29th Canadian Wood Preservers Association Annual Meeting, Vancouver, pp. 92–103.Search in Google Scholar

Wang, J., Wu, X., Jiang, M., and Morris, P.I. (2007). Decay hazard classification in China for exterior aboveground wood. In: Proceedings of the international research group on wood protection, Stockholm, Sweden. IRG-WP 07-20357.Search in Google Scholar

Weidner, H. (1937). Termiten in Hamburg. Z. für Pflanzenkrankh. Pflanzenschutz 47: 593–596.Search in Google Scholar

Received: 2021-08-19
Accepted: 2021-10-20
Published Online: 2021-12-20
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.12.2023 from https://www.degruyter.com/document/doi/10.1515/hf-2021-0169/html?utm_source=landingpage&utm_medium=link&utm_campaign=perspectives-on-climate-change&utm_term=rl&utm_content=lead_generation
Scroll to top button