Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 7, 2013

Cross-talk between reproduction and energy homeostasis: central impact of estrogens, leptin and kisspeptin signaling

Casey C. Nestor, Martin J. Kelly and Oline K. Rønnekleiv

Abstract

The central nervous system receives hormonal cues (e.g., estrogens and leptin, among others) that influence reproduction and energy homeostasis. 17β-estradiol (E2) is known to regulate gonadotropin-releasing hormone (GnRH) secretion via classical steroid signaling and rapid non-classical membrane-initiated signaling. Because GnRH neurons are void of leptin receptors, the actions of leptin on these neurons must be indirect. Although it is clear that the arcuate nucleus of the hypothalamus is the primary site of overlap between these two systems, it is still unclear which neural network(s) participate in the cross-talk of E2 and leptin, two hormones essential for reproductive function and metabolism. Herein we review the progress made in understanding the interactions between reproduction and energy homeostasis by focusing on the advances made to understand the cellular signaling of E2 and leptin on three neural networks: kisspeptin, pro-opiomelanocortin (POMC) and neuropeptide Y (NPY). Although critical in mediating the actions of E2 and leptin, considerable work still remains to uncover how these neural networks interact in vivo.


Corresponding author: Oline K. Rønnekleiv, Department of Physiology and Pharmacology, 3181 SW Sam Jackson Park Rd – L334, Oregon Health and Science University, Portland, OR 97239, USA, Phone: +503 494-5835, Fax: +503 494-4352, E-mail:

Acknowledgements

The work from the author’s laboratories was supported by National Institutes of Health (NIH) grants NS43330, NS38809, DK68098. Also, Dr. Casey C Nestor was supported by the NIH training grant T32 DK007680. The authors would like to thank Martha A. Bosch for her skilled assistance with the illustrations presented in this manuscript.

Disclosure statement

The authors declare no conflict of financial or other interest.

References

1. Terasawa E, Rodriguez JS, Bridson WE, Wiegand SJ. Factors influencing the positive feedback action of estrogen upon luteinizing hormone surge in the ovariectomized guinea pig. Endocrinology 1979;104:680–6.10.1210/endo-104-3-680Search in Google Scholar

2. Levine JE, Norman RL, Gliessman PM, Oyama TT, Bangsberg DR, Spies HG. In vivo gonadotropin-releasing hormone release and serum luteinizing hormone measurements in ovariectomized, estrogen-treated Rhesus macaques. Endocrinology 1985;117:711–21.10.1210/endo-117-2-711Search in Google Scholar

3. Caraty A, Locatelli A, Martin GB. Biphasic response in the secretion of gonadotrophin-releasing hormone in ovariectomized ewes injected with oestradiol. J Endocrinol 1989;123:375–82.10.1677/joe.0.1230375Search in Google Scholar

4. Herbison AE. Multimodal influence of estrogen upon gonadotropin-releasing hormone neurons. Endocr Rev 1998;19:302–30.10.1210/edrv.19.3.0332Search in Google Scholar

5. Wagner EJ, Rønnekleiv OK, Bosch MA, Kelly MJ. Estrogen biphasically modifies hypothalamic GABAergic function concomitantly with negative and positive control of luteinizing hormone release. J Neurosci 2001;21:2085–93.10.1523/JNEUROSCI.21-06-02085.2001Search in Google Scholar

6. Kelly MJ, Rønnekleiv OK. Rapid membrane effects of estrogen in the central nervous system. In: Pfaff DW, editor. Hormones, Brain and Behavior. 3rd ed. San Diego: Academic Press; 2002:361–80.10.1016/B978-012532104-4/50047-0Search in Google Scholar

7. Rønnekleiv OK, Kelly MJ. Diversity of ovarian steroid signaling in the hypothalamus. Front Neuroendo 2005;26:65–84.10.1016/j.yfrne.2005.05.001Search in Google Scholar

8. Micevych P, Dominguez R. Membrane estradiol signaling in the brain. Front Neuroendo 2009;30:315–27.10.1016/j.yfrne.2009.04.011Search in Google Scholar

9. Razandi M, Pedram A, Greene GL, Levin ER. Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: Studies of ERα and ERβ expressed in Chinese hamster ovary cells. Mol Endo 1999;13:307–19.10.1210/mend.13.2.0239Search in Google Scholar

10. Boulware MI, Weick JP, Becklund BR, Kuo SP, Groth RD, Mermelstein PG. Estradiol activates group I and II metabotropic glutamate receptor signaling, leading to opposing influences on cAMP response element-binding protein. J Neurosci 2005;25:5066–78.10.1523/JNEUROSCI.1427-05.2005Search in Google Scholar

11. Pedram A, Razandi M, Levin ER. Nature of functional estrogen receptors at the plasma membrane. Mol Endo 2006;20: 1996–2009.10.1210/me.2005-0525Search in Google Scholar

12. Szegõ ÉM, Barabás K, Balog J, Szilágyi N, Korach KS, Juhász G, Abrahám IM. Estrogen induces estrogen receptor α-dependent cAMP response element-binding protein phosphorylation via mitogen activated protein kinase pathway in basal forebrain cholinergic neurons in vivo. J Neurosci 2006;26:4104–10.10.1523/JNEUROSCI.0222-06.2006Search in Google Scholar

13. Dewing P, Boulware MI, Sinchak K, Christensen A, Mermelstein PG, Micevych PE. Membrane estrogen receptor-α interactions with metabotropic glutamate receptor 1a modulate female sexual receptivity in rats. J Neurosci 2007;27:9294–300.10.1523/JNEUROSCI.0592-07.2007Search in Google Scholar

14. Bondar G, Kuo J, Hamid N, Micevych P. Estradiol-induced estrogen receptor-α trafficking. J Neurosci 2009;29:15323–30.10.1523/JNEUROSCI.2107-09.2009Search in Google Scholar

15. Couse JF, Korach KS. Estrogen receptor null mice: what have we learned and where will they lead us? Endocr Rev 1999;20:358–417.10.1210/edrv.20.3.0370Search in Google Scholar

16. Singer CA, Figueroa-Masot XA, Batchelor RH, Dorsa DM. The mitogen-activated protein kinase pathway mediates estrogen neuroprotection after glutamate toxicity in primary cortical neurons. J Neurosci 1999;19:2455–63.10.1523/JNEUROSCI.19-07-02455.1999Search in Google Scholar

17. Dubal DB, Zhu H, Yu J, Rau SW, Shughrue PJ, Merchenthaler I, Kindy MS, Wise PM. Estrogen receptor alpha, not beta, is a critical link in estradiol-mediated protection against brain injury. Proc Natl Acad Sci USA 2001;98:1952–7.10.1073/pnas.041483198Search in Google Scholar

18. Wade CB, Robinson S, Shapiro RA, Dorsa DM. Estrogen receptor (ER)alpha and ERbeta exhibit unique pharmacologic properties when coupled to activation of the mitogen-activated protein kinase pathway. Endocrinology 2001;142:2336–42.10.1210/endo.142.6.8071Search in Google Scholar

19. Abraham IM, Han SK, Todman MG, Korach KS, Herbison AE. Estrogen receptor beta mediates rapid estrogen actions on gonadotropin-releasing hormone neurons in vivo. J Neurosci 2003;23:5771–7.10.1523/JNEUROSCI.23-13-05771.2003Search in Google Scholar

20. Boulware MI, Kordasiewicz H, Mermelstein PG. Caveolin proteins are essential for distinct effects of membrane estrogen receptors in neurons. J Neurosci 2007;27:9941–50.10.1523/JNEUROSCI.1647-07.2007Search in Google Scholar

