Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 29, 2022

Natural tyrosinase inhibitors from Betula platyphylla barks

  • Peng-Hua Shu , Hui Zhang , Nian-Ci Li , Jia-Long Zhang , Guang-Wei Liu , Yuan Yang , Shuo Zang , Shu-Jing Cai , Xia-Lan Wei , Na Sun EMAIL logo and Fu-Gang Xiao EMAIL logo
From the journal Holzforschung

Abstract

During the process of searching for tyrosinase inhibitors from natural medicines, one new monoterpene rhamnoside (1) and 13 known compounds (214) were isolated from the ethanolic extract of Betula platyphylla barks by repeated column chromatography. These structures were identified by comprehensive spectroscopic data analysis such as high-resolution electrospray ionization mass spectra (HR-ESI-MS), nuclear magnetic resonance (NMR), optical rotatory dispersion (ORD) and acid hydrolysis. In vitro assay revealed that compounds 6, 7 and 14 showed obvious inhibitory activity against tyrosinase.


Corresponding authors: Na Sun and Fu-Gang Xiao, Food and Pharmacy College, Xuchang University, 88 Bayi Road, Xuchang, Henan 461000, P. R. China, E-mail: ,

Funding source: Project of Science and Technology Department of Henan Province

Award Identifier / Grant number: 212102311031

Funding source: Key Scientific Research Program in Universities of Henan Province

Award Identifier / Grant number: 22A350009

Award Identifier / Grant number: 21702178

Funding source: Training Plan of Young Backbone Teachers in Universities of Henan Province

Award Identifier / Grant number: 2021GGJS144

Funding source: Distinguished Young Scholars Fund of Xuchang University

Award Identifier / Grant number: 2019

Funding source: Scientific Research Innovation Team of Xuchang University

Award Identifier / Grant number: 2022CXTD007

Funding source: Undergraduate Training Program for Innovation and Entrepreneurship of Henan Province

Award Identifier / Grant number: S202110480020

Acknowledgements

The authors would like to thank Prof. Lin Yang for the identification of the B. platyphylla.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: National Natural Science Foundation of China (no. 21702178), Project of Science and Technology Department of Henan Province (no. 212102311031), Training Plan of Young Backbone Teachers in Universities of Henan Province (no. 2021GGJS144), Key Scientific Research Program in Universities of Henan Province (no. 22A350009), Undergraduate Training Program for Innovation and Entrepreneurship of Henan Province (no. S202110480020), the Scientific Research Innovation Team of Xuchang University (no. 2022CXTD007) and Distinguished Young Scholars Fund of Xuchang University (no. 2019).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Adhikari-Devkota, A., Elbashir, S. M. I., Watanabe, T., and Devkota, H. P. (2019). Chemical constituents from the flowers of Satsuma mandarin and their free radical scavenging and α-glucosidase inhibitory activities. Nat. Prod. Res. 33: 1670–1673, https://doi.org/10.1080/14786419.2018.1425856.Search in Google Scholar PubMed

Biswas, R., Chanda, J., Kar, A., and Mukherjee, P.K. (2017). Tyrosinase inhibitory mechanism of betulinic acid from Dillenia indica. Food Chem. 232: 689–696, https://doi.org/10.1016/j.foodchem.2017.04.008.Search in Google Scholar PubMed

Cambou, B. and Klibanov, A.M. (1984). Preparative production of optically active esters and alcohols using esterase-catalyzed stereospecific transesterification in organic media. J. Am. Chem. Soc. 106: 2687–2692, https://doi.org/10.1021/ja00321a033.Search in Google Scholar

Cheng, J., Fu, S., Qin, Z., Han, Y., and Yang, X. (2021). Self-assembled natural small molecule diterpene acids with favorable anticancer activity and biosafety for synergistically enhanced antitumor chemotherapy. J. Mater. Chem. B. 9: 2674–2687, https://doi.org/10.1039/d0tb02995e.Search in Google Scholar PubMed

