Accessible Requires Authentication Published by De Gruyter March 25, 2013

Lysine-specific histone demethylase LSD1 and the dynamic control of chromatin

Thomas Rudolph, Stefanie Beuch and Gunter Reuter
From the journal Biological Chemistry

Abstract

The flavin adenine dinucleotide-dependent amine oxidase LSD1 is the first molecularly defined histone demethylase, which specifically demethylates H3K4me1/me2. The enzyme dynamically controls a large variety of biological processes and is associated with protein complexes controlling transcriptional repression and activation. Molecular analysis of the Drosophila LSD1 homolog revealed new insights into the epigenetic control of heterochromatin formation during early embryogenesis, the establishment of transcriptional gene silencing and the epigenetic mechanisms associated with the maintenance of stem cell identity in primordial germline cells. This review summarizes our recent knowledge about the control of enzymatic activity and molecular function of LSD1 enzyme complexes in different model organisms including Schizosaccharomyces pombe, Drosophila and mammals. Finally, new developments in applied cancer research based on molecular analysis of LSD1 in cancer cells are discussed.


Corresponding author: Gunter Reuter, Institute of Biology, Developmental Genetics, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany

We thank Gary Sawers for helpful comments on the manuscript. Deutsche Forschungsgemeinschaft (DFG), SFB610, Project C3 supported the work on the LSD1 histone demethylase in the Reuter lab. T.R. is supported by the European Regional Development Fund of the European Commission.

References

Allfrey, V.G., Faulkner, R., and Mirsky, A.E. (1964). Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA 51, 786–794. Search in Google Scholar

Alvarez-Venegas, R., Sadder, M., Tikhonov, A., and Avramova, Z. (2007). Origin of the bacterial SET domain genes: vertical or horizontal? Mol. Biol. Evol. 24, 482–497. Search in Google Scholar

Anantharaman, V., Iyer, L.M., and Aravind, L. (2007). Comperative genomics of protists: new insights into the evolution of eukaryotic signal transduction and gene regulation. Annu. Rev. Microbiol. 61, 453–475. Search in Google Scholar

Aravind, L. and Iyer, L.M. (2003). Provenance of SET-domain histone methyltransferases through duplication of a simple structural unit. Cell Cycle 2, 369–376. Search in Google Scholar

Ballas, N., Battaglioli, E., Atouf, F., Andres, M.E., Chenoweth, J., Anderson, M.E., Burger, C., Moniwa, M., Davie, J.R., Bowers, W.J., et al. (2001). Regulation of neuronal traits by a novel transcriptional complex. Neuron 31, 353–365. Search in Google Scholar

Chen, Y., Yang, Y., Wang, F., Wan, K., Yamane, K., Zhang, Y., and Lei, M. (2006). Crystal structure of human histone lysine-specific demethylase 1 (LSD1). Proc. Natl. Acad. Sci. USA 103, 13956–13961. Search in Google Scholar

Choi, H.K., Kim, B.J., Seo, J.H., Kang, J.S., Cho, H., and Seong-Tae Kim, S.T. (2010a). Cohesion establishment factors, Eco1 represses transcription via association with histone demethylase, LSD1. Biophys. Res. Commun. 394, 1063–1068. Search in Google Scholar

Choi, J., Jang, H., Kim, S.-T., Cho, E.-J., and Youn, H.-D. (2010b). Histone demethylase LSD1 is required to induce skeletal muscle differentiation by regulating myogenic factors. Biochem. Biophys. Res. Commun. 401, 327–332. Search in Google Scholar

Czermin, B., Schotta, G., Hülsmann, B.B., Brehm, A., Becker, P.B., Reuter, G., and Imhof, A. (2001). Physical and functional interaction of SU(VAR)3-9 and HDAC1 in Drosophila. EMBO Rep. 2, 915–919. Search in Google Scholar

Di Stefano, L., Ji, J.Y., Moon, N.S., Herr, A., and Dyson, N. (2007). Mutation of DrosophilaLsd1 disrupts H3-K4 methylation, resulting in tissue-specific defects during development. Curr. Biol. 17, 808–812. Search in Google Scholar

Eissenberg, J.C., Lee, M.G., Schneider, J., Ilvarsonn, A., Shiekhattar, R., and Shilatifard, A. (2007). The trithorax-group gene in Drosophila little imaginal discs encodes a trimethylated histone H3 Lys4 demethylase. Nat. Struct. Mol. Biol. 14, 344–346. Search in Google Scholar

