Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 11, 2014

Antagonizing leptin: current status and future directions

  • Lennart Zabeau

    After finishing his biotechnology studies at Ghent University in 1998, Lennart Zabeau joined the CRL to study the mechanisms underlying cytokine receptor clustering and activation. He started to work on the interleukin-5 receptor, but later on the leptin receptor became his main research interest. He obtained a PhD in 2004. With an FWO fellowship he is currently involved in the design and evaluation of leptin and leptin receptor antagonists in vitro and in mouse models for certain autoimmune diseases.

    , Frank Peelman

    After graduating as a biologist in 1993, Frank Peelman obtained his PhD in 1999 on the structure-function relationships of lecithin:cholesterol acyltransferase at the Biochemistry department of Ghent University. In 2002, he joined the Cytokine Receptor Lab to investigate the properties of leptin binding to its receptor. In 2006 he became a full professor at Ghent University, and his current research focuses on the molecular dissection of protein-protein interactions, with focus on cytokines and Toll-like receptor signaling.

    and Jan Tavernier

    Jan Tavernier founded the Cytokine Receptor Laboratory (CRL) in 1996. He obtained his PhD in 1984 in the early days of recombinant DNA on the cloning of several interferon and interleukin genes. In the same year he moved to industry, first Biogen, later Roche, where he continued cytokine research and demonstrated for the first time the shared use of cytokine receptor subunits. He became full professor at Ghent University in 1996 and currently heads the CRL as part of the VIB Department of Medical Protein Research.

    EMAIL logo
From the journal Biological Chemistry

Abstract

The adipocyte-derived hormone/cytokine leptin acts as a metabolic switch, connecting the body’s nutritional status to high energy consuming processes such as reproduction and immune responses. Inappropriate leptin responses can promote autoimmune diseases and tumorigenesis. In this review we discuss the current strategies to modulate leptin signaling and the possibilities for their use in research and therapy.


Corresponding author: Jan Tavernier, Flanders Institute for Biotechnology (VIB), Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium, e-mail:

About the authors

Lennart Zabeau

After finishing his biotechnology studies at Ghent University in 1998, Lennart Zabeau joined the CRL to study the mechanisms underlying cytokine receptor clustering and activation. He started to work on the interleukin-5 receptor, but later on the leptin receptor became his main research interest. He obtained a PhD in 2004. With an FWO fellowship he is currently involved in the design and evaluation of leptin and leptin receptor antagonists in vitro and in mouse models for certain autoimmune diseases.

Frank Peelman

After graduating as a biologist in 1993, Frank Peelman obtained his PhD in 1999 on the structure-function relationships of lecithin:cholesterol acyltransferase at the Biochemistry department of Ghent University. In 2002, he joined the Cytokine Receptor Lab to investigate the properties of leptin binding to its receptor. In 2006 he became a full professor at Ghent University, and his current research focuses on the molecular dissection of protein-protein interactions, with focus on cytokines and Toll-like receptor signaling.

Jan Tavernier

Jan Tavernier founded the Cytokine Receptor Laboratory (CRL) in 1996. He obtained his PhD in 1984 in the early days of recombinant DNA on the cloning of several interferon and interleukin genes. In the same year he moved to industry, first Biogen, later Roche, where he continued cytokine research and demonstrated for the first time the shared use of cytokine receptor subunits. He became full professor at Ghent University in 1996 and currently heads the CRL as part of the VIB Department of Medical Protein Research.

Acknowledgments

We apologize to our colleagues that space limitations did not allow us to cite all the relevant literature. This work was funded by IU, A.P. (P6/36) and Research Foundation-Flanders (FWO-V, Project G.0521.12N).

References

Adriani, M., Garbi, C., Amodio, G., Russo, I., Giovannini, M., Amorosi, S., Matrecano, E., Cosentini, E., Candotti, F., and Pignata, C. (2006). Functional interaction of common-γ-chain and growth hormone receptor signaling apparatus. J. Immunol. 177, 6889–6895.10.4049/jimmunol.177.10.6889Search in Google Scholar PubMed

Andersson, U., Filipsson, K., Abbott, C.R., Woods, A., Smith, K., Bloom, S.R., Carling, D., and Small, C.J. (2004). AMP-activated protein kinase plays a role in the control of food intake. J. Biol. Chem. 279, 12005–12008.10.1074/jbc.C300557200Search in Google Scholar PubMed

Artwohl, M., Roden, M., Hölzenbein, T., Freudenthaler, A., Waldhäusl, W., and Baumgartner-Parzer, S.M. (2002). Modulation by leptin of proliferation and apoptosis in vascular endothelial cells. Int. J. Obes. Relat. Metab. Disord. 26, 577–580.10.1038/sj.ijo.0801947Search in Google Scholar PubMed

Attig, L., Solomon, G., Ferezou, J., Abdennebi-Najar, L., Taouis, M., Gertler, A., and Djiane, J. (2008). Early postnatal leptin blockage leads to a long-term leptin resistance and susceptibility to diet-induced obesity in rats. Int. J. Obes. (Lond). 32, 1153–1160.10.1038/ijo.2008.39Search in Google Scholar PubMed

Attig, L., Larcher, T., Gertler, A., Abdennebi-Najar, L., and Djiane, J. (2011). Postnatal leptin is necessary for maturation of numerous organs in newborn rats. Organogenesis 7, 88–94.10.4161/org.7.2.14871Search in Google Scholar PubMed PubMed Central

Bado, A., Levasseur, S., Attoub, S., Kermorgant, S., Laigneau, J.P., Bortoluzzi, M.N., Moizo, L., Lehy, T., Guerre-Millo, M., Le Marchand-Brustel, Y., et al. (1998). The stomach is a source of leptin. Nature 394, 790–793.10.1038/29547Search in Google Scholar PubMed

Bahrenberg, G., Behrmann, I., Barthel, A., Hekerman, P., Heinrich, P.C., Joost, H.-G., and Becker, W. (2002). Identification of the critical sequence elements in the cytoplasmic domain of leptin receptor isoforms required for Janus kinase/signal transducer and activator of transcription activation by receptor heterodimers. Mol. Endocrinol. 16, 859–872.10.1210/mend.16.4.0800Search in Google Scholar PubMed

