Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 5, 2013

The formate/nitrite transporter family of anion channels

Wei Lü, Juan Du, Nikola J. Schwarzer, Tobias Wacker, Susana L.A. Andrade and Oliver Einsle
From the journal Biological Chemistry

Abstract

The formate/nitrite transporter (FNT) family of integral membrane proteins comprises pentameric channels for monovalent anions that exhibit a broad specificity for small anions such as chloride, the physiological cargo molecules formate, nitrite, and hydrosulfide, and also larger organic acids. Three-dimensional structures are available for the three known subtypes, FocA, NirC, and HSC, which reveal remarkable evolutionary optimizations for the respective physiological context of the channels. FNT channels share a conserved translocation pathway in each protomer, with a central hydrophobic cavity that is separated from both sides of the membrane by a narrow constriction. A single protonable residue, a histidine, plays a key role by transiently protonating the transported anion to allow an uncharged species to pass the hydrophobic barrier. Further selectivity is reached through variations in the electrostatic surface potential of the proteins, priming the formate channel FocA for anion export, whereas NirC and HSC should work bidirectionally. Electrophysiological studies have shown that a broad variety of monovalent anions can be transported, and in the case of FocA, these match exactly the products of mixed-acid fermentation, the predominant metabolic pathway for most enterobacterial species.


Corresponding author: Oliver Einsle, Lehrstuhl für Biochemie, Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany; and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Hebelstrasse 25, D-79104 Freiburg, Germany

The authors thank the staff at beam lines X06DA and X06SA at the Swiss Light Source, Villigen, Switzerland, for their continuous support during data collection and Elke Gerbig-Smentek for the excellent technical assistance. This work was supported by Deutsche Forschungsgemeinschaft [grants An 676/1 and An 676/3 to S.L.A.A., grants Ei 520/3 and Ei 520/6 (RU 929) to O.E., and IRTG 1478].

References

Agre, P., King, L.S., Yasui, M., Guggino, W.B., Ottersen, O.P., Fujiyoshi, Y., Engel, A., and Nielsen, S. (2002). Aquaporin water channels – from atomic structure to clinical medicine. J. Physiol. 542, 3–16.10.1113/jphysiol.2002.020818Search in Google Scholar

Berks, B.C., Ferguson, S.J., Moir, J.W.B., and Richardson, D.J. (1995). Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim. Biophys. Acta 1232, 97–173.10.1016/0005-2728(95)00092-5Search in Google Scholar

Brett, P.J., Burtnick, M.N., Su, H., Nair, V., and Gherardini, F.C. (2008). iNOS activity is critical for the clearance of Burkholderia mallei from infected RAW 264.7 murine macrophages. Cell Microbiol. 10, 487–498.Search in Google Scholar

Chakravortty, D. and Hensel, M. (2003). Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microb. Infect. 5, 621–627.10.1016/S1286-4579(03)00096-0Search in Google Scholar

Clegg, S., Yu, F., Griffiths, L., and Cole, J.A. (2002). The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite transporters. Mol. Microbiol. 44, 143–155.10.1046/j.1365-2958.2002.02858.xSearch in Google Scholar PubMed

Cole, J. (1996). Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol. Lett. 136, 1–11.10.1111/j.1574-6968.1996.tb08017.xSearch in Google Scholar PubMed

Czyzewski, B.K. and Wang, D.N. (2012). Identification and characterization of a bacterial hydrosulphide ion channel. Nature 483, 494–497.10.1038/nature10881Search in Google Scholar PubMed PubMed Central

Das, P., Lahiri, A., Lahiri, A., and Chakravortty, D. (2009). Novel role of the nitrite transporter NirC in Salmonella pathogenesis: SPI2-dependent suppression of inducible nitric oxide synthase in activated macrophages. Microbiology 155, 2476–2489.10.1099/mic.0.029611-0Search in Google Scholar PubMed

Delomenie, C., Foti, E., Floch, E., Diderot, V., Porquet, D., Dupuy, C., and Bonaly, J. (2007). A new homolog of FocA transporters identified in cadmium-resistant Euglena gracilis. Biochem. Biophys. Res. Commun. 358, 455–461.10.1016/j.bbrc.2007.04.145Search in Google Scholar PubMed

Einsle, O. (2011). Structure and function of formate-dependent cytochrome c nitrite reductase, NrfA. Methods Enzymol. 496, 399–422.10.1016/B978-0-12-386489-5.00016-6Search in Google Scholar PubMed

Einsle, O. and Kroneck, P.M.H. (2004). Structural basis of denitrification. Biol. Chem. 385, 875–883.10.1515/BC.2004.115Search in Google Scholar PubMed

