Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 24, 2014

Meditation can produce beneficial effects to prevent cardiovascular disease

Marcia Kiyomi Koike and Roberto Cardoso


Coronary heart disease is the major cause of global cardiovascular mortality and morbidity. Lifestyle behaviour contributes as a risk factor: unhealthy diet, sedentary lifestyle, tobacco, alcohol, hypertension, diabetes, dyslipidemia and psychosocial stress. Atherosclerosis pathologic mechanisms involving oxidative stress, dyslipidemia, inflammation and senescence are associated with arterial wall damage and plaque formation. Stress reduction was observed in several types of meditation. After meditation, hormonal orchestration modulates effects in the central nervous system and in the body. All types of meditation are associated with blood pressure control, enhancement in insulin resistance, reduction of lipid peroxidation and cellular senescence, independent of type of meditation. This review presents scientific evidence to explain how meditation can produce beneficial effects on the cardiovascular system, and particularly regarding vascular aspects.

Corresponding author: Marcia Kiyomi Koike, IAMSPE, Programa de Pós-Graduação em Ciências da Saúde, Av Ibirapuera, 981, 2° andar, São Paulo, Brazil, 04029–000, Phone: +55 11 9 9964–8421, Fax: +55 11 3061–7170, E-mail:


1. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L, Investigators IS. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the interheart study): Case-control study. Lancet 2004;364:937–52.10.1016/S0140-6736(04)17018-9Search in Google Scholar

2. Cardoso R, de Souza E, Camano L, Leite JR. Meditation in health: An operational definition. Brain Res Brain Res Protoc 2004;14:58–60.10.1016/j.brainresprot.2004.09.002Search in Google Scholar

3. Cardoso R, de Souza E, Camano L. Chapter 10: Meditation for health purposes (conceptual and operational aspects). In: De Luca BN, editor. Mind-body and relaxation research focus. Hauppauge, NY, USA: Nova Science Publishers; 2008:213–24.Search in Google Scholar

4. Wallace RK, Benson H, Wilson AF. A wakeful hypometabolic physiologic state. Am J Physiol 1971;221:795–9.10.1152/ajplegacy.1971.221.3.795Search in Google Scholar

5. Benson H. The relaxation response: History, physiological basis and clinical usefulness. Acta Med Scand Suppl 1982;660:231–7.10.1111/j.0954-6820.1982.tb00378.xSearch in Google Scholar

6. Woolfolk RL. Psychophysiological correlates of meditation. Arch Gen Psychiatry 1975;32:1326–33.10.1001/archpsyc.1975.01760280124011Search in Google Scholar

7. Brefczynski-Lewis JA, Lutz A, Schaefer HS, Levinson DB, Davidson RJ. Neural correlates of attentional expertise in long-term meditation practitioners. Proc Natl Acad Sci USA 2007;104:11483–8.10.1073/pnas.0606552104Search in Google Scholar

8. Tang YY, Lu Q, Geng X, Stein EA, Yang Y, Posner MI. Short-term meditation induces white matter changes in the anterior cingulate. Proc Natl Acad Sci USA 2010;107:15649–52.10.1073/pnas.1011043107Search in Google Scholar

9. Bevan AJ. Endocrine changes in transcendental meditation. Clin Exp Pharmacol Physiol 1979;7:75–6.Search in Google Scholar

10. Infante JR, Peran F, Martinez M, Roldan A, Poyatos R, Ruiz C, Samaniego F, Garrido F. Acth and beta-endorphin in transcendental meditation. Physiol Behav 1998;64:311–5.10.1016/S0031-9384(98)00071-7Search in Google Scholar

11. Walton KG, Pugh ND, Gelderloos P, Macrae P. Stress reduction and preventing hypertension: Preliminary support for a psychoneuroendocrine mechanism. J Altern Complement Med 1995;1:263–83.10.1089/acm.1995.1.263Search in Google Scholar

12. Tooley GA, Armstrong SM, Norman TR, Sali A. Acute increases in night-time plasma melatonin levels following a period of meditation. Biol Psychol 2000;53:69–78.10.1016/S0301-0511(00)00035-1Search in Google Scholar