21. Smith AW, Bosch MA, Wagner EJ, Rønnekleiv OK, Kelly MJ. The membrane estrogen receptor ligand STX rapidly enhances GABAergic signaling in NPY/AgRP neurons: Role in mediating the anorexigenic effects of 17ß-estradiol. Am J Physiol Endocrinol Metab 2013;305:E632–40.10.1152/ajpendo.00281.2013Search in Google Scholar

22. Gu Q, Korach KS, Moss RL. Rapid action of 17beta-estradiol on kainate-induced currents in hippocampal neurons lacking intracellular estrogen receptors. Endocrinology 1999;140:660–6.10.1210/endo.140.2.6500Search in Google Scholar

23. Toran-Allerand CD. Minireview: a plethora of estrogen receptors in the brain: where will it end? Endocrinology 2004;145: 1069–74.10.1210/en.2003-1462Search in Google Scholar

24. Toran-Allerand CD. Estrogen and the brain: beyond ER-α, ER-β and 17β-estradiol. Ann NY Acad Sci 2005;1052:136–44.10.1196/annals.1347.009Search in Google Scholar

25. Qiu J, Bosch MA, Tobias SC, Grandy DK, Scanlan TS, Rønnekleiv OK, Kelly MJ. Rapid signaling of estrogen in hypothalamic neurons involves a novel G protein-coupled estrogen receptor that activates protein kinase C. J Neurosci 2003;23:9529–40.10.1523/JNEUROSCI.23-29-09529.2003Search in Google Scholar

26. Qiu J, Bosch MA, Tobias SC, Krust A, Graham S, Murphy S, Korach KS, Chambon P, Scanlan TS, Rønnekleiv OK, Kelly MJ. A G protein-coupled estrogen receptor is involved in hypothalamic control of energy homeostasis. J Neurosci 2006;26:5649–55.10.1523/JNEUROSCI.0327-06.2006Search in Google Scholar

27. Noel SD, Keen KL, Baumann DI, Filardo EJ, Terasawa E. Involvement of G-protein couple receptor 30 (GPR30) in rapid action of estrogen in primate LHRH neurons. Mol Endo 2009;3:349–59.10.1210/me.2008-0299Search in Google Scholar

28. Zhang C, Kelly MJ, Rønnekleiv OK. 17β-estradiol rapidly increases adenosine 5′-triphosphate-sensitive potassium channel activity in gonadotropin-releasing hormone neurons via a protein kinase signaling pathway. Endocrinology 2010;151:4477–84.10.1210/en.2010-0177Search in Google Scholar

29. Kenealy BP, Keen KL, Rønnekleiv OK, Terasawa E. STX, a novel nonsteroidal estrogenic compound, induces rapid action in primate GnRH neuronal calcium dynamics and peptide release. Endocrinology 2011;152:182–91.10.1210/en.2011-0097Search in Google Scholar

30. Lagrange AH, Rønnekleiv OK, Kelly MJ. Modulation of G protein-coupled receptors by an estrogen receptor that activates protein kinase A. Mol Pharmacol 1997;51:605–12.10.1124/mol.51.4.605Search in Google Scholar

31. Milewicz A, Bidzinska B, Mikulski E, Demissie M, Tworowska U. Influence of obesity and menopausal status on serum leptin, cholecystokinin, galanin and neuropeptide Y levels. Gynecol Endocrinology 2000;14:196–203.10.3109/09513590009167682Search in Google Scholar

32. Geary N. Estradiol, CCK and satiation. Peptides 2001;22:1251–63.10.1016/S0196-9781(01)00449-1Search in Google Scholar

33. Poehlman ET. Menopause, energy expenditure, and body composition. Acta Obstet Gynecol Scand 2002;81:603–11.10.1034/j.1600-0412.2002.810705.xSearch in Google Scholar

34. Geary N. The estrogenic inhibition of eating. In: Stricker EM, Woods SC, editors. Handbook of behavioral neurobiology. 14, Neurobiology of food and fluid intake. New York, NY: Kluwer Academic/Plenum; 2007:307–345.10.1007/0-306-48643-1_12Search in Google Scholar

35. Colvin GB, Sawyer CH. Induction of running activity by intracerebral implants of estrogen in overiectomized rats. Neuroendo 1969;4:309–20.10.1159/000121762Search in Google Scholar

36. Ahdieh HB, Wade GN. Effects of hysterectomy on sexual receptivity, food intake, running wheel activity, and hypothalamic estrogen and progestin receptors in rats. J Comp Physiol Psychol 1982;96:886–92.10.1037/0735-7036.96.6.886Search in Google Scholar

37. Shimomura Y, Shimizu H, Takahashi M, Sato N, Uehara Y, Fukatsu A, Negishi M, Kobayashi I, Kobayashi S. The significance of decreased ambulatory activity during the generation by long-term observation of obesity in ovariectomized rats. Physiol Behav 1990;47:155–59.10.1016/0031-9384(90)90055-9Search in Google Scholar

38. Asarian L, Geary N. Cyclic estradiol treatment normalizes body weight and restores physiological patterns of spontaneous feeding and sexual receptivity in ovariectomized rats. Horm Behav 2002;42:461–71.10.1006/hbeh.2002.1835Search in Google Scholar

39. Roepke TA, Xue C, Bosch MA, Scanlan TS, Kelly MJ, Rønnekleiv OK. Genes associated with membrane-initiated signaling of estrogen and energy homeostasis. Endocrinology 2008;149:6113–24.10.1210/en.2008-0769Search in Google Scholar

40. Czaja JA, Goy RW. Ovarian hormones and food intake in female guinea pigs and rhesus monkeys. Horm Behav 1975;6:329–49.10.1016/0018-506X(75)90003-3Search in Google Scholar

41. Butera PC, Czaja JA. Intracranial estradiol in ovariectomized guinea pigs: effects on ingestive behaviors and body weight. Brain Res 1984;322:41–8.10.1016/0006-8993(84)91178-8Search in Google Scholar

42. Czaja JA. Sex differences in the activational effects of gonadal hormones on food intake and body weight. Physiol Behav 1984;33:553–8.10.1016/0031-9384(84)90370-6Search in Google Scholar

43. McCaffrey TA, Czaja JA. Diverse effects of estradiol-17 beta: concurrent suppression of appetite, blood pressure and vascular reactivity in conscious, unrestrained animals. Physiol Behav 1989;45:649–57.10.1016/0031-9384(89)90086-3Search in Google Scholar

44. Carr MC. The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab 2003;88:2404–11.10.1210/jc.2003-030242Search in Google Scholar

45. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the women′s health initiative randomized controlled trial. J Am Med Assoc 2002;288:321–33.10.1001/jama.288.3.321Search in Google Scholar

46. Wassertheil-Smoller S, Hendrix SL, Limacher M, Heiss G, Kooperberg C, Baird A, Kotchen T, Curb JD, Black H, Rossouw JE, Aragaki A, Safford M, Stein E, Laowattana S, Mysiw WJ. Effect of estrogen plus progestin on stroke in postmenopausal women: the women′s health initiative: a randomized trial. J Am Med Assoc 2003;289:2673–84.10.1001/jama.289.20.2673Search in Google Scholar

47. Qiu J, Xue C, Bosch MA, Murphy JG, Fan W, Rønnekleiv OK, Kelly MJ. Serotonin 5HT2c receptor signaling in hypothalamic POMC neurons: role in energy homeostasis in females. Mol Pharm 2007;72:885–96.10.1124/mol.107.038083Search in Google Scholar

48. Thornton JE, Loose MD, Kelly MJ, Rønnekleiv OK. Effects of estrogen on the number of neurons expressing β-endorphin in the medial basal hypothalamus of the female guinea pig. J Comp Neurol 1994;341:68–77.10.1002/cne.903410107Search in Google Scholar

