Abstract
The complex mammalian cortex develops from a simple neuroepithelium through the proliferation of neuronal progenitors, their asymmetric division and cell migration. Newly generated neurons transiently assume a multipolar morphology before they polarize to form a trailing axon and a leading process that is required for their radial migration. The polarization and migration events during cortical development are under the control of multiple signaling cascades that coordinate the different cellular processes involved in neuronal differentiation. GTPases perform essential functions at different stages of neuronal development as central components of these pathways. They have been widely studied using cell lines and primary neuronal cultures but their physiological function in vivo still remains to be explored in many cases. Here we review the function of GTPases that have been studied genetically by the analysis of the embryonic nervous system in knockout mice. The phenotype of these mutants has highlighted the importance of GTPases for different steps of development by orchestrating cytoskeletal rearrangements and neuronal polarization.
About the authors

Bhavin Shah studied Biology at the Universities of Mumbai and Pune (India). He is currently doing his PhD at the University of Münster. His PhD project deals with the role of Rap1 GTPases and their upstream regulators in neuronal polarity and cortical development.

Andreas Püschel studied Biology at the Universities of Bonn and Heidelberg. During his PhD he worked from 1986 to 1989 with Peter Gruss first at the ZMBH in Heidelberg and then at the Max Planck Institute for Biophysical Chemistry in Göttingen on the regulation of Hox genes. After postdoctoral studies on Pax genes in zebrafish at the Institute of Neuroscience in Eugene (Oregon), he joined the Max Planck Institute for Brain Research in Frankfurt in 1992, where he investigated the role of semaphorins as axon guidance molecules. In 2001, he was appointed Professor in Molecular Biology at the Institute for Molecular Cell Biology at the University of Münster. His current research focuses on identifying and analyzing the signals that direct the differentiation of neurons using knockout mice and live cell imaging.
Acknowledgments
The analysis of Rap1 function was supported by the DFG (SFB 629).
References
Anthony, T.E., Klein, C., Fishell, G., and Heintz, N. (2004). Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41, 881–890.10.1016/S0896-6273(04)00140-0Search in Google Scholar
Ballif, B.A., Arnaud, L., and Cooper, J.A. (2003). Tyrosine phosphorylation of Disabled-1 is essential for Reelin-stimulated activation of Akt and Src family kinases. Brain Res. Mol. Brain Res. 117, 152–159.10.1016/S0169-328X(03)00295-XSearch in Google Scholar
Barnes, A.P. and Polleux, F. (2009). Establishment of axon-dendrite polarity in developing neurons. Annu. Rev. Neurosci. 32, 347–381.10.1146/annurev.neuro.31.060407.125536Search in Google Scholar
Barnes, A.P., Solecki, D., and Polleux, F. (2008). New insights into the molecular mechanisms specifying neuronal polarity in vivo. Curr. Opin. Neurobiol. 18, 44–52.10.1016/j.conb.2008.05.003Search in Google Scholar
Bielas, S., Higginbotham, H., Koizumi, H., Tanaka, T., and Gleeson, J.G. (2004). Cortical neuronal migration mutants suggest separate but intersecting pathways. Annu. Rev. Cell Dev. Biol. 20, 593–618.10.1146/annurev.cellbio.20.082503.103047Search in Google Scholar
Bock, H.H. and Herz, J. (2003). Reelin activates SRC family tyrosine kinases in neurons. Curr. Biol. 13, 18–26.10.1016/S0960-9822(02)01403-3Search in Google Scholar