Cho, N., Kim, H.W., Kim, T.B., Ransom, T.T., Beutler, J.A., and Sung, S.H. (2016a). Preparative purification of anti-proliferative diarylheptanoids from Betula platyphylla by high-speed counter-current chromatography. Molecules 21: 700, https://doi.org/10.3390/molecules21060700.Search in Google Scholar PubMed PubMed Central

Cho, N., Kim, H.W., Lee, H.K., Jeon, B.J., and Sung, S.H. (2016b). Ameliorative effect of betulin from Betula platyphylla bark on scopolamine-induced amnesic mice. Biosci. Biotechnol. Biochem. 80: 166–171, https://doi.org/10.1080/09168451.2015.1072460.Search in Google Scholar PubMed

Eom, H.J., Kang, H.R., Kim, H.K., Jung, E.B., Park, H.B., Kang, K.S., and Kim, K.H. (2016). Bioactivity-guided isolation of antioxidant triterpenoids from Betula platyphylla var. japonica bark. Bioorg. Chem. 66: 97–101, https://doi.org/10.1016/j.bioorg.2016.04.001.Search in Google Scholar PubMed

Eom, H.J., Kang, H.R., Choi, S.U., and Kim, K.H. (2017). Cytotoxic triterpenoids from the barks of Betula platyphylla var. japonica. Chem. Biodiversity 14: e1600400, https://doi.org/10.1002/cbdv.201600400.Search in Google Scholar PubMed

Heredia-Vieira, S.C., Simonet, A.M., Vilegas, W., and Macias, F.A. (2015). Unusual C,O-fused glycosylapigenins from Serjania marginata leaves. J. Nat. Prod. 78: 77–84, https://doi.org/10.1021/np500715x.Search in Google Scholar PubMed

Huh, J.Y., Lee, S., Ma, E.-B., Eom, H.J., Baek, J., Ko, Y.-J., and Kim, K.H. (2018). The effects of phenolic glycosides from Betula platyphylla var. japonica on adipocyte differentiation and mature adipocyte metabolism. J. Enzym. Inhib. Med. Chem. 33: 1167–1173, https://doi.org/10.1080/14756366.2018.1491846.Search in Google Scholar PubMed PubMed Central

Ju, E.M., Lee, S.E., Hwang, H.J., and Kim, J.H. (2004). Antioxidant and anticancer activity of extract from Betula platyphylla var. japonica. Life Sci. 74: 1013–1026, https://doi.org/10.1016/j.lfs.2003.07.025.Search in Google Scholar

Jung, H.J., Song, K.-S., Son, Y.K., Seong, J.K., Kim, S.Y., and Oh, S.H. (2020). 1,7-Bis(4-hydroxyphenyl)-4-hepten-3-one from Betula platyphylla induces apoptosis by suppressing autophagy flux and activating the p38 pathway in lung cancer cells. Phytother. Res. 34: 126–138, https://doi.org/10.1002/ptr.6506.Search in Google Scholar

Kim, S.H., Park, J.H., Kim, T.B., Lee, H.H., Lee, K.Y., Kim, Y.C., and Sung, S.H. (2010). Inhibition of antigen-induced degranulation by aryl compounds isolated from the bark of Betula platyphylla in RBL-2H3 cells. Bioorg. Med. Chem. Lett. 20: 2824–2827, https://doi.org/10.1016/j.bmcl.2010.03.053.Search in Google Scholar

Kuchkova, K.I., Aryku, A.N., Vlad, P.F., Deleanu, K., and Nikolescu, A. (2010). Synthesis of N-containing drimane sesquiterpenoids from 11-dihomodriman-8α-ol-12-one. Chem. Nat. Compd. 46: 539–544, https://doi.org/10.1007/s10600-010-9671-9.Search in Google Scholar

Lee, D.J. and Sim, S.S. (2012b). Effect of arctigenin on tyrosinase activity and melanin production in B16 melanoma cells. Yakhak Hoechi 56: 395–400.Search in Google Scholar