49. Bethea CL, Hess DL, Widmann AA, Henningfeld JM. Effects of progesterone on prolactin, hypothalamic beta-endorphin, hypothalamic substance P, and midbrain serotonin in guinea pigs. Neuroendo 1995;61:695–703.10.1159/000126897Search in Google Scholar

50. Shimizu H, Ohtani K, Kato Y, Tanaka Y, Mori M. Withdrawal of estrogen increases hypothalamic neuropeptide Y (NPY)mRNA expression in ovariectomized obese rat. Neurosci Lett 1996;204:81–4.10.1016/0304-3940(96)12322-3Search in Google Scholar

51. Ingalls AM, Dickie MM, Snell GD. Obese, a new mutation in the house mouse. J Hered 1950;41:317–8.10.1093/oxfordjournals.jhered.a106073Search in Google Scholar

52. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:425–32.10.1038/372425a0Search in Google Scholar

53. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995;269:543–6.10.1126/science.7624777Search in Google Scholar

54. Sinha MK, Opentanova I, Ohannesian JP, Kolaczynski JW, Heiman ML, Hale J, Becker GW, Bowsher RR, Stephens TW, Caro JF. Evidence of free and bound leptin in human circulation. Studies in lean and obese subjects and during short-term fasting. J Clin Invest 1996;98:1277–82.10.1172/JCI118913Search in Google Scholar

55. Huang L, Wang Z, Li C. Modulation of circulating leptin levels by its soluble receptor. J Biol Chem 2001;276:6343–9.10.1074/jbc.M009795200Search in Google Scholar

56. Lammert A, Kiess W, Bottner A, Glasow A, Kratzsch J. Soluble leptin receptor represents the main leptin binding activity in human blood. Biochem Biophys Res Commun 2001;283:982–8.10.1006/bbrc.2001.4885Search in Google Scholar

57. Chan JL, Mantzoros CS. Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorrexia nervosa. Lancet 2005;366:74–85.10.1016/S0140-6736(05)66830-4Search in Google Scholar

58. Meister B, Ceccatelli S, Hökfelt T, Andén N-E, Andén M, Theodorsson E. Neurotransmitters, neuropeptides and binding sites in the rat mediobasal hypothalamus: effects of monosodium glutamate (MSG)lesions. Exp Brain Res 1989;76:343–68.10.1007/BF00247894Search in Google Scholar

59. Bergen HT, Mizuno TM, Taylor J, Mobbs CV. Hyperphagia and weight gain after gold-thioglucose: relation to hypothalamic neuropeptide Y and proopiomelanocortin. Endocrinology 1998;139:4483–8.10.1210/endo.139.11.6324Search in Google Scholar

60. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G. Leptin regulates bone formation via the sympathetic nervous system. Cell 2002;111:305–17.10.1016/S0092-8674(02)01049-8Search in Google Scholar

61. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield A, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore K, Smutko JS, Mays GG, Woolf EA, Monroe CA, Tepper RI. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995;83:1263–71.10.1016/0092-8674(95)90151-5Search in Google Scholar

62. Myers MG, Jr. Leptin receptor signaling and the regulation of mammalian physiology. Recent Prog Horm Res 2004;59: 287–304.10.1210/rp.59.1.287Search in Google Scholar

63. Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Morgan PJ, Trayhurn P. Coexpression of leptin receptor and preproneuropeptide Y mRNA in arcuate nucleus of mouse hypothalamus. J Neuroendocrinol 1996;8:733–5.10.1046/j.1365-2826.1996.05161.xSearch in Google Scholar

64. Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG. Identification of targets of leptin action in rat hypothalamus. J Clin Invest 1996;98:1101–6.10.1172/JCI118891Search in Google Scholar

65. Zamorano PL, Mahesh VB, De Sevilla LM, Chorich LP, Bhat GK, Brann DW. Expression and localization of the leptin receptor in endocrine and neuroendocrine tissues of the rat. Neuroendo 1997;65:223–8.10.1159/000127276Search in Google Scholar

66. Bjørbæk C, Uotani S, da Silva B, Flier JS. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem 1997;272:32686–95.10.1074/jbc.272.51.32686Search in Google Scholar

67. Håkansson ML, Brown H, Ghilardi N, Skoda RC, Meister B. Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J Neurosci 1998;18:559–72.10.1523/JNEUROSCI.18-01-00559.1998Search in Google Scholar

68. Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB. Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 1998;395:535–47.10.1002/(SICI)1096-9861(19980615)395:4<535::AID-CNE9>3.0.CO;2-2Search in Google Scholar

69. Meister B, Håkansson ML. Leptin receptors in hypothalamus and circumventricular organs. Clin Exp Pharmacol Physiol 2001;28:610–7.10.1046/j.1440-1681.2001.03493.xSearch in Google Scholar

70. Cohen P, Zhao C, Cai X, Montez JM, Rohani SC, Feinstein P, Mombaerts P, Friedman JM. Selective deletion of leptin receptor in neurons leads to obesity. J Clin Invest 2001;108:1113–21.10.1172/JCI200113914Search in Google Scholar

71. Kowalski TJ, Liu SM, Leibel RL, Chua SC, Jr. Transgenic complementation of leptin-receptor deficiency. I. rescue of the obesity/diabetes phenotype of LEPR-null mice expressing a LEPR-B transgene. Diabetes 2001;50:425–35.10.2337/diabetes.50.2.425Search in Google Scholar

72. de Luca C, Kowalski TJ, Zhang Y, Elmquist JK, Lee C, Kilimann MW, Ludwig T, Liu S-M, Chua SC, Jr. Complete rescue of obesity, diabetes, and infertility in db/db mice by neuron-specific LEPR-B transgenes. J Clin Invest 2005;115:3484–93.10.1172/JCI24059Search in Google Scholar

73. Gao Q, Wolfgang MJ, Neschen S, Morino K, Horvath TL, Shulman GI, Fu X-Y. Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc Natl Acad Sci USA 2004;101:4661–6.10.1073/pnas.0303992101Search in Google Scholar

74. Banks AS, Davis SM, Bates SH, Myers MG, Jr. Activation of downstream signals by the long form of the leptin receptor. J Biol Chem 2000;275:14563–72.10.1074/jbc.275.19.14563Search in Google Scholar

75. Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, Banks AS, Lavery HJ, Haq AK, Maratos-Flier E, Neel BG, Schwartz MW, Myers MG, Jr. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 2003;421:856–9.10.1038/nature01388Search in Google Scholar

76. Bates SH, Dundon TA, Seifert M, Carlson M, Maratos-Flier E, Myers MG, Jr. LRb-STAT3 signaling is required for the neuroendocrine regulation of energy expenditure by leptin. Diabetes 2008;53:3067–73.10.2337/diabetes.53.12.3067Search in Google Scholar

77. Buettner C, Pocai A, Muse ED, Etgen AM, Myers MG, Jr., Rossetti L. Critical role of STAT3 in leptin′s metabolic actions. Cell Metabolism 2006;4:49–60.10.1016/j.cmet.2006.04.014Search in Google Scholar

78. Björnholm M, Münzberg H, Leshan RL, Villanueva EC, Bates SH, Louis GW, Jones JC, Ishida-Takahaski R, Bjørbæk C, Myers MG, Jr. Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. J Clin Invest 2008;117:1354–60.10.1172/JCI30688Search in Google Scholar

79. Moenter SM, Brand RC, Karsch FJ. Dynamics of gonadotropin-releasing hormone (GnRH) secretion during the GnRH surge: Insights into the mechanism of GnRH surge induction. Endocrinology 1992;130:2978–84.10.1210/endo.130.5.1572305Search in Google Scholar