Banks, A.S., Davis, S.M., Bates, S.H., and Myers, M.G. (2000). Activation of downstream signals by the long form of the leptin receptor. J. Biol. Chem. 275, 14563–14572.10.1074/jbc.275.19.14563Search in Google Scholar PubMed

Barness, L.A., Opitz, J.M., and Gilbert-Barness, E. (2007). Obesity: genetic, molecular, and environmental aspects. Am. J. Med. Genet. A 143A, 3016–3034.10.1002/ajmg.a.32035Search in Google Scholar PubMed

Bates, S.H., Stearns, W.H., Dundon, T.A., Schubert, M., Tso, A.W., Wang, Y., Banks, A.S., Lavery, H.J., Haq, A.K., Maratos-Flier, E., et al. (2003). STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421, 856–859.10.1038/nature01388Search in Google Scholar PubMed

Baumann, H., Morella, K.K., White, D.W., Dembski, M., Bailon, P.S., Kim, H., Lai, C.F., and Tartaglia, L.A. (1996). The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc. Natl. Acad. Sci. USA 93, 8374–8378.10.1073/pnas.93.16.8374Search in Google Scholar

Bennett, B.D., Solar, G.P., Yuan, J.Q., Mathias, J., Thomas, G.R., and Matthews, W. (1996). A role for leptin and its cognate receptor in hematopoiesis. Curr. Biol. 6, 1170–1180.10.1016/S0960-9822(02)70684-2Search in Google Scholar

Bing, C., Taylor, S., Tisdale, M.J., and Williams, G. (2001). Cachexia in MAC16 adenocarcinoma: suppression of hunger despite normal regulation of leptin, insulin and hypothalamic neuropeptide Y. J. Neurochem. 79, 1004–1012.10.1046/j.1471-4159.2001.00639.xSearch in Google Scholar PubMed

Bjørbaek, C., Uotani, S., da Silva, B., and Flier, J.S. (1997). Divergent signaling capacities of the long and short isoforms of the leptin receptor. J. Biol. Chem. 272, 32686–32695.10.1074/jbc.272.51.32686Search in Google Scholar PubMed

Bjorbaek, C., Elmquist, J.K., Michl, P., Ahima, R.S., van Bueren, A., McCall, A.L., and Flier, J.S. (1998). Expression of leptin receptor isoforms in rat brain microvessels. Endocrinology 139, 3485–3491.10.1210/endo.139.8.6154Search in Google Scholar PubMed

Bjørbaek, C., Buchholz, R.M., Davis, S.M., Bates, S.H., Pierroz, D.D., Gu, H., Neel, B.G., Myers, M.G., and Flier, J.S. (2001). Divergent roles of SHP-2 in ERK activation by leptin receptors. J. Biol. Chem. 276, 4747–4755.10.1074/jbc.M007439200Search in Google Scholar PubMed

Brines, M. (2010). The therapeutic potential of erythropoiesis-stimulating agents for tissue protection: a tale of two receptors. Blood Purif. 29, 86–92.10.1159/000245630Search in Google Scholar PubMed

Brines, M., Grasso, G., Fiordaliso, F., Sfacteria, A., Ghezzi, P., Fratelli, M., Latini, R., Xie, Q.W., Smart, J., Su-Rick, C.J., et al. (2004). Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc. Natl. Acad. Sci. USA 101, 14907–14912.10.1073/pnas.0406491101Search in Google Scholar PubMed PubMed Central

Brines, M., Patel, N.S., Villa, P., Brines, C., Mennini, T., De Paola, M., Erbayraktar, Z., Erbayraktar, S., Sepodes, B., Thiemermann, C., et al. (2008). Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc. Natl. Acad. Sci. USA 105, 10925–10930.10.1073/pnas.0805594105Search in Google Scholar PubMed PubMed Central

Burks, D.J., Font de Mora, J., Schubert, M., Withers, D.J., Myers, M.G., Towery, H.H., Altamuro, S.L., Flint, C.L., and White, M.F. (2000). IRS-2 pathways integrate female reproduction and energy homeostasis. Nature 407, 377–382.10.1038/35030105Search in Google Scholar PubMed

Busso, N., So, A., Chobaz-Peclat, V., Morard, C., Martinez-soria, E., Talabot-ayer, D., and Gabay, C. (2002). Leptin signaling deficiency impairs humoral and cellular immune responses and attenuates experimental arthritis. J. Immunol. 168, 875–882.10.4049/jimmunol.168.2.875Search in Google Scholar PubMed

Caldefie-Chezet, F., Poulin, A., Tridon, A., Sion, B., and Vasson, M.P. (2001). Leptin: a potential regulator of polymorphonuclear neutrophil bactericidal action? J. Leukoc. Biol. 69, 414–418.10.1189/jlb.69.3.414Search in Google Scholar

Caldefie-Chezet, F., Poulin, A., and Vasson, M.P. (2003). Leptin regulates functional capacities of polymorphonuclear neutrophils. Free Radic. Res. 37, 809–814.10.1080/1071576031000097526Search in Google Scholar PubMed

Calle, E.E. (2007). Obesity and cancer. Br. Med. J. 335, 1107–1108.10.1136/bmj.39384.472072.80Search in Google Scholar PubMed PubMed Central

Campión, J., Milagro, F., and Martínez, J.A. (2010). Epigenetics and obesity. Prog. Mol. Biol. Transl. Sci. 94, 291–347.10.1016/B978-0-12-375003-7.00011-XSearch in Google Scholar PubMed

Carpenter, L.R., Farruggella, T.J., Symes, A., Karow, M.L., Yancopoulos, G.D., and Stahl, N. (1998). Enhancing leptin response by preventing SH2-containing phosphatase 2 interaction with Ob receptor. Proc. Natl. Acad. Sci. USA 95, 6061–6066.10.1073/pnas.95.11.6061Search in Google Scholar PubMed PubMed Central

Carpenter, B., Hemsworth, G.R., Wu, Z., Maamra, M., Strasburger, C.J., Ross, R.J., and Artymiuk, P.J. (2012). Structure of the human obesity receptor leptin-binding domain reveals the mechanism of leptin antagonism by a monoclonal antibody. Structure 20, 487–497.10.1016/j.str.2012.01.019Search in Google Scholar PubMed