Bolis, A., Corbetta, S., Cioce, A., and de Curtis, I. (2003). Differential distribution of Rac1 and Rac3 GTPases in the developing mouse brain: implications for a role of Rac3 in Purkinje cell differentiation. Eur. J. Neurosci. 18, 2417–2424.10.1046/j.1460-9568.2003.02938.xSearch in Google Scholar PubMed
Breunig, J.J., Haydar, T.F., and Rakic, P. (2011). Neural stem cells: historical perspective and future prospects. Neuron 70, 614–625.10.1016/j.neuron.2011.05.005Search in Google Scholar PubMed PubMed Central
Bultje, R.S., Castaneda-Castellanos, D.R., Jan, L.Y., Jan, Y.N., Kriegstein, A.R., and Shi, S.H. (2009). Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron 63, 189–202.10.1016/j.neuron.2009.07.004Search in Google Scholar PubMed PubMed Central
Cappello, S., Attardo, A., Wu, X., Iwasato, T., Itohara, S., Wilsch-Bräuninger, M., Eilken, H., Rieger, M., Schroeder, T., Huttner, W., et al. (2006). The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat. Neurosci. 9, 1099–1107.10.1038/nn1744Search in Google Scholar PubMed
Cappello, S., Bohringer, C.R., Bergami, M., Conzelmann, K.K., Ghanem, A., Tomassy, G.S., Arlotta, P., Mainardi, M., Allegra, M., Caleo, M., et al. (2012). A radial glia-specific role of RhoA in double cortex formation. Neuron 73, 911–924.10.1016/j.neuron.2011.12.030Search in Google Scholar PubMed
Chen, L., Liao, G., Yang, L., Campbell, K., Nakafuku, M., Kuan, C.Y., and Zheng, Y. (2006). Cdc42 deficiency causes Sonic hedgehog-independent holoprosencephaly. Proc. Natl. Acad. Sci. USA 103, 16520–16525.10.1073/pnas.0603533103Search in Google Scholar PubMed PubMed Central
Chen, L., Liao, G., Waclaw, R.R., Burns, K.A., Linquist, D., Campbell, K., Zheng, Y., and Kuan, C.Y. (2007). Rac1 controls the formation of midline commissures and the competency of tangential migration in ventral telencephalic neurons. J. Neurosci. 27, 3884–3893.10.1523/JNEUROSCI.3509-06.2007Search in Google Scholar PubMed PubMed Central
Cloetta, D., Thomanetz, V., Baranek, C., Lustenberger, R.M., Lin, S., Oliveri, F., Atanasoski, S., and Ruegg, M.A. (2013). Inactivation of mTORC1 in the developing brain causes microcephaly and affects gliogenesis. J. Neurosci. 33, 7799–7810.10.1523/JNEUROSCI.3294-12.2013Search in Google Scholar PubMed PubMed Central
Corbetta, S., Gualdoni, S., Albertinazzi, C., Paris, S., Croci, L., Consalez, G.G., and de Curtis, I. (2005). Generation and characterization of Rac3 knockout mice. Mol. Cell. Biol. 25, 5763–5776.10.1128/MCB.25.13.5763-5776.2005Search in Google Scholar PubMed PubMed Central
Corbetta, S., Gualdoni, S., Ciceri, G., Monari, M., Zuccaro, E., Tybulewicz, V.L., and de Curtis, I. (2009). Essential role of Rac1 and Rac3 GTPases in neuronal development. FASEB J. 23, 1347–1357.10.1096/fj.08-121574Search in Google Scholar PubMed
Costa, M., Wen, G., Lepier, A., Schroeder, T., and Götz, M. (2008). Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex. Development. 135, 11–22.10.1242/dev.009951Search in Google Scholar PubMed
Czuchra, A., Wu, X., Meyer, H., van Hengel, J., Schroeder, T., Geffers, R., Rottner, K., and Brakebusch, C. (2005). Cdc42 is not essential for filopodium formation, directed migration, cell polarization, and mitosis in fibroblastoid cells. Mol. Biol. Cell. 16, 4473–4484.10.1091/mbc.e05-01-0061Search in Google Scholar PubMed PubMed Central
D’Adamo, P., Menegon, A., Lo Nigro, C., Grasso, M., Gulisano, M., Tamanini, F., Bienvenu, T., Gedeon, A., Oostra, B., Wu, S., et al. (1998). Mutations in GDI1 are responsible for X-linked non-specific mental retardation. Nat. Genet. 19, 134–139.10.1038/487Search in Google Scholar PubMed