Elgin, S.C.R. and Reuter, G. (2006). Position effect variegation in Drosophila: a tool to investigate heterochromatin formation. In: Epigenetics, C.D. Allis, T. Jenuwein, and D. Reinberg, eds. (Cold Spring Harbor: Laboratory Press), pp. 81–100. Search in Google Scholar

Forneris, F., Binda, C., Battaglioli, E., and Mattevi, A. (2008). LSD1: oxidative chemistry for multifaceted functions in chromatin regulation. Trends Biochem. Sci. 33, 181–189. Search in Google Scholar

Forneris, F., Binda, C., Vanoni, M.A., Battaglioli, E., and Mattevi, A. (2005a). Human histone demethylase LSD1 reads the histone code. J. Biol. Chem. 280, 41360–41365. Search in Google Scholar

Forneris, F., Binda, C., Vanoni, M.A., Mattevi, A., and Battaglioli, E. (2005b). Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 579, 2203–2207. Search in Google Scholar

Foster CT, Dovey, O.M., Lezina, L., Luo, J.L., Gant, T.W., Barlev, N., Bradley, A., and Cowley, S.M. (2010). Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability. Mol. Cell. Biol. 30, 4851–4863. Search in Google Scholar

Glozak, M.A. and Seto, E. (2007). Histone deacetylases and cancer. Oncogene 26, 5420–5432. Search in Google Scholar

Hakimi, M., Bochar, D., Chenoweth, J., Lane, W.S., Mandel, G., and Shiekhattar, R. (2002). A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc. Natl. Acad. Sci. USA 99, 7420–7425. Search in Google Scholar

Hayami, S., Kelly, J.D., Cho, H.S., Yoshimatsu, M., Unoki, M., Tsunoda, T., Field, H.I., Neal, D.E., Yamaue, H., Ponder, B.A.J., et al. (2011). Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int. J. Cancer 128, 574–586. Search in Google Scholar

He, Y., Michaels, S.D., and Amasino, R. (2003). Regulation of flowering time by histone acetylation in Arabidopsis. Science 302, 1751–1754. Search in Google Scholar

Hino, S., Sakamoto, A., Nagaoka, K., Anan, K., Wang, Y., Mimasu, S., Umehara, T., Yokoyama, S., Kosai, K., and Nakao, M. (2011). FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat. Commun. 3, 758–769. Search in Google Scholar

Hoffmann, I., Roatsch, M., Schmitt, M.L., Carlino, L., Pippel, M., Sippl, W., and Jung, M. (2012). The role of histone demethylases in cancer therapy. Mol. Oncology 6, 683–703. Search in Google Scholar

Holmes, A., Roseaulin, L., Schurra, C., Waxin, H., Lambert, S., Zaratiegui, M., Martienssen, R.A., and Arcangioli, B. (2012). Lsd1 and Lsd2 control programmed replication fork pauses and imprinting in fission yeast. Cell Rep. 2, 1513–1520. Search in Google Scholar

Hou, F. and Zou, H. (2005). Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion. Mol. Biol. Cell 16, 3908–3918. Search in Google Scholar

Huang, J., Sengupta, R., Espejo, A.B., Lee, M.G., Dorsey, J.A., Richter, M., Opravil, S., Shiekhattar, R., Bedford, M.T., Jenuwein, T., et al. (2007). p53 is regulated by the lysine demethylase LSD1. Nature 449, 105–108. Search in Google Scholar

Huang, Y., Stewart, T.M., Wu, Y., Baylin, S.B., Marton, L.J., Perkins, B., Jones, R.J., Woster, P.M., and Casero, R.A., Jr. (2009). Novel oligoamine analogues inhibit lysinespecific demethylase 1 and induce reexpression of epigenetically silenced genes. Clin. Cancer Res. 15, 7217–7228. Search in Google Scholar

Iyer, L.M., Anantharaman, V., Wolf, M.Y., and Aravind, L. (2008). Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int. J. Parasitol. 38, 1–31. Search in Google Scholar

Jiang, D., Yang, W., He, Y., and Amasino, R.M. (2007). Arabidopsis relatives of the human lysine-specific demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. Plant Cell 19, 2975–2987. Search in Google Scholar

Katz, D.J., Edwards, T.M., Reinke, V., and Kelly, W.G. (2009). A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137, 308–320. Search in Google Scholar

Kaykov, A., Holmes, A.M., and Arcangioli, B. (2004). Formation, maintenance and consequences of the imprint at the mating-type locus in fission yeast. EMBO J. 23, 930–938. Search in Google Scholar

Kim, B.J., Kang, K.M., Jung, S.Y., Choi, H.K., Seo, J.H., Chae, J.H., Cho, E.J., Youn, H.D., Qin, J., and Kim, S.T. (2008). Esco2 is a novel corepressor that associates with various chromatin modifying enzymes. Biochem. Biophys. Res. Commun. 372, 298–304. Search in Google Scholar