Catalano, S., Marsico, S., Giordano, C., Mauro, L., Rizza, P., Panno, M.L., and Andò, S. (2003). Leptin enhances, via AP- 1, expression of aromatase in the MCF-7 cell line. J. Biol. Chem. 278, 28668–28676.10.1074/jbc.M301695200Search in Google Scholar PubMed

Chapnik, N., Solomon, G., Genzer, Y., Miskin, R., Gertler, A., and Froy, O. (2013). A superactive leptin antagonist alters metabolism and locomotion in high-leptin mice. J. Endocrinol. 217, 283–290.10.1530/JOE-13-0033Search in Google Scholar PubMed

Chehab, F.F., Lim, M.E., and Lu, R. (1996). Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat Genet 12, 318–320.10.1038/ng0396-318Search in Google Scholar PubMed

Cheung, W.W., Ding, W., Gunta, S.S., Gu, Y., Tabakman, R., Klapper, L.N., Gertler, A., and Mak, R.H. (2014). A pegylated leptin antagonist ameliorates CKD-associated cachexia in mice. J. Am. Soc. Nephrol. 25, 119–128.10.1681/ASN.2013040432Search in Google Scholar PubMed PubMed Central

Cheunsuang, O. and Morris, R. (2005). Astrocytes in the arcuate nucleus and median eminence that take up a fluorescent dye from the circulation express leptin receptors and neuropeptide Y Y1 receptors. Glia 52, 228–233.10.1002/glia.20239Search in Google Scholar PubMed

Choi, J.-H., Choi, K.-C., Auersperg, N., and Leung, P.C. (2004). Overexpression of follicle-stimulating hormone receptor activates oncogenic pathways in preneoplastic ovarian surface epithelial cells. J. Clin. Endocrinol. Metab. 89, 5508–5516.10.1210/jc.2004-0044Search in Google Scholar PubMed

Cirillo, D., Rachiglio, A.M., la Montagna, R., Giordano, A., and Normanno, N. (2008). Leptin signaling in breast cancer: an overview. J. Cell. Biochem. 105, 956–964.10.1002/jcb.21911Search in Google Scholar PubMed

Claycombe, K., King, L.E., and Fraker, P.J. (2008). A role for leptin in sustaining lymphopoiesis and myelopoiesis. Proc. Natl. Acad. Sci. USA 105, 2017–2021.10.1073/pnas.0712053105Search in Google Scholar PubMed PubMed Central

Coleman, D.L. (1973). Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 9, 294–298.10.1007/BF01221857Search in Google Scholar PubMed

Coleman, D.L. (2010). A historical perspective on leptin. Nat. Med. 16, 1097–1099.10.1038/nm1010-1097Search in Google Scholar PubMed

Considine, R.V., Sinha, M.K., Heiman, M.L., Kriauciunas, A., Stephens, T.W., Nyce, M.R., Ohannesian, J.P., Marco, C.C., McKee, L.J., Bauer, T.L., et al. (1996). Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295.10.1056/NEJM199602013340503Search in Google Scholar PubMed

Couturier, C. and Jockers, R. (2003). Activation of the leptin receptor by a ligand-induced conformational change of constitutive receptor dimers. J. Biol. Chem. 278, 26604–26611.10.1074/jbc.M302002200Search in Google Scholar PubMed

Cui, H., Cai, F., and Belsham, D.D. (2006). Leptin signaling in neurotensin neurons involves STAT, MAP kinases ERK1/ 2, and p38 through c-Fos and ATF1. FASEB J. 20, 2654–2656.10.1096/fj.06-5989fjeSearch in Google Scholar PubMed

De Rosa, V., Procaccini, C., La Cava, A., Chieffi, P., Nicoletti, G.F., Fontana, S., Zappacosta, S., and Matarese, G. (2006). Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis. J. Clin. Invest. 116, 447–455.10.1172/JCI26523Search in Google Scholar PubMed PubMed Central

De Rosa, V., Procaccini, C., Calì, G., Pirozzi, G., Fontana, S., Zappacosta, S., La Cava, A., Matarese, G., and Cali, G. (2007). A key role of leptin in the control of regulatory T cell proliferation. Immunity 26, 241–255.10.1016/j.immuni.2007.01.011Search in Google Scholar

Duan, C., Li, M., and Rui, L. (2004). SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin. J. Biol. Chem. 279, 43684–43691.10.1074/jbc.M408495200Search in Google Scholar

Ducy, P., Amling, M., Takeda, S., Priemel, M., Schilling, A.F., Beil, F.T., Shen, J., Vinson, C., Rueger, J.M., and Karsenty, G. (2000). Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197–207.10.1016/S0092-8674(00)81558-5Search in Google Scholar

Elias, C.F., Aschkenasi, C., Lee, C., Kelly, J., Ahima, R.S., Bjorbaek, C., Flier, J.S., Saper, C.B., and Elmquist, J.K. (1999). Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23, 775–786.10.1016/S0896-6273(01)80035-0Search in Google Scholar

Elinav, E., Ali, M., Bruck, R., Brazowski, E., Phillips, A., Shapira, Y., Katz, M., Solomon, G., Halpern, Z., and Gertler, A. (2009a). Competitive inhibition of leptin signaling results in amelioration of liver fibrosis through modulation of stellate cell function. Hepatology 49, 278–286.10.1002/hep.22584Search in Google Scholar PubMed

Elinav, E., Niv-Spector, L., Katz, M., Price, T.O., Ali, M., Yacobovitz, M., Solomon, G., Reicher, S., Lynch, J.L., Halpern, Z., et al. (2009b). Pegylated leptin antagonist is a potent orexigenic agent: preparation and mechanism of activity. Endocrinology 150, 3083–3091.10.1210/en.2008-1706Search in Google Scholar PubMed PubMed Central

Faggioni, R., Jones-Carson, J., Reed, D.A., Dinarello, C.A., Feingold, K.R., Grunfeld, C., and Fantuzzi, G. (2000). Leptin-deficient (ob/ob). Mice are protected from T cell-mediated hepatotoxicity: role of tumor necrosis factor alpha and IL-18. Proc. Natl. Acad. Sci. USA 97, 2367–2372.10.1073/pnas.040561297Search in Google Scholar PubMed PubMed Central