13. Peng CK, Mietus JE, Liu Y, Khalsa G, Douglas PS, Benson H, Goldberger AL. Exaggerated heart rate oscillations during two meditation techniques. Int J Cardiol 1999;70:101–7.10.1016/S0167-5273(99)00066-2Search in Google Scholar

14. Infante JR, Torres-Avisbal M, Pinel P, Vallejo JA, Peran F, Gonzalez F, Contreras P, Pacheco C, Roldan A, Latre JM. Catecholamine levels in practitioners of the transcendental meditation technique. Physiol Behav 2001;72:141–6.10.1016/S0031-9384(00)00386-3Search in Google Scholar

15. Jevning R, Wilson AF, Davidson JM. Adrenocortical activity during meditation. Horm Behav 1978;10:54–60.10.1016/0018-506X(78)90024-7Search in Google Scholar

16. Kim DH, Moon YS, Kim HS, Jung JS, Park HM, Suh HW, Kim YH, Song DK. E. Prog Neuropsychopharmacol Biol Psychiatry 2005;29:327–31.10.1016/j.pnpbp.2004.11.019Search in Google Scholar

17. Mills PJ, Schneider RH, Hill D, Walton KG, Wallace RK. Beta-adrenergic receptor sensitivity in subjects practicing transcendental meditation. J Psychosom Res 1990;34:29–33.10.1016/0022-3999(90)90005-OSearch in Google Scholar

18. Barnes VA, Treiber FA, Turner JR, Davis H, Strong WB. Acute effects of transcendental meditation on hemodynamic functioning in middle-aged adults. Psychosom Med 1999;61:525–31.10.1097/00006842-199907000-00017Search in Google Scholar PubMed PubMed Central

19. Davidson RJ, Kabat-Zinn J, Schumacher J, Rosenkranz M, Muller D, Santorelli SF, Urbanowski F, Harrington A, Bonus K, Sheridan JF. Alterations in brain and immune function produced by mindfulness meditation. Psychosom Med 2003;65:564–70.10.1097/01.PSY.0000077505.67574.E3Search in Google Scholar PubMed

20. Dwivedi KN, Gupta VM, Udupa KN. A preliminary report on some physiological changes due to vipashyana meditation. Indian J Med Sci 1977;31:51–4.Search in Google Scholar

21. Tang YY, Ma Y, Wang J, Fan Y, Feng S, Lu Q, Yu Q, Sui D, Rothbart MK, Fan M, Posner MI. Short-term meditation training improves attention and self-regulation. Proc Natl Acad Sci USA 2007;104:17152–6.10.1073/pnas.0707678104Search in Google Scholar PubMed PubMed Central

22. Winbush NY, Gross CR, Kreitzer MJ. The effects of mindfulness-based stress reduction on sleep disturbance: A systematic review. Explore (NY) 2007;3:585–91.10.1016/j.explore.2007.08.003Search in Google Scholar PubMed

23. Gupta SK, Sawhney RC, Rai L, Chavan VD, Dani S, Arora RC, Selvamurthy W, Chopra HK, Nanda NC. Regression of coronary atherosclerosis through healthy lifestyle in coronary artery disease patients–Mount Abu Open Heart Trial. Indian Heart J 2011;63:461–9.Search in Google Scholar

24. Schneider RH, Alexander CN, Staggers F, Rainforth M, Salerno JW, Hartz A, Arndt S, Barnes VA, Nidich SI. Long-term effects of stress reduction on mortality in persons > or = 55 years of age with systemic hypertension. Am J Cardiol 2005;95:1060–4.10.1016/j.amjcard.2004.12.058Search in Google Scholar PubMed PubMed Central

25. Schneider RH, Grim CE, Rainforth MV, Kotchen T, Nidich SI, Gaylord-King C, Salerno JW, Kotchen JM, Alexander CN. Stress reduction in the secondary prevention of cardiovascular disease: Randomized, controlled trial of transcendental meditation and health education in blacks. Circ Cardiovasc Qual Outcomes 2012;5:750–8.10.1161/CIRCOUTCOMES.112.967406Search in Google Scholar PubMed PubMed Central

26. Paul-Labrador M, Polk D, Dwyer JH, Velasquez I, Nidich S, Rainforth M, Schneider R, Merz CN. Effects of a randomized controlled trial of transcendental meditation on components of the metabolic syndrome in subjects with coronary heart disease. Arch Intern Med 2006;166:1218–24.10.1001/archinte.166.11.1218Search in Google Scholar PubMed