80. Chappell PE, Levine JE. Stimulation of gonadotropin-releasing hormone surges by estrogen. I. Role of hypothalamic progesterone receptors. Endocrinology 2000;141:1477–85.10.1210/endo.141.4.7428Search in Google Scholar

81. Bosch MA, Xue C, Ronnekleiv OK. Kisspeptin expression in guinea pig hypothalamus: Effects of 17β-estradiol. J Comp Neurol 2012;520:2143–62.10.1002/cne.23032Search in Google Scholar

82. McDevitt MA, Glidewell-Kenney C, Jimenez MA, Ahearn PC, Weiss J, Jameson JL, Levine JE. New insights into the classical and non-classical actions of estrogen: evidence from estrogen receptor knock-out and knock-in mice. Mol Cell Endocrinol 2008;290:24–30.10.1016/j.mce.2008.04.003Search in Google Scholar

83. Glidewell-Kenney C, Weiss J, Hurley LA, Levine JE, Jameson JL. Estrogen receptor α signaling pathways differentially regulate gonadrotropin subunit gene expression and serum follicle-stimulating hormone in the female mouse. Endocrinology 2008;149:4168–76.10.1210/en.2007-1807Search in Google Scholar

84. Wintermantel TM, Campbell RE, Porteous R, Bock D, Gröne H-J, Todman MG, Korach KS, Greiner E, Perez CA, Schultz G, Herbison AE. Definition of estrogen receptor pathway critical for estrogen positive feedback to gonadotropin-releasing hormone neurons and fertility. Neuron 2006;52:271–80.10.1016/j.neuron.2006.07.023Search in Google Scholar

85. Chu Z, Andrade J, Shupnik MA, Moenter SM. Differential regulation of gonadotropin-releasing hormone neuron activity and membrane properties by acutely applied estradiol: dependence on dose and estrogen receptor subtype. J Neurosci 2009;29:5616–27.10.1523/JNEUROSCI.0352-09.2009Search in Google Scholar

86. Handa RJ, Ogawa S, Wang JM, Herbison AE. Roles for oestrogen receptor β in adult brain function. J Neuroendocrinol 2012;24:160–73.10.1111/j.1365-2826.2011.02206.xSearch in Google Scholar

87. Christian CA, Glidewell-Kenney C, Jameson JL, Moenter SM. Classical estrogen receptor α signaling mediates negative and postive feedback on gonadotropin-releasing hormone neuron firing. Endocrinology 2008;149:5328–34.10.1210/en.2008-0520Search in Google Scholar

88. Han S-K, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, Clifton DK, Steiner RA, Herbison AE. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 2005;25:11349–56.10.1523/JNEUROSCI.3328-05.2005Search in Google Scholar

89. Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA. Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci 2006;26:6687–94.10.1523/JNEUROSCI.1618-06.2006Search in Google Scholar

90. Shughrue PJ, Lane MV, Merchenthaler I. Comparative distribution of estrogen receptor-α and -β mRNA in the rat central nervous system. J Comp Neurol 1997;388:507–25.10.1002/(SICI)1096-9861(19971201)388:4<507::AID-CNE1>3.0.CO;2-6Search in Google Scholar

91. Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 2005;146:3686–92.10.1210/en.2005-0488Search in Google Scholar

92. Gu G, Rojo AA, Zee MC, Yu J, Simerly RB. Hormonal regulation of CREB phosphorylation in the anteroventral periventricular nucleus. J Neurosci 1996;16:3035–44.10.1523/JNEUROSCI.16-09-03035.1996Search in Google Scholar

93. Kesner JS, Wilson RC, Kaufman J-M, Hotchkiss J, Chen Y, Yamamoto H, Pardo RR, Knobil E. Unexpected responses of the hypothalamic gonadotropin-releasing hormone "pulse generator" to physiological estradiol inputs in the absence of the ovary. Proc Natl Acad Sci USA 1987;84:8745–9.10.1073/pnas.84.23.8745Search in Google Scholar

94. Condon TP, Dykshoorn-Bosch MA, Kelly MJ. Episodic LH release in the ovariectomized guinea pig: Rapid inhibition by estrogen. Biol Repro 1988;38:121–6.10.1095/biolreprod38.1.121Search in Google Scholar

95. Kelly MJ, Rønnekleiv OK, Eskay RL. Identification of estrogen-responsive LHRH neurons in the guinea pig hypothalamus. Brain Res Bull 1984;12:399–407.10.1016/0361-9230(84)90112-6Search in Google Scholar

96. Condon TP, Rønnekleiv OK, Kelly MJ. Estrogen modulation of the α1-adrenergic response of hypothalamic neurons. Neuroendo 1989;50:51–8.10.1159/000125201Search in Google Scholar

97. Lagrange AH, Rønnekleiv OK, Kelly MJ. Estradiol-17β and μ-opioid peptides rapidly hyperpolarize GnRH neurons: A cellular mechanism of negative feedback? Endocrinology 1995;136:2341–4.10.1210/endo.136.5.7720682Search in Google Scholar

98. Zhang C, Bosch MA, Levine JE, Rønnekleiv OK, Kelly MJ. Gonadotropin-releasing hormone neurons express KATP channels that are regulated by estrogen and responsive to glucose and metabolic inhibition. J Neurosci 2007;27:10153–64.10.1523/JNEUROSCI.1657-07.2007Search in Google Scholar

99. Ajala OM, Ogunro PS, Elusanmi GF, Ogunyemi OE, Bolarinde AA. Changes in serum leptin during phases of menstrual cycle of fertile women: relationship to age groups and fertility. Int J Endocrinol Metab 2013;11:27–33.Search in Google Scholar

100. Finn PD, Cunningham MJ, Pau K-YF, Spies HG, Clifton DK, Steiner RA. The stimulatory effect of leptin on the neuroendocrine reproductive axis of the monkey. Endocrinology 1998;139:4652–62.10.1210/endo.139.11.6297Search in Google Scholar

101. Woller M, Tessmer S, Neff D, Nguema AA, Van Roo B, Waechter-Brulla D. Leptin stimulates gonadotropin releasing hormone release from cultured intact hemihypothalami and enzymatically dispersed neurons. Proc Soc Exp Biol Med 2001;226:591–6.10.1177/153537020122600613Search in Google Scholar

102. Quennell JH, Mulligan AC, Tups A, Liu X, Phipps SJ, Kemp CJ, Herbison AE, Grattan DR, Anderson GM. Leptin indirectly reulates gonadotropin-releasing hormone neuronal function. Endo 2009;150:2805–12.Search in Google Scholar

103. Louis GW, Greenwald-Yarnell M, Phillips R, Coolen LM, Lehman MN, Myers MG, Jr. Molecular mapping of the neural pathways linking leptin to the neuroendocrine reproductive axis. Endocrinology 2011;152:2302–10.10.1210/en.2011-0096Search in Google Scholar

104. Qiu J, Fang Y, Bosch MA, Rønnekleiv OK, Kelly MJ. Guinea pig kisspeptin neurons are depolarized by leptin via activation of TRPC channels. Endocrinology 2011;152:1503–14.10.1210/en.2010-1285Search in Google Scholar

105. Lee J-H, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 1996;88: 1731–7.10.1093/jnci/88.23.1731Search in Google Scholar

106. De Roux N, Genin E, Carel J-C, Matsuda F, Chaussain J-L, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS 1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 2003;100:10972–6.10.1073/pnas.1834399100Search in Google Scholar

107. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O′Rahilly S, Carlton MB, Crowley WF, Aparicio SA, Colledge WH. The GPR54 gene as a regulator of puberty. N Engl J Med 2003;349:1614–27.10.1056/NEJMoa035322Search in Google Scholar

108. Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden J-M, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 2001;276:34631–6.10.1074/jbc.M104847200Search in Google Scholar

109. Stafford LJ, Xia C, Ma W, Cai Y, Liu M. Identification and characterization of mouse metastasis-suppressor KiSS1 and its G-protein-couple receptor. Cancer Research 2002;62: 5399–404.Search in Google Scholar

110. Bosch MA, Tonsfeldt KJ, Ronnekleiv OK. mRNA expression of ion channels in GnRH neurons: subtype-specific regulation by 17β-Estradiol. J Mol Cell Endocrinol 2013;367:85–97.10.1016/j.mce.2012.12.021Search in Google Scholar

111. Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 2004;145:4073–7.10.1210/en.2004-0431Search in Google Scholar

112. Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, Gottsch ML, Clifton DK, Steiner RA. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuronendocrinology 2004;80:264–72.10.1159/000083140Search in Google Scholar

113. Thompson EL, Patterson M, Murphy KG, Smith KL, Dhillo WS, Todd JF, Ghatei MA, Bloom SR. Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic-pituitary-gonadal axis. J Neuroendocrinol 2004;16:850–8.10.1111/j.1365-2826.2004.01240.xSearch in Google Scholar

114. Kinoshita M, Tsukamura H, Adachi S, Matsui H, Uenoyama Y, Iwata K, Yamada S, Inoue K, Ohtaki T, Matsumoto H, Maeda K-I. Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats. Endocrinology 2005;146:4431–6.10.1210/en.2005-0195Search in Google Scholar

115. Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MB, Colledge WH, Caraty A, Aparicio SA. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci USA 2005;102:1761–6.10.1073/pnas.0409330102Search in Google Scholar

116. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 2001;411:613–7.10.1038/35079135Search in Google Scholar

117. Zhang C, Roepke TA, Kelly MJ, Rønnekleiv OK. Kisspeptin depolarizes gonadotropin-releasing hormone neurons through activation of TRPC-like cationic channels. J Neurosci 2008;28:4423–34.10.1523/JNEUROSCI.5352-07.2008Search in Google Scholar

118. Pielecka-Fortuna J, Chu Z, Moenter SM. Kisspeptin acts directly and indirectly to increase gonadotropin-releasing hormone neuron activity and its effects are modulated by estradiol. Endocrinology 2008;149:1979–86.10.1210/en.2007-1365Search in Google Scholar

119. Liu X, Lee K, Herbison AE. Kisspeptin excites gonadotropin-releasing hormone (GnRH) neurons through a phospholipase C/calcium-dependent pathway regulating multiple ion channels. Endocrinology 2008;149:4605–14.10.1210/en.2008-0321Search in Google Scholar

120. Constantin S, Caligioni CS, Stojilkovic S, Wray S. Kisspeptin-10 facilitates a plasma membrane-driven calcium oscillator in gonadotropin-releasing hormone-1 neurons. Endocrinology 2009;150:1400–12.10.1210/en.2008-0979Search in Google Scholar

121. Kroll H, Bolsover S, Hsu J, Kim S-H, Bouloux P-M. Kisspeptin-evoked calcium signals in isolated primary rat gonadotropin-releasing hormone neurones. Neuroendo 2011;93:114–20.10.1159/000321678Search in Google Scholar

122. Zhang C, Bosch MA, Rønnekleiv OK, Kelly MJ. Kisspeptin activation of TRPC4 channels in female GnRH neurons requires PIP2 depletion and cSrc kinase activation. Endocrinology 2013;154:2772–83.10.1210/en.2013-1180Search in Google Scholar

123. Zhang X-B, Spergel DJ. Kisspeptin inhibits high-voltage activated Ca2+ channels in GnRH neurons via multiple Ca2+ influx and release pathways. Neuroendo 2012;96:68–80.10.1159/000335985Search in Google Scholar

124. Albert AP. Gating mechanisms of canonical transient receptor potential channel proteins: role of phosphoinositols and diacylglycerol. Adv Exp Med Biol 2011;704:391–411.10.1007/978-94-007-0265-3_22Search in Google Scholar

125. Large WA, Saleh SN, Albert AP. Role of phosphoinositol 4, 5-bisphosphate and diacylglycerol in regulating native TRPC channel proteins in vascular smooth muscle. Cell Calcium 2009;45:574–82.10.1016/j.ceca.2009.02.007Search in Google Scholar

126. Lemonnier L, Trebak M, Putney JW, Jr. Complex regulation of TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositaol-4,5-bisphosphate. Cell Calcium 2008;43:506–14.10.1016/j.ceca.2007.09.001Search in Google Scholar

127. Trebak M, Lemonnier L, DeHaven WI, Wedel BJ, Bird GS, Putney JW, Jr. Complex functions of phosphatidylinositol 4,5-bisphosphate in regulation of TRPC5 cation channels. Eur J Physiol 2008;457:757–69.10.1007/s00424-008-0550-1Search in Google Scholar

128. Otsuguro K-I, Tang J, Tang Y, Xiao R, Freichel M, Tsvilovskyy V, Ito S, Flockerzi V, Zhu MX, Zholos AV. Isoform-specific inhibition of TRPC4 channel by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 2008;283:10026–36.10.1074/jbc.M707306200Search in Google Scholar

129. Nakanishi S, Catt KJ, Balla T. A wortmannin-sensitive phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of inositolphospholipids. Proc Natl Acad Sci USA 1995;92:5317–21.10.1073/pnas.92.12.5317Search in Google Scholar

130. Shyng S-L, Nichols CG. Membrane phospholipid control of nucleotide sensitivity of K-ATP channels. Science 1998;282: 1138–41.10.1126/science.282.5391.1138Search in Google Scholar

131. Suh B-C, Hille B. Regulation of KCNQ channels by manipulation of phosphoinositides. J Physiol 2007;582.3:911–96.10.1113/jphysiol.2007.132647Search in Google Scholar

132. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 2012;262:5592–5.10.1016/S0021-9258(18)45614-1Search in Google Scholar

133. Hanke JH, Gardner JP, Dow RL, Changelian PS, Brissette WH, Weringer EJ, Pollok BA, Connelly PA. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and Fyn T-dependent T cell activation. J Biol Chem 2012;271:695–701.10.1074/jbc.271.2.695Search in Google Scholar

134. Lawrence DS, Niu J. Protein Kinase inhibitors: the Tyrosine-specific Protein Kinases. Pharmacol Ther 2012;77:81–114.Search in Google Scholar

135. Odell AF, Scott JL, Van Helden DF. Epidermal growth factor induces tyrosine phosphorylation, membrane insertion, and activation of transient receptor potential channel 4. J Biol Chem 2012;280:37974–87.10.1074/jbc.M503646200Search in Google Scholar

136. Rønnekleiv OK, Kelly MJ. Kisspeptin excitation of GnRH neurons. Adv Exp Med Biol 2013;784:113–31.10.1007/978-1-4614-6199-9_6Search in Google Scholar

137. Kato M, Tanaka N, Usui S, Sakuma Y. SK channel blocker apamin inhibits slow afterhyperpolarization currents in rat gonadotropin-releasing hormone neurones. J Physiol 2006;574.2:431–42.10.1113/jphysiol.2006.110155Search in Google Scholar

138. Lee K, Duan W, Sneyd J, Herbison AE. Two slow calcium-activated afterhyperpolarization currents control burst firing dynamics in gonadotropin-releasing hormone neurons. J Neurosci 2010;30:6214–24.10.1523/JNEUROSCI.6156-09.2010Search in Google Scholar

139. Zhang C, Ronnekleiv OK, Kelly MJ. Kisspeptin inhibits a slow afterhyperpolarization current via protein kinase C and reduces spike-frequency adaptation in GnRH neurons. Am J Physiol Endocrinol Metab 2013;304:E1237–44.10.1152/ajpendo.00058.2013Search in Google Scholar