Faouzi, M., Leshan, R., Bjornholm, M., Hennessey, T., Jones, J., and Munzberg, H. (2007). Differential accessibility of circulating leptin to individual hypothalamic sites. Endocrinology 148, 5414–5423.10.1210/en.2007-0655Search in Google Scholar PubMed

Farooqi, I.S., Matarese, G., Lord, G.M., Keogh, J.M., Lawrence, E., Agwu, C., Sanna, V., Jebb, S.A., Perna, F., Fontana, S., et al. (2002). Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110, 1093–1103.10.1172/JCI0215693Search in Google Scholar

Fei, H., Okano, H.J., Li, C., Lee, G.H., Zhao, C., Darnell, R., and Friedman, J.M. (1997). Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc. Natl. Acad. Sci. USA 94, 7001–7005.10.1073/pnas.94.13.7001Search in Google Scholar PubMed PubMed Central

Ferla, R., Bonomi, M., Otvos, L., and Surmacz, E. (2011). Glioblastoma-derived leptin induces tube formation and growth of endothelial cells: comparison with VEGF effects. BMC Cancer 11, 303.10.1186/1471-2407-11-303Search in Google Scholar PubMed PubMed Central

Fong, T.M., Huang, R.R., Tota, M.R., Mao, C., Smith, T., Varnerin, J., Karpitskiy V.V., Krause, J.E., and Van der Ploeg, L.H. (1998). Localization of leptin binding domain in the leptin receptor. Mol. Pharmacol. 53, 234–240.10.1124/mol.53.2.234Search in Google Scholar PubMed

Frankenberry, K.A., Skinner, H., Somasundar, P., McFadden, D.W., and Vona-Davis, L.C. (2006). Leptin receptor expression and cell signaling in breast cancer. Int. J. Oncol. 28, 985–993.10.3892/ijo.28.4.985Search in Google Scholar

Frederich, R.C., Lollmann, B., Hamann, A., Napolitano-Rosen, A., Kahn, B.B., Lowell, B.B., and Flier, J.S. (1995). Expression of ob mRNA and its encoded protein in rodents. Impact of nutrition and obesity. J. Clin. Invest. 96, 1658–1663.10.1172/JCI118206Search in Google Scholar PubMed PubMed Central

Friedman, J.M. and Halaas, J.L. (1998). Leptin and the regulation of body weight in mammals. Nature 395, 763–770.10.1038/27376Search in Google Scholar PubMed

Gainsford, T., Willson, T.A., Metcalf, D., Handman, E., McFarlane, C., Ng, A., Nicola, N.A., Alexander, W.S., and Hilton, D.J. (1996). Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proc. Natl. Acad. Sci. USA 93, 14564–14568.10.1073/pnas.93.25.14564Search in Google Scholar PubMed PubMed Central

Garofalo, C. and Surmacz, E. (2006). Leptin and cancer. J. Cell. Physiol. 207, 12–22.10.1002/jcp.20472Search in Google Scholar PubMed

Ge, H., Huang, L., Pourbahrami, T., and Li, C. (2002). Generation of soluble leptin receptor by ectodomain shedding of membrane-spanning receptors in vitro and in vivo. J. Biol. Chem. 277, 45898–45903.10.1074/jbc.M205825200Search in Google Scholar PubMed

Ghilardi, N., Ziegler, S., Wiestner, A., Stoffel, R., Heim, M.H., and Skoda, R.C. (1996). Defective STAT signaling by the leptin receptor in diabetic mice. Proc. Natl. Acad. Sci. USA 93, 6231–6235.10.1073/pnas.93.13.6231Search in Google Scholar PubMed PubMed Central

Gogas, H., Trakatelli, M., Dessypris, N., Terzidis, A., Katsambas, A., Chrousos, G.P., and Petridou, E.T. (2008). Melanoma risk in association with serum leptin levels and lifestyle parameters: a case-control study. Ann. Oncol. 19, 384–389.10.1093/annonc/mdm464Search in Google Scholar PubMed

Gonzalez, R.R. and Leavis, P.C. (2003). A peptide derived from the human leptin molecule is a potent inhibitor of the leptin receptor function in rabbit endometrial cells. Endocrine 21, 185–195.10.1385/ENDO:21:2:185Search in Google Scholar

Gonzalez, R.R., Cherfils, S., Escobar, M., Yoo, J.H., Carino, C., Styer, A.K., Sullivan, B.T., Sakamoto, H., Olawaiye, A., Serikawa, T., et al. (2006). Leptin signaling promotes the growth of mammary tumors and increases the expression of vascular endothelial growth factor (VEGF) and its receptor type two (VEGF-R2). J. Biol. Chem. 281, 26320–26328.10.1074/jbc.M601991200Search in Google Scholar

Gonzalez, R.R., Watters, A., Xu, Y., Singh, U.P., Mann, D.R., Rueda, B.R., and Penichet, M.L. (2009). Leptin-signaling inhibition results in efficient anti-tumor activity in estrogen receptor positive or negative breast cancer. Breast Cancer Res. 11, R36.10.1186/bcr2321Search in Google Scholar

Gruen, M.L., Hao, M., Piston, D.W., and Hasty, A.H. (2007). Leptin requires canonical migratory signaling pathways for induction of monocyte and macrophage chemotaxis. Am. J. Physiol. Cell Physiol. 293, C1481–C1488.10.1152/ajpcell.00062.2007Search in Google Scholar

Guo, S. and Gonzalez-Perez, R.R. (2011). Notch, IL-1 and leptin crosstalk outcome (NILCO). Is critical for leptin-induced proliferation, migration and VEGF/VEGFR-2 expression in breast cancer. PLoS One 6, e21467.Search in Google Scholar

Haglund, E., Sułkowska, J.I., He, Z., Feng, G-.S., Jennings, P., and Onuchic, J.N. (2012). The unique cysteine knot regulates the pleotropic hormone leptin. PLoS One 7, e45654.10.1371/journal.pone.0045654Search in Google Scholar

Halaas, J.L., Gajiwala, K.S., Maffei, M., Cohen, S.L., Chait, B.T., Rabinowitz, D., Lallone, R.L., Burley, S.K., and Friedman, J.M. (1995). Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543–546.10.1126/science.7624777Search in Google Scholar

Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Songa, E.B., Bendahman, N., and Hamers, R. (1993). Naturally occurring antibodies devoid of light chains. Nature 363, 446–448.10.1038/363446a0Search in Google Scholar

Haslam, D.W. and James, W.P.T. (2005). Obesity. Lancet 366, 1197–1209.10.1016/S0140-6736(05)67483-1Search in Google Scholar

Hileman, S.M., Tornoe, J., Flier, J.S., and Bjorbaek, C. (2000). Transcellular transport of leptin by the short leptin receptor isoform ObRa in Madin-Darby Canine kidney cells. Endocrinology 141, 1955–1961.10.1210/endo.141.6.7450Search in Google Scholar

El Homsi, M., Ducroc, R., Claustre, J., Jourdan, G., Gertler, A., Estienne, M., Bado, A., Scoazec, J.-Y., and Plaisancié, P. (2007). Leptin modulates the expression of secreted and membrane-associated mucins in colonic epithelial cells by targeting, PKC, PI3K, and MAPK pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G365–G373.10.1152/ajpgi.00091.2007Search in Google Scholar

Howard, J.K., Lord, G.M., Matarese, G., Vendetti, S., Ghatei, M.A., Ritter, M.A., Lechler, R.I., and Bloom, S.R. (1999). Leptin protects mice from starvation-induced lymphoid atrophy and increases thymic cellularity in ob/ob mice. J. Clin. Invest. 104, 1051–1059.10.1172/JCI6762Search in Google Scholar

Hu, X., Juneja, S.C., Maihle, N.J., and Cleary, M.P. (2002). Leptin–a growth factor in normal and malignant breast cells and for normal mammary gland development. J. Natl. Cancer Inst. 94, 1704–11.10.1093/jnci/94.22.1704Search in Google Scholar

Iserentant, H., Peelman, F., Defeau, D., Vandekerckhove, J., Zabeau, L., and Tavernier, J. (2005). Mapping of the interface between leptin and the leptin receptor CRH2 domain. J. Cell Sci. 118, 2519–2527.10.1242/jcs.02386Search in Google Scholar

Iversen, P.O., Drevon, C.A., and Reseland, J.E. (2002). Prevention of leptin binding to its receptor suppresses rat leukemic cell growth by inhibiting angiogenesis. Blood 100, 4123–4128.10.1182/blood-2001-11-0134Search in Google Scholar

Jiang, L., Li, Z., and Rui, L. (2008). Leptin stimulates both JAK2-dependent and JAK2-independent signaling pathways. J. Biol. Chem. 283, 28066–28073.10.1074/jbc.M805545200Search in Google Scholar

Kastin, A.J., Pan, W., Maness, L.M., Koletsky, R.J., and Ernsberger, P. (1999). Decreased transport of leptin across the blood-brain barrier in rats lacking the short form of the leptin receptor. Peptides 20, 1449–1453.10.1016/S0196-9781(99)00156-4Search in Google Scholar

Kellerer, M., Koch, M., Metzinger, E., Mushack, J., Capp, E., and Häring, H.U. (1997). Leptin activates PI-3 kinase in C2C12 myotubes via janus kinase-2 (JAK-2) and insulin receptor substrate-2 (IRS-2) dependent pathways. Diabetologia 40, 1358–1362.10.1007/s001250050832Search in Google Scholar PubMed

Kloek, C., Haq, A.K., Dunn, S.L., Lavery, H.J., Banks, A.S., and Myers, M.G. (2002). Regulation of Jak kinases by intracellular leptin receptor sequences. J. Biol. Chem. 277, 41547–41555.10.1074/jbc.M205148200Search in Google Scholar PubMed

Konstantinides, S., Schäfer, K., Koschnick, S., and Loskutoff, D.J. (2001). Leptin-dependent platelet aggregation and arterial thrombosis suggests a mechanism for atherothrombotic disease in obesity. J. Clin. Invest. 108, 1533–1540.10.1172/JCI13143Search in Google Scholar PubMed PubMed Central

Kovalszky, I., Surmacz, E., Scolaro, L., Cassone, M., Ferla, R., Sztodola, A., Olah, J., Hatfield, M.P.D., Lovas, S., and Otvos, L. (2010). Leptin-based glycopeptide induces weight loss and simultaneously restores fertility in animal models. Diabetes Obes. Metab. 12, 393–402.10.1111/j.1463-1326.2009.01170.xSearch in Google Scholar PubMed

La Cava, A. and Matarese, G. (2004). The weight of leptin in immunity. Nat. Rev. Immunol 4, 371–379.10.1038/nri1350Search in Google Scholar

Leist, M., Ghezzi, P., Grasso, G., Bianchi, R., Villa, P., Fratelli, M., Savino, C., Bianchi, M., Nielsen, J., Gerwien, J., et al. (2004). Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305, 239–242.10.1126/science.1098313Search in Google Scholar

Li, C. and Friedman, J.M. (1999). Leptin receptor activation of SH2 domain containing protein tyrosine phosphatase 2 modulates Ob receptor signal transduction. Proc. Natl. Acad. Sci. USA 96, 9677–9682.10.1073/pnas.96.17.9677Search in Google Scholar

Liao, L.M., Schwartz, K., Pollak, M., Graubard, B.I., Li, Z., Ruterbusch, J., Rothman, N., Davis, F., Wacholder, S., Colt, J., et al. (2013). Serum leptin and adiponectin levels and risk of renal cell carcinoma. Obesity (Silver Spring). 21, 1478–1485.10.1002/oby.20138Search in Google Scholar

Lord, G.M., Matarese, G., Howard, J.K., Baker, R.J., Bloom, S.R., and Lechler, R.I. (1998). Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897–901.10.1038/29795Search in Google Scholar

Lord, G.M., Matarese, G., Howard, J.K., Bloom, S.R., and Lechler, R.I. (2002). Leptin inhibits the anti-CD3-driven proliferation of peripheral blood T cells but enhances the production of proinflammatory cytokines. J. Leukoc. Biol. 72, 330–338.10.1189/jlb.72.2.330Search in Google Scholar