27. Lee MS, Kim HJ, Choi ES. Effects of qigong on blood pressure, high-density lipoprotein cholesterol and other lipid levels in essential hypertension patients. Int J Neurosci 2004;114:777–86.10.1080/00207450490441028Search in Google Scholar PubMed

28. Vyas R, Raval KV, Dikshit N. Effect of raja yoga meditation on the lipid profile of post-menopausal women. Indian J Physiol Pharmacol 2008;52:420–24.Search in Google Scholar

29. Gaeta G, De Michele M, Cuomo S, Guarini P, Foglia MC, Bond MG, Trevisan M. Arterial abnormalities in the offspring of patients with premature myocardial infarction. N Engl J Med 2000;343:840–6.10.1056/NEJM200009213431203Search in Google Scholar PubMed

30. Landmesser U, Engberding N, Bahlmann FH, Schaefer A, Wiencke A, Heineke A, Spiekermann S, Hilfiker-Kleiner D, Templin C, Kotlarz D, Mueller M, Fuchs M, Hornig B, Haller H, Drexler H. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 2004;110:1933–9.10.1161/01.CIR.0000143232.67642.7ASearch in Google Scholar PubMed

31. Kissel CK, Lehmann R, Assmus B, Aicher A, Honold J, Fischer-Rasokat U, Heeschen C, Spyridopoulos I, Dimmeler S, Zeiher AM. Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. J Am Coll Cardiol 2007;49:2341–9.10.1016/j.jacc.2007.01.095Search in Google Scholar PubMed

32. Leone AM, Rutella S, Bonanno G, Abbate A, Rebuzzi AG, Giovannini S, Lombardi M, Galiuto L, Liuzzo G, Andreotti F, Lanza GA, Contemi AM, Leone G, Crea F. Mobilization of bone marrow-derived stem cells after myocardial infarction and left ventricular function. Eur Heart J 2005;26:1196–1204.10.1093/eurheartj/ehi164Search in Google Scholar PubMed

33. Spyridopoulos I, Erben Y, Brummendorf TH, Haendeler J, Dietz K, Seeger F, Kissel CK, Martin H, Hoffmann J, Assmus B, Zeiher AM, Dimmeler S. Telomere gap between granulocytes and lymphocytes is a determinant for hematopoetic progenitor cell impairment in patients with previous myocardial infarction. Arterioscler Thromb Vasc Biol 2008;28:968–74.10.1161/ATVBAHA.107.160846Search in Google Scholar PubMed

34. Ahola K, Sirén I, Kivimäki M, Ripatti S, Aromaa A, Lönnqvist J, Hovatta I. Work-related exhaustion and telomere length: A population-based study. PLoS One 2012;7:e40186.10.1371/journal.pone.0040186Search in Google Scholar PubMed PubMed Central

35. Prather AA, Puterman E, Lin J, O’Donovan A, Krauss J, Tomiyama AJ, Epel ES, Blackburn EH. Shorter leukocyte telomere length in midlife women with poor sleep quality. J Aging Res 2011;2011:721390.10.4061/2011/721390Search in Google Scholar PubMed PubMed Central

36. Simon NM, Smoller JW, McNamara KL, Maser RS, Zalta AK, Pollack MH, Nierenberg AA, Fava M, Wong KK. Telomere shortening and mood disorders: Preliminary support for a chronic stress model of accelerated aging. Biol Psychiatry 2006;60:432–5.10.1016/j.biopsych.2006.02.004Search in Google Scholar

37. Nordfjäll K, Eliasson M, Stegmayr B, Lundin S, Roos G, Nilsson PM. Increased abdominal obesity, adverse psychosocial factors and shorter telomere length in subjects reporting early ageing; the monica northern sweden study. Scand J Public Health 2008;36:744–52.10.1177/1403494808090634Search in Google Scholar

38. Adaikalakoteswari A, Balasubramanyam M, Ravikumar R, Deepa R, Mohan V. Association of telomere shortening with impaired glucose tolerance and diabetic macroangiopathy. Atherosclerosis 2007;195:83–9.10.1016/j.atherosclerosis.2006.12.003Search in Google Scholar