Eisenman, G. and Horn, R. (1983). Ionic selectivity revisited – the role of kinetic and equilibrium processes in ion permeation through channels. J. Membr. Biol. 76, 197–225.10.1007/BF01870364Search in Google Scholar PubMed

Falke, D., Schulz, K., Doberenz, C., Beyer, L., Lilie, H., Thiemer, B., and Sawers, R.G. (2010). Unexpected oligomeric structure of the FocA formate channel of Escherichia coli: a paradigm for the formate-nitrite transporter family of integral membrane proteins. FEMS Microbiol. Lett. 303, 69–75.10.1111/j.1574-6968.2009.01862.xSearch in Google Scholar PubMed

Feng, Z., Hou, T., and Li, Y. (2012). Concerted movement in pH-dependent gating of FocA from molecular dynamics simulations. J. Chem. Inf. Model. 52, 2119–2131.10.1021/ci300250qSearch in Google Scholar PubMed

Hille, B. (2001). Ion Channels of Excitable Membranes, 3rd edition. (Sunderland, MA: Sinauer Associates).Search in Google Scholar

Jia, W.J., Tovell, N., Clegg, S., Trimmer, M., and Cole, J. (2009). A single channel for nitrate uptake, nitrite export and nitrite uptake by Escherichia coli NarU and a role for NirC in nitrite export and uptake. Biochem. J. 417, 297–304.10.1042/BJ20080746Search in Google Scholar PubMed

Kaback, H.R. (1974). Transport studies in bacterial-membrane vesicles. Science 186, 882–892.10.1126/science.186.4167.882Search in Google Scholar PubMed

Knappe, J. and Sawers, G. (1990). A radical-chemical route to acetyl-CoA – the anaerobically induced pyruvate formate-lyase system of Escherichia coli. FEMS Microbiol. Rev. 75, 383–398.Search in Google Scholar

Latorre, R. and Miller, C. (1983). Conduction and selectivity in potassium channels. J. Membr. Biol. 71, 11–30.10.1007/BF01870671Search in Google Scholar PubMed

Leonhartsberger, S., Korsa, I., and Böck, A. (2002). The molecular biology of formate metabolism in enterobacteria. J. Mol. Microb. Biotechnol. 4, 269–276.Search in Google Scholar

Lü, W., Du, J., Wacker, T., Gerbig-Smentek, E., Andrade, S.L.A., and Einsle, O. (2011). pH-Dependent gating in a FocA formate channel. Science 332, 352–354.10.1126/science.1199098Search in Google Scholar PubMed

Lü, W., Du, J., Schwarzer, N.J., Gerbig-Smentek, E., Einsle, O., and Andrade, S.L. (2012a). The formate channel FocA exports the products of mixed-acid fermentation. Proc. Natl. Acad. Sci. USA 109, 13254–13259.10.1073/pnas.1204201109Search in Google Scholar PubMed PubMed Central

Lü, W., Schwarzer, N.J., Du, J., Gerbig-Smentek, E., Andrade, S.L.A., and Einsle, O. (2012b). Structural and functional characterization of the nitrite channel NirC from Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 109, 18395–18400.10.1073/pnas.1210793109Search in Google Scholar PubMed PubMed Central

Martinez-Espinosa, R.M., Cole, J.A., Richardson, D.J., and Watmough, N.J. (2011). Enzymology and ecology of the nitrogen cycle. Biochem. Soc. Trans. 39, 175–178.10.1042/BST0390175Search in Google Scholar PubMed

Miller, C. (2006). CIC chloride channels viewed through a transporter lens. Nature 440, 484–489.10.1038/nature04713Search in Google Scholar

Moir, J.W.B. and Wood, N.J. (2001). Nitrate and nitrite transport in bacteria. Cell. Mol. Life Sci. 58, 215–224.10.1007/PL00000849Search in Google Scholar

Peakman, T., Crouzet, J., Mayaux, J.F., Busby, S., Mohan, S., Harborne, N., Wootton, J., Nicolson, R., and Cole, J.A. (1990). Nucleotide sequence, organisation and structural analysis of the products of genes in the nirB-cysG region of the Escherichia coli K-12 chromosome. Eur. J. Biochem. 191, 315–323.10.1111/j.1432-1033.1990.tb19125.xSearch in Google Scholar

Rosen, B.P. (1986). Ion extrusion systems in Escherichia coli. Methods Enzymol. 125, 328–336.10.1016/S0076-6879(86)25028-4Search in Google Scholar