Lee, M., Park, J.H., Min, D.S., Yoo, H., Park, J.H., Kim, Y.C., and Sung, S.H. (2012a). Antifibrotic activity of diarylheptanoids from Betula platyphylla toward HSC-T6 Cells. Biosci. Biotechnol. Biochem. 76: 1616–1620, https://doi.org/10.1271/bbb.110887.Search in Google Scholar

Ma, X., Dang, H., Rose, J.A., Rablen, P., and Herzon, S.B. (2017). Hydroheteroarylation of unactivated alkenes using N-methoxyheteroarenium salts. J. Am. Chem. Soc. 139: 5998–6007, https://doi.org/10.1021/jacs.7b02388.Search in Google Scholar

Magid, A.A., Voutquenne-Nazabadioko, L., Bontemps, G., Litaudon, M., and Lavaud, C. (2008). Tyrosinase inhibitors and sesquiterpene diglycosides from Guioa villosa. Planta Med. 74: 55–60, https://doi.org/10.1055/s-2007-993780.Search in Google Scholar

Matsuda, H., Ishikado, A., Nishida, N., Ninomiya, K., Fujiwara, H., Kobayashi, Y., and Yoshikawa, M. (1998). Hepatoprotective, superoxide scavenging, and antioxidative activities of aromatic constituents from the bark of Betula platyphylla var. japonica. Bioorg. Med. Chem. Lett. 8: 2939–2944, https://doi.org/10.1016/s0960-894x(98)00528-9.Search in Google Scholar

Ngoc Khanh, P., Huu Tai, B., Thu Huong, T., Thi Ngoc Anh, H., Thi Ha, V., Dinh Tung, D., Kim, Y.H., Song, S.B., Dao Cuong, T., and Manh Cuong, N. (2021). Dammarane triterpenes and phytosterols from Dysoxylum tpongense Pierre and their anti-inflammatory activity against liver X receptors and NF-κB activation. Steroid 175: 108902.10.1016/j.steroids.2021.108902Search in Google Scholar PubMed

Pei, Y.H., Hua, H.M., Li, Z.L., and Chen, G. (2011). Application of nuclear magnetic resonance to the determination of the configuration of glycoside bond. Acta Pharm. Sin. 46: 127–131.Search in Google Scholar

Shataer, D., Abdulla, R., Ma, Q.L., Liu, G.Y., and Aisa, H.A. (2020). Chemical composition of extract of Corylus avellana shells. Chem. Nat. Compd. 56: 338–340, https://doi.org/10.1007/s10600-020-03024-z.Search in Google Scholar

Shomirzoeva, O., Li, J., Numonov, S., Atolikshoeva, S., and Aisa, H.A. (2020). Chemical components of Hyssopus cuspidatus Boriss.: isolation and identification, characterization by HPLC-DAD-ESI-HRMS/MS, antioxidant activity and antimicrobial activity. Nat. Prod. Res. 34: 534–540, https://doi.org/10.1080/14786419.2018.1488710.Search in Google Scholar PubMed

Shu, P., Li, J., Fei, Y., Zhu, H., Zhang, L., Niu, H., Li, Y., Liu, H., Ju, Z., Wei, X., et al.. (2020). Angelicosides I-IV, four undescribed furanocoumarin glycosides from Angelica dahurica roots and their tyrosinase inhibitory activities. Phytochem. Lett. 36: 32–36, https://doi.org/10.1016/j.phytol.2020.01.006.Search in Google Scholar

Shu, P., Yu, M., Zhu, H., Luo, Y., Li, Y., Li, N., Zhang, H., Zhang, J., Liu, G., Wei, X., et al.. (2021). Two new iridoid glycosides from Gardeniae Fructus. Carbohydr. Res. 501: 108259, https://doi.org/10.1016/j.carres.2021.108259.Search in Google Scholar PubMed