39. Sampson MJ, Winterbone MS, Hughes JC, Dozio N, Hughes DA. Monocyte telomere shortening and oxidative dna damage in type 2 diabetes. Diabetes Care 2006;29:283–9.10.2337/diacare.29.02.06.dc05-1715Search in Google Scholar

40. Zhai G, Aviv A, Hunter DJ, Hart DJ, Gardner JP, Kimura M, Lu X, Valdes AM, Spector TD. Reduction of leucocyte telomere length in radiographic hand osteoarthritis: A population-based study. Ann Rheum Dis 2006;65:1444–8.10.1136/ard.2006.056903Search in Google Scholar

41. Valdes AM, Richards JB, Gardner JP, Swaminathan R, Kimura M, Xiaobin L, Aviv A, Spector TD. Telomere length in leukocytes correlates with bone mineral density and is shorter in women with osteoporosis. Osteoporos Int 2007;18:1203–10.10.1007/s00198-007-0357-5Search in Google Scholar

42. Martin-Ruiz C, Dickinson HO, Keys B, Rowan E, Kenny RA, Von Zglinicki T. Telomere length predicts poststroke mortality, dementia, and cognitive decline. Ann Neurol 2006;60:174–180.10.1002/ana.20869Search in Google Scholar

43. Nakashima H, Ozono R, Suyama C, Sueda T, Kambe M, Oshima T. Telomere attrition in white blood cell correlating with cardiovascular damage. Hypertens Res 2004;27:319–25.10.1291/hypres.27.319Search in Google Scholar

44. Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH. Telomere shortening in atherosclerosis. Lancet 2001;358:472–3.10.1016/S0140-6736(01)05633-1Search in Google Scholar

45. Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA 2004;101:17312–5.10.1073/pnas.0407162101Search in Google Scholar PubMed PubMed Central

46. Brouilette S, Singh RK, Thompson JR, Goodall AH, Samani NJ. White cell telomere length and risk of premature myocardial infarction. Arterioscler Thromb Vasc Biol 2003;23:842–6.10.1161/01.ATV.0000067426.96344.32Search in Google Scholar

47. Brouilette SW, Moore JS, McMahon AD, Thompson JR, Ford I, Shepherd J, Packard CJ, Samani NJ, Group WoSCPS. Telomere length, risk of coronary heart disease, and statin treatment in the west of Scotland primary prevention study: A nested case-control study. Lancet 2007;369:107–14.10.1016/S0140-6736(07)60071-3Search in Google Scholar

48. Ogami M, Ikura Y, Ohsawa M, Matsuo T, Kayo S, Yoshimi N, Hai E, Shirai N, Ehara S, Komatsu R, Naruko T, Ueda M. Telomere shortening in human coronary artery diseases. Arterioscler Thromb Vasc Biol 2004;24:546–50.10.1161/01.ATV.0000117200.46938.e7Search in Google Scholar PubMed

49. O’Donnell CJ, Demissie S, Kimura M, Levy D, Gardner JP, White C, D’Agostino RB, Wolf PA, Polak J, Cupples LA, Aviv A. Leukocyte telomere length and carotid artery intimal medial thickness: The Framingham Heart Study. Arterioscler Thromb Vasc Biol 2008;28:1165–71.10.1161/ATVBAHA.107.154849Search in Google Scholar PubMed PubMed Central

50. Benetos A, Gardner JP, Zureik M, Labat C, Xiaobin L, Adamopoulos C, Temmar M, Bean KE, Thomas F, Aviv A. Short telomeres are associated with increased carotid atherosclerosis in hypertensive subjects. Hypertension 2004;43:182–5.10.1161/01.HYP.0000113081.42868.f4Search in Google Scholar PubMed

51. Werner C, Fürster T, Widmann T, Pöss J, Roggia C, Hanhoun M, Scharhag J, Büchner N, Meyer T, Kindermann W, Haendeler J, Böhm M, Laufs U. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation 2009;120:2438–47.10.1161/CIRCULATIONAHA.109.861005Search in Google Scholar PubMed