Del Río, J., Martínez, A., Auladell, C., and Soriano, E. (2000). Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages. Cereb. Cortex 10, 784–801.10.1093/cercor/10.8.784Search in Google Scholar PubMed
Dubois, N.C., Hofmann, D., Kaloulis, K., Bishop, J.M., and Trumpp, A. (2006). Nestin-Cre transgenic mouse line Nes-Cre1 mediates highly efficient Cre/loxP mediated recombination in the nervous system, kidney, and somite-derived tissues. Genesis 44, 355–360.10.1002/dvg.20226Search in Google Scholar
Eagleson, K.L., Schlueter McFadyen-Ketchum, L.J., Ahrens, E.T., Mills, P.H., Does, M.D., Nickols, J., and Levitt, P. (2007). Disruption of Foxg1 expression by knock-in of cre recombinase: effects on the development of the mouse telencephalon. Neuroscience 148, 385–399.10.1016/j.neuroscience.2007.06.012Search in Google Scholar
Esteban, L., Vicario-Abejón, C., Fernández-Salguero, P., Fernández-Medarde, A., Swaminathan, N., Yienger, K., Lopez, E., Malumbres, M., McKay, R., Ward, J., et al. (2001). Targeted genomic disruption of H-ras and N-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development. Mol. Cell. Biol. 21, 1444–1452.10.1128/MCB.21.5.1444-1452.2001Search in Google Scholar
Facchinetti, V., Ouyang, W., Wei, H., Soto, N., Lazorchak, A., Gould, C., Lowry, C., Newton, A.C., Mao, Y., Miao, R.Q., et al. (2008). The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J. 27, 1932–1943.10.1038/emboj.2008.120Search in Google Scholar
Foster, R., Hu, K., Lu, Y., Nolan, K., Thissen, J., and Settleman, J. (1996). Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol. Cell. Biol. 16, 2689–2699.10.1128/MCB.16.6.2689Search in Google Scholar
Franco, S., Martinez-Garay, I., Gil-Sanz, C., Harkins-Perry, S., and Müller, U. (2011). Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron 69, 482–497.10.1016/j.neuron.2011.01.003Search in Google Scholar
Frotscher, M. (2010). Role for Reelin in stabilizing cortical architecture. Trends Neurosci. 33, 407–414.10.1016/j.tins.2010.06.001Search in Google Scholar
Fukata, M., Nakagawa, M., and Kaibuchi, K. (2003). Roles of Rho-family GTPases in cell polarisation and directional migration. Curr. Opin. Cell Biol. 15, 590–597.10.1016/S0955-0674(03)00097-8Search in Google Scholar
Gao, P., Sultan, K.T., Zhang, X.J., and Shi, S.H. (2013). Lineage-dependent circuit assembly in the neocortex. Development 140, 2645–2655.10.1242/dev.087668Search in Google Scholar PubMed PubMed Central
Garvalov, B., Flynn, K., Neukirchen, D., Meyn, L., Teusch, N., Wu, X., Brakebusch, C., Bamburg, J., and Bradke, F. (2007). Cdc42 regulates cofilin during the establishment of neuronal polarity. J Neurosci. 27, 13117–13129.10.1523/JNEUROSCI.3322-07.2007Search in Google Scholar PubMed PubMed Central
Goebbels, S., Bormuth, I., Bode, U., Hermanson, O., Schwab, M., and Nave, K.-A. (2006). Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 44, 611–621.10.1002/dvg.20256Search in Google Scholar PubMed
Govek, E.E., Newey, S.E., and Van Aelst, L. (2005). The role of the Rho GTPases in neuronal development. Genes Dev. 19, 1–49.10.1101/gad.1256405Search in Google Scholar PubMed
Guo, H., Hong, S., Jin, X., Chen, R., Avasthi, P., Tu, Y., Ivanco, T., and Li, Y. (2000). Specificity and efficiency of Cre-mediated recombination in Emx1-Cre knock-in mice. Biochem. Biophys. Res. Commun. 273, 661–665.10.1006/bbrc.2000.2870Search in Google Scholar PubMed
Gupta, A., Tsai, L.H., and Wynshaw-Boris, A. (2002). Life is a journey: a genetic look at neocortical development. Nat. Rev. Genet. 3, 342–355.10.1038/nrg799Search in Google Scholar PubMed