Shu, P., Fei, Y., Li, Y., Xu, T., Lou, Y., Yang, Y., Zhang, H., Li, N., Wei, X., Xiao, F., et al.. (2022). Isolation and characterization of bioactive phenolic compounds from Cinnamomum camphora barks. Holzforschung 76, ahead of print, https://doi.org/10.1515/hf-2021-0210.Search in Google Scholar

Sinha, R., Joshi, A., Joshi, U.J., Srivastava, S., and Govil, G. (2014). Localization and interaction of hydroxyflavones with lipid bilayer model membranes: a study using DSC and multinuclear NMR. Eur. J. Med. Chem. 80: 285–294, https://doi.org/10.1016/j.ejmech.2014.04.054.Search in Google Scholar PubMed

So, H.M., Eom, H.J., Lee, D., Kim, S., Kang, K.S., Lee, I.K., Baek, K.-H., Park, J.Y., and Kim, K.H. (2018). Bioactivity evaluations of betulin identified from the bark of Betula platyphylla var. japonica for cancer therapy. Arch. Pharmacal Res. 41: 815–822, https://doi.org/10.1007/s12272-018-1064-9.Search in Google Scholar PubMed

Sun, L.X., Chen, Y., Liu, L.X., Jia, Y.R., Li, Y.C., and Ma, E.L. (2012). Cytotoxic constituents from Wikstroemia indica. Chem. Nat. Compd. 48: 493–497, https://doi.org/10.1007/s10600-012-0287-0.Search in Google Scholar

Ullah, F., Hussain, H., Hussain, J., Bukhari, I.A., Tareq, M., Khan, H., Choudhary, M.I., Gilani, A.H., and Ahmad, V.U. (2007). Tyrosinase inhibitory pentacyclic triterpenes and analgesic and spasmolytic activities of methanol extracts of Rhododendron collettianum. Phytother. Res. 21: 1076–1081, https://doi.org/10.1002/ptr.2216.Search in Google Scholar PubMed

Villa, G., Povie, G., and Renaud, P. (2011). Radical chain reduction of alkylboron compounds with catechols. J. Am. Chem. Soc. 133: 5913–5920, https://doi.org/10.1021/ja110224d..Search in Google Scholar PubMed

Wang, C.-M., Chen, H.-T., Wu, Z.-Y., Jhan, Y.-L., Shyu, C.-L., and Chou, C.-H. (2016). Antibacterial and synergistic activity of pentacyclic triterpenoids isolated from Alstonia scholaris. Molecules 21: 139, https://doi.org/10.3390/molecules21020139.Search in Google Scholar PubMed PubMed Central

Wang, K.-W. and Yan, S.-N. (2018). Chemical constituents of Symplocos setchuensis. Chem. Nat. Compd. 54: 1012–1014, https://doi.org/10.1007/s10600-018-2538-1.Search in Google Scholar

Wu, J., Xu, J.-G., Fu, J.-P., Xiong, W., Zhang, S.-W., Gu, Z., Wu, L., and Hu, J.-W. (2019). Characterization of tyrosinase inhibitors from white lotus receptacle. Chem. Nat. Compd. 55: 929–931, https://doi.org/10.1007/s10600-019-02849-7.Search in Google Scholar

Zhao, M., Zhao, Y.N., Li, J., Shi, Z.C., Wang, J.L., Wang, D., and Zhang, S.J. (2020). Chemical constituents from barks of Betula platyphylla. Chin. Tradit. Herb. Drugs 52: 4117–4123.Search in Google Scholar

Zhao, Y.N., Zhao, M., Li, J., Shi, Z.C., Wang, J.L., Wang, D., Sun, L.Q., and Zhang, S.J. (2021). A new nortriterpene from barks of Betula platyphylla. Chin. Tradit. Herb. Drugs 52: 6152–6156.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hf-2022-0016).


Received: 2022-01-22
Revised: 2022-03-03
Accepted: 2022-03-09
Published Online: 2022-04-29
Published in Print: 2022-07-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.3.2023 from https://www.degruyter.com/document/doi/10.1515/hf-2022-0016/html
Scroll Up Arrow