52. Puterman E, Lin J, Blackburn E, O’Donovan A, Adler N, Epel E. The power of exercise: Buffering the effect of chronic stress on telomere length. PLoS One 2010;5:e10837.10.1371/journal.pone.0010837Search in Google Scholar PubMed PubMed Central

53. Jacobs TL, Epel ES, Lin J, Blackburn EH, Wolkowitz OM, Bridwell DA, Zanesco AP, Aichele SR, Sahdra BK, MacLean KA, King BG, Shaver PR, Rosenberg EL, Ferrer E, Wallace BA, Saron CD. Intensive meditation training, immune cell telomerase activity, and psychological mediators. Psychoneuroendocrinology 2011;36:664–81.10.1016/j.psyneuen.2010.09.010Search in Google Scholar PubMed

54. Hoge EA, Chen MM, Orr E, Metcalf CA, Fischer LE, Pollack MH, DeVivo I, Simon NM. Loving-kindness meditation practice associated with longer telomeres in women. Brain Behav Immun 2013;32:159–63.10.1016/j.bbi.2013.04.005Search in Google Scholar PubMed

55. Ravnik-Glavac M, Hrasovec S, Bon J, Dreo J, Glavac D. Genome-wide expression changes in a higher state of consciousness. Conscious Cogn 2012;21:1322–44.10.1016/j.concog.2012.06.003Search in Google Scholar PubMed

56. Black DS, Cole SW, Irwin MR, Breen E, St Cyr NM, Nazarian N, Khalsa DS, Lavretsky H. Yogic meditation reverses nf-κb and irf-related transcriptome dynamics in leukocytes of family dementia caregivers in a randomized controlled trial. Psychoneuroendocrinology 2013;38:348–55.10.1016/j.psyneuen.2012.06.011Search in Google Scholar PubMed PubMed Central

57. Bhasin MK, Dusek JA, Chang BH, Joseph MG, Denninger JW, Fricchione GL, Benson H, Libermann TA. Relaxation response induces temporal transcriptome changes in energy metabolism, insulin secretion and inflammatory pathways. PLoS One 2013;8:e62817.10.1371/journal.pone.0062817Search in Google Scholar PubMed PubMed Central

58. Cummings DE. Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol Behav 2006;89:71–84.10.1016/j.physbeh.2006.05.022Search in Google Scholar PubMed

59. Wang J, Chen C, Wang RY. Influence of short- and long-term treadmill exercises on levels of ghrelin, obestatin and npy in plasma and brain extraction of obese rats. Endocrine 2008;33:77–83.10.1007/s12020-008-9056-zSearch in Google Scholar PubMed

60. Broom DR, Stensel DJ, Bishop NC, Burns SF, Miyashita M. Exercise-induced suppression of acylated ghrelin in humans. J Appl Physiol 2007;102:2165–71.10.1152/japplphysiol.00759.2006Search in Google Scholar PubMed

61. Arvat E, Maccario M, Di Vito L, Broglio F, Benso A, Gottero C, Papotti M, Muccioli G, Dieguez C, Casanueva FF, Deghenghi R, Camanni F, Ghigo E. Endocrine activities of ghrelin, a natural growth hormone secretagogue (ghs), in humans: Comparison and interactions with hexarelin, a nonnatural peptidyl ghs, and gh-releasing hormone. J Clin Endocrinol Metab 2001;86:1169–74.10.1210/jc.86.3.1169Search in Google Scholar

62. Takaya K, Ariyasu H, Kanamoto N, Iwakura H, Yoshimoto A, Harada M, Mori K, Komatsu Y, Usui T, Shimatsu A, Ogawa Y, Hosoda K, Akamizu T, Kojima M, Kangawa K, Nakao K. Ghrelin strongly stimulates growth hormone release in humans. J Clin Endocrinol Metab 2000;85:4908–11.10.1210/jcem.85.12.7167Search in Google Scholar PubMed

63. Prasad K, Sharma V, Lackore K, Jenkins SM, Prasad A, Sood A. Use of complementary therapies in cardiovascular disease. Am J Cardiol 2013;111:339–45.10.1016/j.amjcard.2012.10.010Search in Google Scholar PubMed

Received: 2013-9-30
Accepted: 2014-4-17
Published Online: 2014-5-24
Published in Print: 2014-6-1

©2014 by De Gruyter

Scroll Up Arrow