Lakowski, B., Roelens, I., and Jacob, S. (2006). CoREST-like complexes regulate chromatin modification and neuronal gene expression. J. Mol. Neurosci. 29, 227–239. Search in Google Scholar

Lan, F., Zaratiegui, M., Villen, J., Vaughn, M.W., Verdel, A., Huarte, M., Shi, Y., Gygi, S. P., Moazed, D., Martienssen, R.A., et al. (2007). S. pombe LSD1 homologs regulate heterochromatin propagation and euchromatic gene transcription. Mol. Cell 26, 89–101. Search in Google Scholar

Lee, M.G., Wynder, C., Cooch, N., and Shiekhattar, R. (2005). An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437, 432–435. Search in Google Scholar

Lee, M.G., Wynder, C., Bochar, D.A., Hakimi, M.A., Cooch, N., and Shiekhattar, R. (2006). Functional interplay between histone demethylase and deacetylase enzymes. Mol. Cell. Biol. 26, 6395–6402. Search in Google Scholar

Lin, Y., Wu, Y., Li, J., Dong, C., Ye, X., Chi, Y.-I., Evers, B.M., and Zhou, B.P. (2010). The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J 29, 1803–1816. Search in Google Scholar

Lv, S., Bu, W., Jiao, H., Liu, B., Zhu, L., Zhao, H., Liao, J., Li, J., and Xu, X. (2010). LSD1 is required for chromosome segregation during mitosis. Eur. J. Cell Biol. 89, 557–563. Search in Google Scholar

Manzur, K.L. and Zhou, M.M. (2005). An archaeal SET domain protein exhibits distinct lysine methyltransferase activity towards DNA-associated protein MC1-α. FEBS Lett. 579, 3859–3865. Search in Google Scholar

Metzger, E., Wissmann, M., Yin, N., Muller, J.M., Schneider, R., Peters, A.H., Gunther, T., Buettner, R., and Schüle, R. (2005). LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439. Search in Google Scholar

Metzger, E., Imhof, A., Patel, D., Kahl, P., Hoffmeyer, K., Friedrichs, N., Müller, J.M., Greschik, H., Kirfel, J., Ji, S., et al. (2010). Phosphorylation of histone H3T6 by PKCβ(I) controls demethylation at histone H3K4. Nature 464, 792–796. Search in Google Scholar

Miotto, B., Sagnier, T., Bohmann, D., Pradel, J., and Graba, Y. (2006). Chameau HAT and DRpd3 HDAC function as antagonistic cofactors of JNK/AP-1-dependent transcription during Drosophila metamorphosis. Genes Dev. 20, 101–112. Search in Google Scholar

Moody, S.E., Perez, D., Pan, T.C., Sarkisian, C.J., Portocarrero, C.P., Sterner, C.J., Notorfrancesco, K.L., Cardiff, R.D., and Chodosh, L.A. (2005). The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8, 197–209. Search in Google Scholar

Mulligan, P., Yang, F., Di Stefano, L., Ji, J.Y., Ouyang, J., Nishikawa, J.L., Toiber, D., Kulkarni, M., Wang, Q., Najafi-Shoushtari, S.H., et al. (2011). A SIRT1-LSD1 corepressor complex regulates Notch target gene expression and development. Mol. Cell 42, 689–699. Search in Google Scholar

Murray, K. (1964). The occurrence of epsilon-N-methyl lysine in histones. Biochemistry 3, 10–15. Search in Google Scholar

Musri, M.M., Carmona, M.C., Hanzu, F.A., Kaliman, P., Gomis, R., and Parrizas, M. (2010). Histone demethylase LSD1 regulates adipogenesis. J. Biol. Chem. 285, 30034–30041. Search in Google Scholar

Nair, V.D., Ge, Y., Balasubramaniyan, N., Kim, J., Okawa, Y., Chikina, M., Troyanskaya, O., and Sealfon, S.C. (2012). Involvement of histone demethylase LSD1 in short-time-scale gene expression changes during cell cycle progression in embryonic stem cells. Mol. Cell. Biol. 32, 4861–4876. Search in Google Scholar

Ng, H.H., Feng, Q., Wang, H., Erdjument-Bromage, H., Tempst, P., Zhang, Y., and Struhl, K. (2002). Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 16, 1518–1527. Search in Google Scholar

Nicolas, E., Lee, M.G., Hakimi, M.A., Cam, H.P., Grewal, S.I., and Shiekhattar, R. (2006). Fission yeast homologs of human histone H3 lysine 4 demethylase regulate a common set of genes with diverse functions. J. Biol. Chem. 281, 35983–35988. Search in Google Scholar