Macia, L., Delacre, M., Abboud, G., Ouk, T.-S., Delanoye, A., Verwaerde, C., Saule, P., and Wolowczuk, I. (2006). Impairment of dendritic cell functionality and steady-state number in obese mice. J. Immunol. 177, 5997–6006.10.4049/jimmunol.177.9.5997Search in Google Scholar

Madej, T., Boguski, M.S., and Bryant, S.H. (1995). Threading analysis suggests that the obese gene product may be a helical cytokine. FEBS Lett. 373, 13–8.10.1016/0014-5793(95)00977-HSearch in Google Scholar

Mancour, L., Daghestani, H., and Dutta, S. (2012). Ligand-induced architecture of the leptin receptor signaling complex. Mol. Cell 48, 1–7.10.1016/j.molcel.2012.09.003Search in Google Scholar PubMed PubMed Central

Mancuso, P., Canetti, C., Gottschalk, A., Tithof, P.K., and Peters-Golden, M. (2004). Leptin augments alveolar macrophage leukotriene synthesis by increasing phospholipase activity and enhancing group IVC iPLA2 (cPLA2gamma) protein expression. Am. J. Physiol. Lung Cell. Mol. Physiol. 287, L497–502.Search in Google Scholar

Mandel, M. and Mahmoud, A. (1978). Impairment of cell-mediated immunity in mutation diabetic mice (db/db). J. Immunol. 120, 1375–77.10.4049/jimmunol.120.4.1375Search in Google Scholar

Mansour, E., Pereira, F.G., Araujo, E.P., Amaral, M.E.C., Morari, J., Ferraroni, N.R., Ferreira, D.S., Lorand-Metze, I., Velloso, L.A., and Araújo, E.P. (2006). Leptin inhibits apoptosis in thymus through a janus kinase-2-independent, insulin receptor substrate-1/phosphatidylinositol-3 kinase-dependent pathway. Endocrinology 147, 5470–5479.10.1210/en.2006-0223Search in Google Scholar PubMed

Mark, A.L., Shaffer, R.A., Correia, M.L., Morgan, D.A., Sigmund, C.D., and Haynes, W.G. (1999). Contrasting blood pressure effects of obesity in leptin-deficient ob/ob mice and agouti yellow obese mice. J. Hypertens. 17, 1949–1953.10.1097/00004872-199917121-00026Search in Google Scholar PubMed

Matarese, G., Di Giacomo, A., Sanna, V., Lord, G.M., Howard, J.K., Di Tuoro, A., Bloom, S.R., Lechler, R.I., Zappacosta, S., and Fontana, S. (2001). Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J. Immunol. 166, 5909–5916.10.4049/jimmunol.166.10.5909Search in Google Scholar

Matarese, G., La Cava, A., Sanna, V., Lord, G.M., Lechler, R.I., Fontana, S., and Zappacosta, S. (2002). Balancing susceptibility to infection and autoimmunity: a role for leptin? Trends Immunol. 23, 182–187.Search in Google Scholar

Matarese, G., Carrieri, P.B., La Cava, A., Perna, F., Sanna, V., De Rosa, V., Aufiero, D., Fontana, S., and Zappacosta, S. (2005). Leptin increase in multiple sclerosis associates with reduced number of CD4(+)CD25+ regulatory T cells. Proc. Natl. Acad. Sci. USA 102, 5150–5155.10.1073/pnas.0408995102Search in Google Scholar

Mattioli, B., Straface, E., Quaranta, M.G., Giordani, L., and Viora, M. (2005). Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. J. Immunol. 174, 6820–6828.10.4049/jimmunol.174.11.6820Search in Google Scholar

Mattioli, B., Straface, E., Matarrese, P., Quaranta, M.G., Giordani, L., Malorni, W., and Viora, M. (2008). Leptin as an immunological adjuvant: enhanced migratory and CD8+ T cell stimulatory capacity of human dendritic cells exposed to leptin. FASEB J. 22, 2012–2022.10.1096/fj.07-098095Search in Google Scholar

Mauro, L., Catalano, S., Bossi, G., Pellegrino, M., Barone, I., Morales, S., Giordano, C., Bartella, V., Casaburi, I., and Andò, S. (2007). Evidences that leptin up-regulates E-cadherin expression in breast cancer: effects on tumor growth and progression. Cancer Res. 67, 3412–3421.10.1158/0008-5472.CAN-06-2890Search in Google Scholar

McMurtry, V., Simeone, A.-M., Nieves-Alicea, R., and Tari, A.M. (2009). Leptin utilizes Jun N-terminal kinases to stimulate the invasion of MCF-7 breast cancer cells. Clin. Exp. Metastasis 26, 197–204.10.1007/s10585-008-9231-xSearch in Google Scholar

Mela, V., Díaz, F., Gertler, A., Solomon, G., Argente, J., Viveros, M.-P., and Chowen, J.A. (2012). Neonatal treatment with a pegylated leptin antagonist has a sexually dimorphic effect on hypothalamic trophic factors and neuropeptide levels. J. Neuroendocrinol. 24, 756–765.10.1111/j.1365-2826.2012.02279.xSearch in Google Scholar

Mercer, J.G., Hoggard, N., Williams, L.M., Lawrence, C.B., Hannah, L.T., and Trayhurn, P. (1996). Localization of leptin receptor mR, N.A., and the long form splice variant (Ob-Rb). In mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett. 387, 113–116.10.1016/0014-5793(96)00473-5Search in Google Scholar

Minokoshi, Y., Kim, Y.B., Peroni, O.D., Fryer, L.G., Muller, C., Carling, D., and Kahn, B.B. (2002). Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339–343.10.1038/415339aSearch in Google Scholar PubMed

Minokoshi, Y., Alquier, T., Furukawa, N., Kim, Y.-B., Lee, A., Xue, B., Mu, J., Foufelle, F., Ferré, P., Birnbaum, M.J., et al. (2004). AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569–574.10.1038/nature02440Search in Google Scholar PubMed

Miyamoto, L., Ebihara, K., Kusakabe, T., Aotani, D., Yamamoto-Kataoka, S., Sakai, T., Aizawa-Abe, M., Yamamoto, Y., Fujikura, J., Hayashi, T., et al. (2012). Leptin activates hepatic 5′-AMP-activated protein kinase through sympathetic nervous system and α1-adrenergic receptor: a potential mechanism for improvement of fatty liver in lipodystrophy by leptin. J. Biol. Chem. 287, 40441–40447.10.1074/jbc.M112.384545Search in Google Scholar