Hall, A. and Lalli, G. (2010). Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb. Perspect. Biol. 2, a001818.10.1101/cshperspect.a001818Search in Google Scholar PubMed PubMed Central
Hartfuss, E., Galli, R., Heins, N., and Gotz, M. (2001). Characterization of CNS precursor subtypes and radial glia. Dev. Biol. 229, 15–30.10.1006/dbio.2000.9962Search in Google Scholar PubMed
Hatanaka, Y. and Yamauchi, K. (2013). Excitatory cortical neurons with multipolar shape establish neuronal polarity by forming a tangentially oriented axon in the intermediate zone. Cereb. Cortex 23, 105–113.10.1093/cercor/bhr383Search in Google Scholar PubMed
Heasman, S.J. and Ridley, A.J. (2008). Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell. Biol. 9, 690–701.10.1038/nrm2476Search in Google Scholar PubMed
Hebert, J.M. and McConnell, S.K. (2000). Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures. Dev. Biol. 222, 296–306.10.1006/dbio.2000.9732Search in Google Scholar PubMed
Herz, J. and Chen, Y. (2006). Reelin, lipoprotein receptors and synaptic plasticity. Nat. Rev. Neurosci. 7, 850–859.10.1038/nrn2009Search in Google Scholar PubMed
Higginbotham, H., Guo, J., Yokota, Y., Umberger, N.L., Su, C.Y., Li, J., Verma, N., Hirt, J., Ghukasyan, V., Caspary, T., et al. (2013). Arl13b-regulated cilia activities are essential for polarized radial glial scaffold formation. Nat Neurosci. 16, 1000–1007.10.1038/nn.3451Search in Google Scholar PubMed PubMed Central
Iden, S. and Collard, J. (2008). Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol. Cell. Biol. 9, 846–859.10.1038/nrm2521Search in Google Scholar PubMed
Imai, F. (2006). Inactivation of aPKC results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex. Development 133, 1735–44.10.1242/dev.02330Search in Google Scholar PubMed
Jossin, Y. and Cooper, J. (2011). Reelin, Rap1 and N-cadherin orient the migration of multipolar neurons in the developing neocortex. Nat. Neurosci. 14, 697–703.10.1038/nn.2816Search in Google Scholar PubMed PubMed Central
Kahn, R.A., Cherfils, J., Elias, M., Lovering, R.C., Munro, S., and Schurmann, A. (2006). Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. J. Cell Biol. 172, 645–650.10.1083/jcb.200512057Search in Google Scholar PubMed PubMed Central
Kassai, H., Terashima, T., Fukaya, M., Nakao, K., Sakahara, M., Watanabe, M., and Aiba, A. (2008). Rac1 in cortical projection neurons is selectively required for midline crossing of commissural axonal formation. Eur. J. Neurosci. 28, 257–267.10.1111/j.1460-9568.2008.06343.xSearch in Google Scholar PubMed
Katayama, K., Melendez, J., Baumann, J.M., Leslie, J.R., Chauhan, B.K., Nemkul, N., Lang, R.A., Kuan, C.Y., Zheng, Y., and Yoshida, Y. (2011). Loss of RhoA in neural progenitor cells causes the disruption of adherens junctions and hyperproliferation. Proc. Natl. Acad. Sci. USA 108, 7607–7612.10.1073/pnas.1101347108Search in Google Scholar PubMed PubMed Central
Kawauchi, T., Sekine, K., Shikanai, M., Chihama, K., Tomita, K., Kubo, K.-I., Nakajima, K., Nabeshima, Y.-I., and Hoshino, M. (2010). Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-cadherin trafficking. Neuron 67, 588–602.10.1016/j.neuron.2010.07.007Search in Google Scholar PubMed
Kowalczyk, T., Pontious, A., Englund, C., Daza, R.A., Bedogni, F., Hodge, R., Attardo, A., Bell, C., Huttner, W.B., and Hevner, R.F. (2009). Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb. Cortex 19, 2439–2450.10.1093/cercor/bhn260Search in Google Scholar PubMed PubMed Central