Rycovska, A., Hatahet, L., Fendler, K., and Michel, H. (2012). The nitrite transport protein NirC from Salmonella typhimurium is a nitrite/proton antiporter. Biochim. Biophys. Acta 1818, 1342–1350.10.1016/j.bbamem.2012.02.004Search in Google Scholar

Saier, M.H. Jr., Eng, B.H., Fard, S., Garg, J., Haggerty, D.A., Hutchinson, W.J., Jack, D.L., Lai, E.C., Liu, H.J., Nusinew, D.P., et al. (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422, 1–56.10.1016/S0304-4157(98)00023-9Search in Google Scholar

Sawers, G. (1998). Biochemistry, physiology and molecular biology of glycyl radical enzymes. FEMS Microbiol. Rev. 22, 543–551.10.1111/j.1574-6976.1998.tb00386.xSearch in Google Scholar

Sawers, R.G. (2005). Formate and its role in hydrogen production in Escherichia coli. Biochem. Soc. Trans. 33, 42–46.10.1042/BST0330042Search in Google Scholar PubMed

Singer, S.J. (1990). The structure and insertion of integral proteins in membranes. Annu. Rev. Cell. Biol. 6, 247–296.10.1146/annurev.cb.06.110190.001335Search in Google Scholar PubMed

Singer, S.J. and Nicolson, G.L. (1972). Fluid mosaic model of structure of cell membranes. Science 175, 720–731.10.1126/science.175.4023.720Search in Google Scholar PubMed

Slater, E.C., Skulache,V.P., Azzone, G.F., Crofts, A.R., Pressman, B.C., Ernster, L., Harold, F.M., Kaback, H.R., Hinkle, P., Weber, M., et al. (1974). Mechanisms of active-transport – general discussion. Ann. NY Acad. Sci. 227, 348–354.10.1111/j.1749-6632.1974.tb14399.xSearch in Google Scholar

Smart, O.S., Neduvelil, J.G., Wang, X., Wallace, B.A., and Sansom, M.S. (1996). HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360.10.1016/S0263-7855(97)00009-XSearch in Google Scholar

Suppmann, B. and Sawers, G. (1994). Isolation and characterization of hypophosphite-resistant mutants of Escherichia coli – identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Mol. Microbiol. 11, 965–982.10.1111/j.1365-2958.1994.tb00375.xSearch in Google Scholar PubMed

Tsien, R.W., Hess, P., Mccleskey, E.W., and Rosenberg, R.L. (1987). Calcium channels – mechanisms of selectivity, permeation, and block. Annu. Rev. Biophys. Biol. 16, 265–290.10.1146/annurev.bb.16.060187.001405Search in Google Scholar PubMed

von Heijne, G. and Gavel, Y. (1988). Topogenic signals in integral membrane proteins. Eur. J. Biochem. 174, 671–678.10.1111/j.1432-1033.1988.tb14150.xSearch in Google Scholar PubMed

Waight, A.B., Love, J., and Wang, D.N. (2010). Structure and mechanism of a pentameric formate channel. Nat. Struct. Mol. Biol. 17, 31–37.10.1038/nsmb.1740Search in Google Scholar PubMed PubMed Central

Wang, Y., Huang, Y.J., Wang, J.W., Cheng, C., Huang, W.J., Lu, P.L., Xu, Y.N., Wang, P.Y., Yan, N., and Shi, Y.G. (2009). Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel. Nature 462, 467–472.10.1038/nature08610Search in Google Scholar PubMed

White, W.B. and Ferry, J.G. (1992). Identification of formate dehydrogenase-specific messenger-RNA species and nucleotide-sequence of the fdhC gene of Methanobacterium formicicum. J. Bacteriol. 174, 4997–5004.10.1128/jb.174.15.4997-5004.1992Search in Google Scholar PubMed PubMed Central

Xie, Q. and Nathan, C. (1994). The high-output nitric oxide pathway: role and regulation. J. Leukoc. Biol. 56, 576–582.10.1002/jlb.56.5.576Search in Google Scholar PubMed

Yang, Y.T., Bennett, G.N., and San, K.Y. (2001). The effects of feed and intracellular pyruvate levels on the redistribution of metabolic fluxes in Escherichia coli. Metab. Eng. 3, 115–123.10.1006/mben.2000.0166Search in Google Scholar PubMed

Received: 2012-11-26
Accepted: 2013-2-4
Published Online: 2013-02-05
Published in Print: 2013-06-01

©2013 by Walter de Gruyter Berlin Boston

Scroll Up Arrow