Munzberg, H., Flier, J.S., and Bjorbaek, C. (2004). Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology 145, 4880–4889.10.1210/en.2004-0726Search in Google Scholar

Nair, P. (2005). Epidermal growth factor receptor family and its role in cancer progression. Curr. Sci. 88, 890–898.Search in Google Scholar

Niv-Spector, L., Gonen-Berger, D., Gourdou, I., Biener, E., Gussakovsky, E.E., Benomar, Y., Ramanujan K, V., Taouis, M., Herman, B., Callebaut, I., et al. (2005a). Identification of the hydrophobic strand in the A-B loop of leptin as major binding site III: implications for large-scale preparation of potent recombinant human and ovine leptin antagonists. Biochem. J. 391, 221–230.10.1042/BJ20050457Search in Google Scholar

Niv-Spector, L., Raver, N., Friedman-Einat, M., Grosclaude, J., Gussakovsky, E.E., Livnah, O., and Gertler, A. (2005b). Mapping leptin-interacting sites in recombinant leptin-binding domain (LBD). Subcloned from chicken leptin receptor. Biochem. J. 390, 475–484.10.1042/BJ20050233Search in Google Scholar

Niv-Spector, L., Shpilman, M., Boisclair, Y., and Gertler, A. (2012). Large-scale preparation and characterization of non-pegylated and pegylated superactive ovine leptin antagonist. Protein Expr. Purif. 81, 186–192.10.1016/j.pep.2011.10.003Search in Google Scholar

Okumura, M., Yamamoto, M., Sakuma, H., Kojima, T., Maruyama, T., Jamali, M., Cooper, D.R., and Yasuda, K. (2002). Leptin and high glucose stimulate cell proliferation in MCF-7 human breast cancer cells: reciprocal involvement of PKC-alpha and PPAR expression. Biochim. Biophys. Acta 1592, 107–116.10.1016/S0167-4889(02)00276-8Search in Google Scholar

Otvos, L., Terrasi, M., Cascio, S., Cassone, M., Abbadessa, G., De Pascali, F., Scolaro, L., Knappe, D., Stawikowski, M., Cudic, P., et al. (2008). Development of a pharmacologically improved peptide agonist of the leptin receptor. Biochim. Biophys. Acta 1783, 1745–1754.10.1016/j.bbamcr.2008.05.007Search in Google Scholar PubMed

Otvos, L., Kovalszky, I., Riolfi, M., Ferla, R., Olah, J., Sztodola, A., Nama, K., Molino, A., Piubello, Q., Wade, J.D., et al. (2011a). Efficacy of a leptin receptor antagonist peptide in a mouse model of triple-negative breast cancer. Eur. J. Cancer 47, 1578–1584.10.1016/j.ejca.2011.01.018Search in Google Scholar PubMed

Otvos, L., Kovalszky, I., Scolaro, L., Sztodola, A., Olah, J., Cassone, M., Knappe, D., Hoffmann, R., Lovas, S., Hatfield, M., et al. (2011b). Peptide-based leptin receptor antagonists for cancer treatment and appetite regulation. Biopolymers 96, 117–125.10.1002/bip.21377Search in Google Scholar PubMed

Otvos, L., Shao, W.-H., Vanniasinghe, A.S., Amon, M.A., Holub, M.C., Kovalszky, I., Wade, J.D., Doll, M., Cohen, P.L., Manolios, N., et al. (2011c). Toward understanding the role of leptin and leptin receptor antagonism in preclinical models of rheumatoid arthritis. Peptides 32, 1567–1574.10.1016/j.peptides.2011.06.015Search in Google Scholar PubMed

Ozata, M., Ozdemir, I.C., and Licinio, J. (1999). Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J. Clin. Endocrinol. Metab. 84, 3686–3695.10.1210/jcem.84.10.5999Search in Google Scholar PubMed

Pais, R., Silaghi, H., Silaghi, A.-C., Rusu, M.-L., and Dumitrascu, D.-L. (2009). Metabolic syndrome and risk of subsequent colorectal cancer. World J. Gastroenterol. 15, 5141–5148.10.3748/wjg.15.5141Search in Google Scholar PubMed PubMed Central

Peelman, F., Van Beneden, K., Zabeau, L., Iserentant, H., Ulrichts, P., Defeau, D., Verhee, A., Catteeuw, D., Elewaut, D., and Tavernier, J. (2004). Mapping of the leptin binding sites and design of a leptin antagonist. J. Biol. Chem. 279, 41038–41046.10.1074/jbc.M404962200Search in Google Scholar PubMed

Peelman, F., Iserentant, H., De Smet, A.S., Vandekerckhove, J., Zabeau, L., and Tavernier, J. (2006). Mapping of binding site III in the leptin receptor and modeling of a hexameric leptin leptin receptor complex. J. Biol. Chem. 281, 15496–15504.10.1074/jbc.M512622200Search in Google Scholar PubMed

Perera, C.N., Chin, H.G., Duru, N., and Camarillo, I.G. (2008). Leptin-regulated gene expression in MCF-7 breast cancer cells: mechanistic insights into leptin-regulated mammary tumor growth and progression. J. Endocrinol. 199, 221–233.10.1677/JOE-08-0215Search in Google Scholar PubMed

Purdham, D.M., Rajapurohitam, V., Zeidan, A., Huang, C., Gross, G.J., and Karmazyn, M. (2008). A neutralizing leptin receptor antibody mitigates hypertrophy and hemodynamic dysfunction in the postinfarcted rat heart. Am. J. Physiol. Heart Circ. Physiol. 295, H441–H446.10.1152/ajpheart.91537.2007Search in Google Scholar PubMed

Rahmouni, K., Sigmund, C.D., Haynes, W.G., and Mark, A.L. (2009). Hypothalamic ERK mediates the anorectic and thermogenic sympathetic effects of leptin. Diabetes 58, 536–542.10.2337/db08-0822Search in Google Scholar PubMed PubMed Central