Kuo, G., Arnaud, L., Kronstad-O’Brien, P., and Cooper, J.A. (2005). Absence of Fyn and Src causes a reeler-like phenotype. J. Neurosci. 25, 8578–8586.10.1523/JNEUROSCI.1656-05.2005Search in Google Scholar PubMed PubMed Central
Laplante, M. and Sabatini, D.M. (2012). mTOR signaling in growth control and disease. Cell 149, 274–293.10.1016/j.cell.2012.03.017Search in Google Scholar PubMed PubMed Central
Leone, D.P., Srinivasan, K., Brakebusch, C., and McConnell, S.K. (2010). The rho GTPase Rac1 is required for proliferation and survival of progenitors in the developing forebrain. Dev. Neurobiol. 70, 659–678.10.1002/dneu.20804Search in Google Scholar PubMed PubMed Central
Lewis, T.L., Jr., Courchet, J., and Polleux, F. (2013). Cell biology in neuroscience: Cellular and molecular mechanisms underlying axon formation, growth, and branching. J. Cell Biol. 202, 837–848.10.1083/jcb.201305098Search in Google Scholar PubMed PubMed Central
Li, Y.H., Ghavampur, S., Bondallaz, P., Will, L., Grenningloh, G., and Püschel, A.W. (2009). Rnd1 regulates axon extension by enhancing the microtubule destabilizing activity of SCG10. J. Biol. Chem. 284, 363–371.10.1074/jbc.M808126200Search in Google Scholar PubMed PubMed Central
Liang, H., Hippenmeyer, S., and Ghashghaei, H.T. (2012). A Nestin-cre transgenic mouse is insufficient for recombination in early embryonic neural progenitors. Biol. Open. 1, 1200–1203.10.1242/bio.20122287Search in Google Scholar PubMed PubMed Central
LoTurco, J.J. and Bai, J. (2006). The multipolar stage and disruptions in neuronal migration. Trends Neurosci. 29, 407–413.10.1016/j.tins.2006.05.006Search in Google Scholar PubMed
Marthiens, V. and ffrench-Constant, C. (2009). Adherens junction domains are split by asymmetric division of embryonic neural stem cells. EMBO Rep. 10, 515–520.10.1038/embor.2009.36Search in Google Scholar PubMed PubMed Central
Meyer, G. (2010). Building a human cortex: the evolutionary differentiation of Cajal-Retzius cells and the cortical hem. J. Anat. 217, 334–343.10.1111/j.1469-7580.2010.01266.xSearch in Google Scholar PubMed PubMed Central
Mocholi, E., Ballester-Lurbe, B., Arque, G., Poch, E., Peris, B., Guerri, C., Dierssen, M., Guasch, R.M., Terrado, J., and Perez-Roger, I. (2011). RhoE deficiency produces postnatal lethality, profound motor deficits and neurodevelopmental delay in mice. PLoS One 6, e19236.10.1371/journal.pone.0019236Search in Google Scholar PubMed PubMed Central
Nadarajah, B. and Parnavelas, J.G. (2002). Modes of neuronal migration in the developing cerebral cortex. Nat. Rev. Neurosci. 3, 423–432.10.1038/nrn845Search in Google Scholar PubMed
Nadarajah, B., Brunstrom, J., Grutzendler, J., Wong, R., and Pearlman, A. (2001). Two modes of radial migration in early development of the cerebral cortex. Nat. Neurosci. 4, 143–150.10.1038/83967Search in Google Scholar
Nguyen, L., Besson, A., Heng, J.I., Schuurmans, C., Teboul, L., Parras, C., Philpott, A., Roberts, J.M., and Guillemot, F. (2006). p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev. 20, 1511–1524.10.1101/gad.377106Search in Google Scholar
Noctor, S., Martínez-Cerdeño, V., Ivic, L., and Kriegstein, A. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci. 7, 136–144.10.1038/nn1172Search in Google Scholar
Ogawa, M., Miyata, T., Nakajima, K., Yagyu, K., Seike, M., Ikenaka, K., Yamamoto, H., and Mikoshiba, K. (1995). The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14, 899–912.10.1016/0896-6273(95)90329-1Search in Google Scholar
Oinuma, I., Katoh, H., and Negishi, M. (2007). R-Ras controls axon specification upstream of glycogen synthase kinase-3beta through integrin-linked kinase. J. Biol. Chem. 282, 303–318.10.1074/jbc.M607979200Search in Google Scholar PubMed