140. Adachi S, Yamada S, Takatsu Y, Matsui H, Kinoshita M, Takase K, Sugiura H, Ohtaki T, Matsumoto H, Uenoyama Y, Tsukamura H, Inoue K, Maeda K-I. Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J Reprod Dev 2007;53:367–78.10.1262/jrd.18146Search in Google Scholar

141. Clarkson J, Herbison AE. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 2006;147:5817–25.10.1210/en.2006-0787Search in Google Scholar

142. Franceschini I, Lomet D, Cateau M, Delsol G, Tillet Y, Caraty A. Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha. Neurosci Lett 2006;401:225–30.10.1016/j.neulet.2006.03.039Search in Google Scholar

143. Smith JT, Clay CM, Caraty A, Clarke IJ. KiSS-1 messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season. Endocrinology 2007;148:1150–7.10.1210/en.2006-1435Search in Google Scholar

144. Rometo AM, Krajewski SJ, Voytko ML, Rance NE. Hypertrophy and increased kisspeptin gene expression in the hypothalamic infunibular nucleus of postmenopausal women and ovariectomized monkeys. J Clin Endo Metab 2007;92:2744–50.10.1210/jc.2007-0553Search in Google Scholar

145. Hrabovszky E, Ciofi P, Vida B, Horvath MC, Keller E, Caraty A, Bloom SR, Ghatei MA, Dhillo WS, Liposits Z, Kallo I. The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons. Eur J Neurosci 2010;13:1984–98.10.1111/j.1460-9568.2010.07239.xSearch in Google Scholar

146. Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci USA 2005;102:2129–34.10.1073/pnas.0409822102Search in Google Scholar

147. Clarkson J, d’Anglemont de Tassigny X, Moreno AS, Colledge WH, Herbison AE. Kisspeptin-GPR54 signaling is essential for preovulatory gonadotropin-releasing hormone neuron activation and the luteinizing hormone surge. J Neurosci 2008;28:8691–7.10.1523/JNEUROSCI.1775-08.2008Search in Google Scholar

148. Lehman MN, Hileman SM, Goodman RL. Neuroanatomy of the kisspeptin signaling system in mammals: comparative and developmental aspects. Adv Exp Med Biol 2013;784:27–62.10.1007/978-1-4614-6199-9_3Search in Google Scholar

149. Gottsch ML, Navarro VM, Zhao Z, Glidewell-Kenney C, Weiss J, Jameson JL, Clifton DK, Levine JE, Steiner RA. Regulation of Kiss1 and dynorphin gene expression in the murine brain by classical and nonclassical estrogen receptor pathways. J Neurosci 2009;29:9390–5.10.1523/JNEUROSCI.0763-09.2009Search in Google Scholar

150. Navarro VM, Gottsch ML, Chavkin C, Okamura H, Clifton DK, Steiner RA. Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. J Neurosci 2009;29: 11859–66.10.1523/JNEUROSCI.1569-09.2009Search in Google Scholar

151. Castellano JM, Navarro VM, Fernández-Fernández R, Nogueiras R, Tovar S, Roa J, Vazquez MJ, Vigo E, Casanueva FF, Aguilar E, Pinilla L, Dieguez C, Tena-Sempere M. Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the repoductive axis by kisspeptin in undernutrition. Endocrinology 2005;146:3917–25.10.1210/en.2005-0337Search in Google Scholar

152. Ahmed HH, Khalil WK, Shousha WG, El-Sayed ES, Eskander EF, Selim RE. Effect of food restriction on reproductive-related genes and reproductive hormones in adult female rats. Eur Rev Med Pharmacol Sci 2012;16:1680–90.Search in Google Scholar

153. Matsuzaki T, Iwasa T, Kinouchi R, Yoshida S, Murakami M, Gereltsetseg G, Yamamoto S, Kuwahara A, Yasui T, Irahara M. Fasting reduces the kiss1 mRNA levels in the caudal hypothalamus of gonadally intact adult female rats. Endocr J 2011;58:1003–12.10.1507/endocrj.K11E-131Search in Google Scholar

154. Luque RM, Kineman RD, Tena-Sempere M. Regulation of hypothalamic expression of KiSS-1 and GPR54 genes by metabolic factors: analyses using mouse models and a cell line. Endo 2007;148:4601–11.10.1210/en.2007-0500Search in Google Scholar

155. True C, Kirigiti MA, Kievit P, Grove KL, Smith MS. Leptin is not the critical signal for kisspeptin or luteinising hormone restoration during exit from negative energy balance. J Neuroendocrinol 2011;23:1099–112.10.1111/j.1365-2826.2011.02144.xSearch in Google Scholar

156. Backholer K, Smith JT, Rao A, Pereira A, Iqbal J, Ogawa S, Li Q, Clarke IJ. Kisspeptin cells in the ewe brain respond to leptin and communicate with neuropeptide Y and proopiomelanocortin cells. Endocrinology 2010;151:2233–43.10.1210/en.2009-1190Search in Google Scholar

157. Smith JT, Acohido BV, Clifton DK, Steiner RA. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol 2006;18:298–303.10.1111/j.1365-2826.2006.01417.xSearch in Google Scholar

158. Quennell JH, Howell CS, Roa J, Augustine A, Grattan DR, Anderson GM. Leptin deficiency and diet-induced obesity reduce hypothalamic kisspeptin expression in mice. Endocrinology 2011;152:1541–50.10.1210/en.2010-1100Search in Google Scholar

159. Cravo RM, Frazao R, Perello M, Osborne-Lawrence S, Williams KW, Zigman JM, Vianna C, Elias CF. Leptin signaling in Kiss1 neurons arises after pubertal development. PLos One 2013;8:e58698.10.1371/journal.pone.0058698Search in Google Scholar

160. Young JI, Otero V, Cerdán MG, Falzone TL, Chen EC, Low MJ, Rubinstein M. Authentic cell-specific and developmentally regulated expression of proopiomelanocortin genomic fragments in hypothalamic and hindbrain neurons of transgenic mice. J Neurosci 1998;18:6631–40.10.1523/JNEUROSCI.18-17-06631.1998Search in Google Scholar

161. Bradly LS, Smith MA, Gold PW, Herkenham M. Altered expression of hypothalamic neuropeptide mRNAs in food-restricted and food-deprived rats. Neuroendo 1990;52:441–7.10.1159/000125626Search in Google Scholar

162. Bergendahl M, Wiemann JN, Clifton DK, Huhtaniemi I, Steiner RA. Short-term starvation decreases POMC mRNA but does not alter GnRH mRNA in the brain of adult male rats. Neuroendo 1992;56:913–20.10.1159/000126324Search in Google Scholar

163. Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P, Baskin DG. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 1997;46:2119–23.10.2337/diab.46.12.2119Search in Google Scholar

164. Mizuno TM, Kleopoulos SP, Bergen HT, Roberts JL, Priest CA, Mobbs CV. Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting in ob/ob and db/db mice, but is stimulated by leptin. Diabetes 1998;47:294–7.10.2337/diab.47.2.294Search in Google Scholar

165. Yaswen L, Diehl N, Brennan MB, Hochgeschwender U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nature Med 1999;5: 1066–70.10.1038/12506Search in Google Scholar

166. Gropp E, Shanabrough M, Borok E, Xu AW, Janoschek R, Buch T, Plum L, Balthasar N, Hampel B, Waisman A, Barsh GS, Horvath TL, Brüning JC. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci 2005;8:1289–91.10.1038/nn1548Search in Google Scholar

167. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997;88:131–41.10.1016/S0092-8674(00)81865-6Search in Google Scholar

168. Marsh DJ, Hollopeter G, Huszar D, Laufer R, Yagaloff KA, Fisher SL, Burn P, Palmiter RD. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat Genet 1999;21:119–22.10.1038/5070Search in Google Scholar

169. Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan X-M, Yu H, Rosenblum CI, Vongs A, Feng Y, Cao L, Metzger JM, Strack AM, Camacho RE, Mellin TN, Nunes CN, Min W, Fisher J, Gopal-Truter S, MacIntyre DE, Chen HY, Van der Ploeg LHT. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 2000;26:97–102.10.1038/79254Search in Google Scholar

170. Chen AS, Metzger JM, Trumbauer ME, Guan XM, Yu H, Frazier EG, Marsh DJ, Forrest MJ, Gopal-Truter S, Fisher J, Camacho RE, Strack AM, Mellin TN, Maclntyre DE, Chen HY, Van der Ploeg LH. Role of the melanocortin-4 receptor in metabolic rate and food intake in mice. Transgenic Res 2000;9:145–54.10.1023/A:1008983615045Search in Google Scholar

171. Genazzani AD, Gastaldi M, Petraglia F, Battaglia C, Surico N, Volpe A, Genazzani AR. Naltrexone administration modulates the neuroendocrine control of luteinizing hormone secretion in hypothalamic amenorrhoea. Hum Reprod 1995;10:2868–71.10.1093/oxfordjournals.humrep.a135809Search in Google Scholar

172. Leadem CA, Kalra SP. Effects of endogenous opioid peptides and opiates on luteinizing hormone and prolactin secretion in ovariectomized rats. Neuroendo 1985;41:342–52.10.1159/000124199Search in Google Scholar

173. Leadem CA, Kalra SP. Reversal of beta-endorphin-induced blockade of ovulation and luteinizing hormone surge with prostaglandin E2. Endocrinology 1985;117:684–9.10.1210/endo-117-2-684Search in Google Scholar

174. True C, Verma S, Grove KL, Smith MS. Cocaine- and amphetamine-regulated transcript is a potent stimulator of GnRH and kisspeptin cells and may contribute to negative energy balance-induced reproductive inhibition in females. Endocrinology 2013;154:2821–32.10.1210/en.2013-1156Search in Google Scholar

175. Thornton JE, Cheung CC, Clifton DK, Steiner RA. Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice. Endocrinology 1997;138:5063–6.10.1210/endo.138.11.5651Search in Google Scholar

176. Watanobe H. Leptin directly acts within the hypothalamus to stimulate gonadotropin-releasing hormone secretion in vivo in rats. J Physiol 2002;545:255–68.10.1113/jphysiol.2002.023895Search in Google Scholar

177. Cheung CC, Clifton DK, Steiner RA. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology 1997;138:4489–92.10.1210/endo.138.10.5570Search in Google Scholar

178. Håkansson M-L, Meister B. Transcription factor STAT3 in leptin target neurons of the rat hypothalamus. Neuroendo 1998;68:420–7.10.1159/000054392Search in Google Scholar

179. Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, Tang V, Kenny CD, McGovern RA, Chua SC, Jr., Elmquist JK, Lowell BB. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 2004;42:983–91.10.1016/j.neuron.2004.06.004Search in Google Scholar

180. Cowley MA, Smart JL, Rubinstein M, Cerdán MG, Diano S, Horvath TL, Cone RD, Low MJ. Leptin activates anorexigenic POMC neurons through a neural network in arcuate nucleus. Nature 2001;411:480–4.10.1038/35078085Search in Google Scholar

181. Hill JW, Williams KW, Ye C, Luo J, Balthasar N, Coppari R, Cowley MA, Cantley LC, Lowell BB, Elmquist JK. Acute effects of leptin require PI3K signalng in hypothalamic proopiomelanocortin neurons in mice. J Clin Invest 2008;118:1796–805.10.1172/JCI32964Search in Google Scholar

182. Qiu J, Fang Y, Rønnekleiv OK, Kelly MJ. Leptin exceites proopiomelanocortin neurons via activation of TRPC channels. J Neurosci 2010;30:1560–5.10.1523/JNEUROSCI.4816-09.2010Search in Google Scholar

183. Pelletier G, Li S, Luu-The V, Labrie F. Oestrogenic regulation of pro-opiomelanocortin, neuropeptide Y and corticotrophin-releasing hormone mRNAs in mouse hypothalamus. J Neuroendocrinology 2007;19:426–31.10.1111/j.1365-2826.2007.01548.xSearch in Google Scholar

184. Gao Q, Mezei G, Nie Y, Rao Y, Choi CS, Bechmann I, Leranth C, Toran-Allerand D, Priest CA, Roberts JL, Gao X-B, Mobbs C, Shulman GI, Diano S, Horvath TL. Anorectic estrogen mimics leptin’s effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nature Med 2007;13:89–94.10.1038/nm1525Search in Google Scholar

185. Lehman MN, Ebling FJ, Moenter SM, Karsch FJ. Distribution of estrogen receptor-immunoreactive cells in the sheep brain. Endocrinology 1993;133:876–86.10.1210/endo.133.2.8344223Search in Google Scholar

186. Roepke TA, Malyala A, Bosch MA, Kelly MJ, Rønnekleiv OK. Estrogen regulation of genes important for K+ channel signaling in the arcuate nucleus. Endocrinology 2007;148: 4937–51.10.1210/en.2007-0605Search in Google Scholar

187. Xu Y, Nedugadi TP, Zhu L, Sobhani N, Irani BG, Davis KE, Zhang X, Zou F, Gent LM, Hahner LD, Khan SA, Elias CF, Elmquist JK, Clegg DJ. Distinct Hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metab 2011;14:453–65.10.1016/j.cmet.2011.08.009Search in Google Scholar

188. Weatherill PJ, Wilson AP, Nicholson RI, Davies P, Wakeling AE. Interaction of the antioestrogen ICI 164,384 with the oestrogen receptor. J Ster Bioc Mol Biol 1988;30:263–6.10.1016/0022-4731(88)90103-3Search in Google Scholar

189. Qiu J, Rønnekleiv OK, Kelly MJ. Modulation of hypothalamic neuronal activity through a novel G-protein coupled estrogen membrane receptor. Steroids 2008;73:985–91.10.1016/j.steroids.2007.11.008Search in Google Scholar

190. Tatemoto K. Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc Natl Acad Sci USA 1982;79:5485–9.10.1073/pnas.79.18.5485Search in Google Scholar

191. Clark JT, Kalra PS, Crowley WR, Kalra SP. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 1984;115:427–9.10.1210/endo-115-1-427Search in Google Scholar

192. Levine AS, Morley JE. Neuropeptide Y: a potent inducer of consummatory behavior in rats. Peptides 1984;5:1025–9.10.1016/0196-9781(84)90165-7Search in Google Scholar

193. Wyss P, Stricker-Krongrad A, Brunner L, Miller J, Crossthwaite A, Whitebread S, Criscione L. The pharmacology of neuropeptide Y (NPY) receptor-mediated feeding in rats characterizes better Y5 than Y1, but not Y2 or Y4 subtypes. Regul Pept 1998;75–76:363–71.10.1016/S0167-0115(98)00089-5Search in Google Scholar

194. Mullins D, Kirby D, Hwa J, Guzzi M, Rivier J, Parker E. Identification of potent and selective neuropeptide Y Y (1) receptor agonists with orexigenic activity in vivo. Mol Pharmacol 2001;60:534–40.Search in Google Scholar