Nottke, A., Colaiácovo, M.P., and Shi, Y. (2009). Developmental roles of the histone lysine demethylases. Development 136, 879–889. Search in Google Scholar

Nottke, A.C, Beese-Sims, S.E., Pantalena, L.F., Reinke, V., Shi, Y., and Colaiacovo, M.P. (2011). SPR-5 is a histone H3K4 demethylase with a role in meiotic double-strand break repair. Proc. Natl. Acad. Sci. USA 108, 12805–12810. Search in Google Scholar

Opel, M., Lando, D., Bonilla, C., Trewick, S.C., Boukaba, A., Walfridsson, J., Cauwood, J., Werler, P.J., Carr, A.M., Kouzarides, T., et al. (2007). Genome-wide studies of histone demethylation catalysed by the fission yeast homologues of mammalian LSD1. PLoS ONE 2, e386. Search in Google Scholar

Paik, W.K. and Kim, S. (1973). Enzymatic demethylation of calf thymus histones. Biochem. Biophys. Res. Commun. 51, 781–788. Search in Google Scholar

Pedersen, M.T. and Helin, K. (2010). Histone demethylases in development and disease. Trends Cell Biol. 20, 662–671. Search in Google Scholar

Rea, S., Eisenhaber, F., O’Carroll, D., Stahl, B.D., Sun, Z-W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C.P., Allis, C.D., et al. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599. Search in Google Scholar

Reuter, G., Dorn, R., and Hoffmann, H.-J. (1982). Butyrate sensitive suppressor of position-effect variegation mutations in Drosophila melanogaster. Mol. Gen. Genet. 188, 480–485. Search in Google Scholar

Rotili, D. and Mai, A. (2011). Targeting histone demethylases: A new avenue for the fight against cancer. Genes Cancer 2, 663–679. Search in Google Scholar

Rudolph, T., Yonezawa, M., Lein, S., Heidrich, K., Kubicek, S., Schäfer, C., Phalke, S., Walther, M., Schmidt, A., Jenuwein, T., et al. (2007). Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3. Mol. Cell 26, 103–115. Search in Google Scholar

Schaner, C.E., Deshpande, G., Schedl, P.D., and Kelly, W.G. (2003). A conserved chromatin architecture marks and maintains the restricted germ cell lineage in worms and flies. Dev. Cell 5, 747–757. Search in Google Scholar

Schotta, G., Ebert, A., Dorn, R., and Reuter, G. (2003). Position-effect variegation and the genetic dissection of chromatin regulation in Drosophila. Semin. Cell Dev. Biol. 14, 67–75. Search in Google Scholar

Schule, B., Oviedo, A., Johnston, K., Pai, S., and Francke, U. (2005). Inactivating mutations in ESCO2 cause SC phocomelia and Roberts syndrome: no phenotype-genotype correlation. Am. J. Hum. Genet. 77, 1117–1128. Search in Google Scholar

Secombe, J., Li, L., Carlos, L., and Eisenman, R.N. (2007). The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes Dev. 21, 537–551. Search in Google Scholar

Seydoux, G. and Dunn, M.A. (1997). Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development 124, 2191–2201. Search in Google Scholar

Seydoux, G. and Braun, R.E. (2006). Pathway to totipotency: lessons from germ cells. Cell 127, 891–904. Search in Google Scholar

Shi, Y. (2007). Histone lysine demethylases: emerging roles in development, physiology and disease. Nature Rev. Genet. 8, 829–833. Search in Google Scholar

Shi, Y. and Whetstine, J.R. (2007). Dynamic regulation of histone lysine methylation by demethylases. Mol. Cell 25, 1–14. Search in Google Scholar

Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A., Casero, R.A., and Shi, Y. (2004). Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953. Search in Google Scholar

Shi, Y.J., Matson, C., Lan, F., Iwase, S., Baba, T., and Shi, Y. (2005). Regulation of LSD1 histone demethylase activity by its associated factors. Mol. Cell 19, 857–864. Search in Google Scholar

Spedaletti, V., Polticelli, F., Capodaglio, V., Eugenia Schinina, M., Stano, P., Federico, R., and Tavladoraki, P. (2008). Characterization of a lysine-specific histone demethylase from Arabidopsis thaliana. Biochemstry 47, 4936–4947. Search in Google Scholar

Sun, G., Alzayady, K., Stewart, R., Ye, P., Yang, S., Li, W., and Shi, Y. (2010). Histone demethylase LSD1 regulates neural stem cell proliferation. Mol. Cell. Biol. 30, 1997–2005. Search in Google Scholar