Pacary, E., Heng, J., Azzarelli, R., Riou, P., Castro, D., Lebel-Potter, M., Parras, C., Bell, D.M., Ridley, A.J., Parsons, M., et al. (2011). Proneural transcription factors regulate different steps of cortical neuron migration through Rnd-mediated inhibition of RhoA signaling. Neuron 69, 1069–1084.10.1016/j.neuron.2011.02.018Search in Google Scholar PubMed PubMed Central
Pacary, E., Azzarelli, R., and Guillemot, F. (2013). Rnd3 coordinates early steps of cortical neurogenesis through actin-dependent and -independent mechanisms. Nat. Commun. 4, 1635.10.1038/ncomms2614Search in Google Scholar PubMed PubMed Central
Park, T.J. and Curran, T. (2008). Crk and Crk-like play essential overlapping roles downstream of disabled-1 in the Reelin pathway. J Neurosci. 28, 13551–13562.10.1523/JNEUROSCI.4323-08.2008Search in Google Scholar PubMed PubMed Central
Peng, X., Lin, Q., Liu, Y., Jin, Y., Druso, J.E., Antonyak, M.A., Guan, J.L., and Cerione, R.A. (2013). Inactivation of Cdc42 in embryonic brain results in hydrocephalus with ependymal cell defects in mice. Protein Cell. 4, 231–242.10.1007/s13238-012-2098-2Search in Google Scholar PubMed PubMed Central
Peris, B., Gonzalez-Granero, S., Ballester-Lurbe, B., Garcia-Verdugo, J.M., Perez-Roger, I., Guerri, C., Terrado, J., and Guasch, R.M. (2012). Neuronal polarization is impaired in mice lacking RhoE expression. J. Neurochem. 121, 903–914.10.1111/j.1471-4159.2012.07733.xSearch in Google Scholar PubMed
Pfeffer, S. (2001). Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell. Biol. 11, 487–491.10.1016/S0962-8924(01)02147-XSearch in Google Scholar
Pinto, L., Mader, M.T., Irmler, M., Gentilini, M., Santoni, F., Drechsel, D., Blum, R., Stahl, R., Bulfone, A., Malatesta, P., et al. (2008). Prospective isolation of functionally distinct radial glial subtypes – lineage and transcriptome analysis. Mol. Cell. Neurosci. 38, 15–42.10.1016/j.mcn.2008.01.012Search in Google Scholar PubMed
Riento, K., Guasch, R., Garg, R., Jin, B., and Ridley, A. (2003). RhoE binds to ROCK I and inhibits downstream signaling. Mol. Cell. Biol. 23, 4219–4229.10.1128/MCB.23.12.4219-4229.2003Search in Google Scholar PubMed PubMed Central
Sakakibara, A., Sato, T., Ando, R., Noguchi, N., Masaoka, M., and Miyata, T. (2013). Dynamics of centrosome translocation and microtubule organization in neocortical neurons during distinct modes of polarization. Cereb. Cortex, in press.Search in Google Scholar
Schluter, O.M., Schmitz, F., Jahn, R., Rosenmund, C., and Sudhof, T.C. (2004). A complete genetic analysis of neuronal Rab3 function. J. Neurosci. 24, 6629–6637.10.1523/JNEUROSCI.1610-04.2004Search in Google Scholar PubMed PubMed Central
Schmid, R. and Anton, E. (2003). Role of integrins in the development of the cerebral cortex. Cereb. Cortex 13, 219–224.10.1093/cercor/13.3.219Search in Google Scholar PubMed
Schwamborn, J. and Püschel, A. (2004). The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat. Neurosci. 7, 923–929.10.1038/nn1295Search in Google Scholar PubMed
Tabata, H. and Nakajima, K. (2003). Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J. Neurosci. 23, 9996–10001.10.1523/JNEUROSCI.23-31-09996.2003Search in Google Scholar
Tahirovic, S., Hellal, F., Neukirchen, D., Hindges, R., Garvalov, B.K., Flynn, K.C., Stradal, T.E., Chrostek-Grashoff, A., Brakebusch, C., and Bradke, F. (2010). Rac1 regulates neuronal polarization through the WAVE complex. J. Neurosci. 30, 6930–6943.10.1523/JNEUROSCI.5395-09.2010Search in Google Scholar PubMed PubMed Central