195. Kanatani A, Ishihara A, Asahi S, Tanaka T, Ozaki S, Ihara M. Potent neuropeptide Y Y1 receptor antagonist, 1229U91: blockade of neuropeptide Y-induced and physiological food intake. Endocrinology 1996;137:3177–82.10.1210/endo.137.8.8754736Search in Google Scholar

196. Wieland HA, Engel W, Eberlein W, Rudolf K, Doods HN. Subtype selectivity of the novel nonpeptide neuropeptide Y Y1 receptor antagonist BIBO 3304 and its effect on feeding in rodents. Br J Pharmacol 1998;125:549–55.10.1038/sj.bjp.0702084Search in Google Scholar

197. Daniels AJ, Chance WT, Grizzle MK, Heyer D, Matthews JE. Food intake inhibition and reduction in body weight gain in rats treated with GI264879A, a non-selective NPY-Y1 receptor antagonist. Peptides 2001;22:483–91.10.1016/S0196-9781(01)00358-8Search in Google Scholar

198. Broberger C, Johansen J, Johansson C, Schalling M, Hökfelt T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci USA 1998;95:15043–8.10.1073/pnas.95.25.15043Search in Google Scholar

199. Haskell-Luevano C, Monck EK. Agouti-related protein functions as an inverse agonist at a constitutively active brain melanocortin-4 receptor. Regul Pept 2001;99:1–7.10.1016/S0167-0115(01)00234-8Search in Google Scholar

200. Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci 2005;8:571–8.10.1038/nn1455Search in Google Scholar

201. Luquet S, Perez FA, Hnasko TS, Palmiter RD. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 2005;310:683–5.10.1126/science.1115524Search in Google Scholar

202. Wu Q, Howell MP, Cowley MA, Palmiter RD. Starvation after AgRP neuron ablation is independent of melanocortin signaling. Proc Natl Acad Sci USA 2008;105:2687–92.10.1073/pnas.0712062105Search in Google Scholar

203. Wu Q, Boyle MP, Palmiter RD. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 2009;137:1225–34.10.1016/j.cell.2009.04.022Search in Google Scholar

204. Aponte Y, Atasoy D, Sternson SM. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci 2011;14:351–5.10.1038/nn.2739Search in Google Scholar

205. Olofsson LE, Pierce AA, Xu AW. Functional requirement of AgRP and NPY neurons in ovarian cycle-dependent regulation of food intake. Proc Natl Acad Sci USA 2009;106:15932–7.10.1073/pnas.0904747106Search in Google Scholar

206. Sandoval-Guzmán T, Rance NE. Central injection of senktide, an NK3 receptor agonist, or neuropeptide Y inhibits LH secretion and induces different patterns of fos expression in the rat hypothalamus. Brain Res 2004;1026:307–12.10.1016/j.brainres.2004.08.026Search in Google Scholar

207. Bonavera JJ, Sahu A, Kalra SP, Kalra PS. The hypothalamic peptides, β-endorphin, neuropeptide K and interleukin-1β, and the opiate morphine, enhance the excitatory amino acid-induced LH release under the influence of gonadal steroids. J Neuroendocrinol 1994;6:557–64.10.1111/j.1365-2826.1994.tb00619.xSearch in Google Scholar

208. Estrada KM, Pompolo S, Morris MJ, Tilbrook AJ, Clarke IJ. Neuropeptide Y (NPY) delays the oestrogen-induced luteinizing hormone (LH) surge in the ovariectomized ewe: further evidence that NPY has a predominant negative effect on LH secretion in the ewe. J Neuroendocrinol 2003;15:1011–20.10.1046/j.1365-2826.2003.01087.xSearch in Google Scholar

209. McShane TM, May T, Miner JL, Keisler DH. Central actions of neuropeptide-Y may provide a neuromodulatory link between nutrition and reproduction. Biol Reprod 1992;46:1151–7.10.1095/biolreprod46.6.1151Search in Google Scholar

210. Xu M, Hill JW, Levine JE. Attenuation of luteinizing hormone surges in neuropeptide Y knockout mice. Neuroendo 2000;72:263–71.10.1159/000054595Search in Google Scholar

211. Stephens TW, Basinski M, Bristow PK, Bue-Valleskey JM, Burgett SG, Craft L, Hale J, Hoffmann J, Hsiung HM, Kriauciunas A, MacKellar W, Rosteck Jr PR, Schoner B, Smith D, Tinsley FC, Zhang X-Y, Heiman M. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 1995;377:530–2.10.1038/377530a0Search in Google Scholar

212. Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier JS. Role of leptin in the neuroendocrine response to fasting. Nature 1996;382:250–2.10.1038/382250a0Search in Google Scholar

213. Wang J-H, Wang F, Yang M-J, Yu D-F, Wu W-N, Liu J, Ma L-Q, Cai F, Chen J-G. Leptin regulated calcium channels of NPY and POMC neurons by activation of different signal pathways. Neurosci 2008;156:89–98.10.1016/j.neuroscience.2008.04.079Search in Google Scholar

214. Spanswick D, Smith MA, Groppi VE, Logan SD, Ashford ML. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 1997;390:521–5.10.1038/37379Search in Google Scholar

215. Van den Top M, Lyons DJ, Coderre E, Renaud LP, Spanswick D. Pharmacological and molecular characterization of ATP-sensitive K+ conductances in CART and NPY/AgRP expressing neurons of the hypothalamic arcuate nucleus. Neurosci 2007;144:815–24.10.1016/j.neuroscience.2006.09.059Search in Google Scholar

216. Crowley WR, Tessel RE, O′Donohue TL, Adler BA, Kalra SP. Effects of ovarian hormones on the concentrations of immunoreactive neuropeptide Y in discrete brain regions of the female rat: correlation with serum luteinizing hormone (LH) and median eminence LH-releasing hormone. Endocrinology 1985;117:1151–5.10.1210/endo-117-3-1151Search in Google Scholar

217. Sar M, Sahu A, Crowley WR, Kalra SP. Localization of neuropeptide-Y immonoreactivity in estradiol-concentrating cells in the hypothalamus. Endocrinology 1990;127:2752–6.10.1210/endo-127-6-2752Search in Google Scholar

218. Skinner DC, Herbison AE. Effects of photoperiod on estrogen receptor, tyrosine hydroxylase, neuropeptide Y and β-endorphin immunoreactivity in the ewe hypothalamus. Endocrinology 1997;138:2585–95.10.1210/endo.138.6.5208Search in Google Scholar

219. Roepke TA, Qiu J, Smith AW, Rønnekleiv OK, Kelly MJ. Fasting and 17β-estradiol differentially modulate the M-current in neuropeptide Y neurons. J Neurosci 2011;17:11825–35.10.1523/JNEUROSCI.1395-11.2011Search in Google Scholar

220. Bauer-Dantoin AC, McDonald JK, Levine JE. Neuropeptide Y potentiates luteinizing hormone (LH)-releasing hormone- stimulated LH surges in pentobarbital-blocked proestrous rats*. Endocrinology 1991;129:402–8.10.1210/endo-129-1-402Search in Google Scholar

221. Acosta-Martinez M, Horton T, Levine JE. Estrogen receptors in neuropeptide Y neurons: at the crossroads of feeding and reproduction. Trends Endocrinol Metab 2006;18:48–50.10.1016/j.tem.2006.12.001Search in Google Scholar

222. Bauer-Dantoin AC, Urban JH, Levine JE. Neuropeptide Y gene expression in the arcuate nucleus is increased during preovulatory luteinizing hormone surges. Endocrinology 1992;131:2953–8.10.1210/endo.131.6.1446633Search in Google Scholar

Received: 2013-9-20
Accepted: 2013-10-7
Published Online: 2013-11-7
Published in Print: 2014-3-1

©2014 by Walter de Gruyter Berlin/Boston