Szabad, J., Reuter, G., and Schröder, M.B. (1988). The effect of two mutations connected with chromatin functions on female germ-line cells of Drosophila. Mol. Gen. Genet. 211, 56–62. Search in Google Scholar

Tan, M., Luo, H., Lee, S., Jin, F., Yang, J.S., Montellier, E., Buchou, T., Cheng, Z., Rousseaux, S., Rajagopal, N., et al. (2011). Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028. Search in Google Scholar

Tian, X. and Fang, J. (2007). Current perspectives on histone demethylases. Acta Biochim. Biophys. Sinica 39, 81–88. Search in Google Scholar

Tsai, M.-C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J.K., Lan, F., Shi, Y., Segal, E., and Chang, H.Y. (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693. Search in Google Scholar

Tschiersch, B., Hofmann, A., Krauss, V., Dorn, R., Korge, G., and Reuter, G. (1994). The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13, 3822–3831. Search in Google Scholar

van Leeuwen, F., Gafken, P.R., and Gottschling, D.E. (2002). Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109, 745–756. Search in Google Scholar

Wang, J., Scully, K., Zhu, X., Cai, L., Zhang, J., Prefontaine, G.G., Krones, A., Ohgi, K.A., Zhu, P., Garcia-Bassets, I., et al. (2007). Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446, 882–887. Search in Google Scholar

Wang, Y., Zhang, H., Chen, Y., Sun, Y., Yang, F., Yu, W., Liang, J., Sun, L., Yang, X., Shi, L., et al. (2009a). LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138, 660–672. Search in Google Scholar

Wang, J., Hevi, S., Kurash, J.K., Lei, H., Gay, F., Bajko, J., Su, H., Sun, W., Chang, H., Xu, G., et al. (2009b). The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat. Genet. 41, 125–139. Search in Google Scholar

Wang, J., Lu, F., Ren, Q., Sun, H., Xu, Z., Lan, R., Liu, Y., Ward, D., Quan, J., Ye, T., et al. (2011). Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties. Cancer Res. 71, 7238–7249. Search in Google Scholar

Westpahl, T. and Reuter, G. (2002). Recombinogenetic effects of suppressor of position-effect variegation in Drosophila. Genetics 160, 609–621. Search in Google Scholar

Whyte, W.A., Bilodeau, S., Orlando, D.A., Hoke, H.A., Frampton, G.M., Foster, C.T., Cowley, S.M., and Young, R.A. (2012). Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482, 221–225. Search in Google Scholar

Willmann, D., Lim, S., Wetzel, S., Metzger, E., Jandausch, A., Wilk, W., Jung, M., Forne, I., Imhof, A., Janzer, A., et al. (2012). Impairment of prostate cancer cell growth by a selective and reversible lysine-specific demethylase 1 inhibitor. Int. J. Cancer 131, 2704–2709. Search in Google Scholar

Wustmann, G., Szidonya, J., Taubert, H., and Reuter, G. (1989). The genetics of position-effect modifying loci in Drosophila melanogaster. Mol. Gen. Genet. 217, 520–527. Search in Google Scholar

Yang, M., Culhane, J.C., Szewczuk, L.M., Gocke, C.B., Brautigam, C.A., Tomchick, D.R., Machius, M., Cole, P.A., and Yu, H. (2007). Structural basis of histone demethylation by LSD1 revealed by suicide inactivation. Nat. Struct. Mol. Biol. 14, 535–539 Search in Google Scholar

Yang, J., Huang, J., Dasgupta, M., Sears, N., Miyagi, M., Wang, B., Chance, M.R., Chen, X., Du, Y., Wang, Y., et al. (2010). Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc. Natl. Acad. Sci. USA 107, 21499–21504. Search in Google Scholar

Yang, P., Wang, Y., Chen, J., Li, H., Kang, L., Zhang, Y., Chen, S., Zhu, B., and Gao, S. (2011). RCOR2 is a subunit of the LSD1 complex that regulates ESC property and substitutes for SOX2 in reprogramming somatic cells to pluripotency. Stem. Cells 29, 791–801. Search in Google Scholar

Zhang, J., Shi, X., Li, Y., Kim, B.J., Jia, J., Huang, Z., Yang, T., Fu, X., Jung, S.Y., Wang, Y., et al. (2008). Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol. Cell 31, 143–151. Search in Google Scholar

Received: 2013-1-15
Accepted: 2013-3-21
Published Online: 2013-03-25
Published in Print: 2013-08-01

©2013 by Walter de Gruyter Berlin Boston