Talens-Visconti, R., Peris, B., Guerri, C., and Guasch, R.M. (2010). RhoE stimulates neurite-like outgrowth in PC12 cells through inhibition of the RhoA/ROCK-I signalling. J. Neurochem. 112, 1074–1087.10.1111/j.1471-4159.2009.06526.xSearch in Google Scholar PubMed
Thomanetz, V., Angliker, N., Cloetta, D., Lustenberger, R.M., Schweighauser, M., Oliveri, F., Suzuki, N., and Ruegg, M.A. (2013). Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology. J. Cell Biol. 201, 293–308.10.1083/jcb.201205030Search in Google Scholar PubMed PubMed Central
Thoreen, C.C., Chantranupong, L., Keys, H.R., Wang, T., Gray, N.S., and Sabatini, D.M. (2012). A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113.10.1038/nature11083Search in Google Scholar
Tissir, F. and Goffinet, A.M. (2003). Reelin and brain development. Nat. Rev. Neurosci. 4, 496–505.10.1038/nrn1113Search in Google Scholar
Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R., Richardson, J., and Herz, J. (1999). Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689–701.10.1016/S0092-8674(00)80782-5Search in Google Scholar
Wennerberg, K., Rossman, K.L., and Der, C.J. (2005). The Ras superfamily at a glance. J. Cell Sci. 118, 843–846.10.1242/jcs.01660Search in Google Scholar PubMed
Wu, S.X., Goebbels, S., Nakamura, K., Nakamura, K., Kometani, K., Minato, N., Kaneko, T., Nave, K.A., and Tamamaki, N. (2005). Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proc. Natl. Acad. Sci. USA 102, 17172–17177.10.1073/pnas.0508560102Search in Google Scholar PubMed PubMed Central
Wullschleger, S., Loewith, R., and Hall, M.N. (2006). TOR signaling in growth and metabolism. Cell 124, 471–484.10.1016/j.cell.2006.01.016Search in Google Scholar PubMed
Xi Lin, B.L., Xiangsheng Yang, Xiaojing Yue, Lixia Diao, Jing Wang, and Jiang Chang (2013). Genetic deletion of Rnd3 results in aqueductal stenosis leading to hydrocephalus through up-regulation of Notch signaling. Proc. Natl. Acad. Sci. USA 110, 8236–8241.10.1073/pnas.1219995110Search in Google Scholar PubMed PubMed Central
Yoshida, M., Assimacopoulos, S., Jones, K.R., and Grove, E.A. (2006). Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order. Development 133, 537–545.10.1242/dev.02209Search in Google Scholar PubMed
Yoshimura, T., Arimura, N., and Kaibuchi, K. (2006a). Signaling networks in neuronal polarization. J. Neurosci. 26, 10626–10630.10.1523/JNEUROSCI.3824-06.2006Search in Google Scholar PubMed PubMed Central
Yoshimura, T., Arimura, N., Kawano, Y., Kawabata, S., Wang, S., and Kaibuchi, K. (2006b). Ras regulates neuronal polarity via the PI3-kinase/Akt/GSK-3β/CRMP-2 pathway. Biochem. Biophys. Res. Commun. 340, 62–68.10.1016/j.bbrc.2005.11.147Search in Google Scholar PubMed
Zhang, Q., Hu, J., and Ling, K. (2013). Molecular views of Arf-like small GTPases in cilia and ciliopathies. Exp. Cell Res. 319, 2316–2322.10.1016/j.yexcr.2013.03.024Search in Google Scholar PubMed PubMed Central
Zou, J., Zhou, L., Du, X.X., Ji, Y., Xu, J., Tian, J., Jiang, W., Zou, Y., Yu, S., Gan, L., et al. (2011). Rheb1 is required for mTORC1 and myelination in postnatal brain development. Dev. Cell. 20, 97–108.10.1016/j.devcel.2010.11.020Search in Google Scholar PubMed PubMed Central
Zovein, A.C., Luque, A., Turlo, K.A., Hofmann, J.J., Yee, K.M., Becker, M.S., Fassler, R., Mellman, I., Lane, T.F., and Iruela-Arispe, M.L. (2010). Beta1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism. Dev Cell. 18, 39–51.10.1016/j.devcel.2009.12.006Search in Google Scholar PubMed PubMed Central
©2014 by Walter de Gruyter Berlin/Boston