Rajapurohitam, V., Javadov, S., Purdham, D.M., Kirshenbaum, L.A., and Karmazyn, M. (2006). An autocrine role for leptin in mediating the cardiomyocyte hypertrophic effects of angiotensin I.I. and endothelin-1. J. Mol. Cell. Cardiol. 41, 265–274.10.1016/j.yjmcc.2006.05.001Search in Google Scholar PubMed

Ratke, J., Entschladen, F., Niggemann, B., Zänker, K.S., and Lang, K. (2010). Leptin stimulates the migration of colon carcinoma cells by multiple signaling pathways. Endocr. Relat. Cancer 17, 179–189.10.1677/ERC-09-0225Search in Google Scholar PubMed

Raver, N., Vardy, E., Livnah, O., Devos, R., and Gertler, A. (2002). Comparison of R128Q mutations in human, ovine, and chicken leptins. Gen. Comp. Endocrinol. 126, 52–58.10.1006/gcen.2001.7766Search in Google Scholar PubMed

Ray, A. and Cleary, M.P. (2010). Leptin as a potential therapeutic target for breast cancer prevention and treatment. Expert Opin. Ther. Targets 14, 443–451.10.1517/14728221003716466Search in Google Scholar PubMed

Rock, F.L., Altmann, S.W., van Heek, M., Kastelein, R.A., and Bazan, J.F. (1996). The leptin haemopoietic cytokine fold is stabilized by an intrachain disulfide bond. Horm. Metab. Res. 28, 649–652.10.1055/s-2007-979871Search in Google Scholar PubMed

Rosenblum, C.I., Tota, M., Cully, D., Smith, T., Collum, R., Qureshi, S., Hess, J.F., Phillips, M.S., Hey, P.J., Vongs, A., et al. (1996). Functional STAT 1 and 3 signaling by the leptin receptor (OB-R); reduced expression of the rat fatty leptin receptor in transfected cells. Endocrinology 137, 5178–5181.10.1210/endo.137.11.8895396Search in Google Scholar PubMed

Rowlinson, S.W., Yoshizato, H., Barclay, J.L., Brooks, A.J., Behncken, S.N., Kerr, L.M., Millard, K., Palethorpe, K., Nielsen, K., Clyde-Smith, J., et al. (2008). An agonist-induced conformational change in the growth hormone receptor determines the choice of signalling pathway. Nat. Cell Biol. 10, 740–747.10.1038/ncb1737Search in Google Scholar PubMed

Samuel-Mendelsohn, S., Inbar, M., Weiss-Messer, E., Niv-Spector, L., Gertler, A., and Barkey, R.J. (2011). Leptin signaling and apoptotic effects in human prostate cancer cell lines. Prostate 71, 929–945.10.1002/pros.21309Search in Google Scholar PubMed

Sanna, V., Di Giacomo, A., La Cava, A., Lechler, R.I., Fontana, S., Zappacosta, S., and Matarese, G. (2003). Leptin surge precedes onset of autoimmune encephalomyelitis and correlates with development of pathogenic T cell responses. J. Clin. Invest. 111, 241–250.10.1172/JCI200316721Search in Google Scholar

Saxena, N.K., Vertino, P.M., Anania, F.A., and Sharma, D. (2007). Leptin-induced growth stimulation of breast cancer cells involves recruitment of histone acetyltransferases and mediator complex to CYCLIN D1 promoter via activation of Stat3. J. Biol. Chem. 282, 13316–13325.10.1074/jbc.M609798200Search in Google Scholar PubMed PubMed Central

Schwartz, M.W., Seeley, R.J., Campfield, L.A., Burn, P., and Baskin, D.G. (1996). Identification of targets of leptin action in rat hypothalamus. J. Clin. Invest. 98, 1101–1106.10.1172/JCI118891Search in Google Scholar PubMed PubMed Central

Scolaro, L., Parrino, C., Coroniti, R., Otvos, L., and Surmacz, E. (2013). Exploring leptin antagonism in ophthalmic cell models. PLoS One 8, e76437.10.1371/journal.pone.0076437Search in Google Scholar PubMed PubMed Central

Señarís, R., Garcia-Caballero, T., Casabiell, X., Gallego, R., Castro, R., Considine R.V., Dieguez, C., and Casanueva, F.F. (1997). Synthesis of leptin in human placenta. Endocrinology 138, 4501–4504.10.1210/endo.138.10.5573Search in Google Scholar PubMed

Shapiro, N.I., Khankin E, V., Van Meurs, M., Shih, S.-C., Lu, S., Yano, M., Castro, P.R., Maratos-Flier, E., Parikh, S.M., Karumanchi, S.A., et al. (2010). Leptin exacerbates sepsis-mediated morbidity and mortality. J. Immunol. 185, 517–524.10.4049/jimmunol.0903975Search in Google Scholar

Shpilman, M., Niv-Spector, L., Katz, M., Varol, C., Solomon, G., Ayalon-Soffer, M., Boder, E., Halpern, Z., Elinav, E., and Gertler, A. (2011). Development and characterization of high affinity leptins and leptin antagonists. J. Biol. Chem. 286, 4429–4442.10.1074/jbc.M110.196402Search in Google Scholar

Siegmund, B., Lear-Kaul, K.C., Faggioni, R., and Fantuzzi, G. (2002). Leptin deficiency, not obesity, protects mice from Con A-induced hepatitis. Eur J. Immunol. 32, 552–560.10.1002/1521-4141(200202)32:2<552::AID-IMMU552>3.0.CO;2-HSearch in Google Scholar

Sierra-Honigmann, M.R., Nath, A.K., Murakami, C., García-Cardeña, G., Papapetropoulos, A., Sessa, W.C., Madge, L.A., Schechner, J.S., Schwabb, M.B., and Polverini, P.J. (1998). Biological action of leptin as an angiogenic factor. Science 281, 1683–1686.10.1126/science.281.5383.1683Search in Google Scholar

Simon, M., Stefan, N., Plückthun, A., and Zangemeister-Wittke, U. (2013). Epithelial cell adhesion molecule-targeted drug delivery for cancer therapy. Expert Opin. Drug Deliv. 10, 451–468.10.1517/17425247.2013.759938Search in Google Scholar

Singh, U.P., Singh, N.P., Guan, H., Busbee, B., Price, R.L., Taub, D.D., Mishra, M.K., Fayad, R., Nagarkatti, M., and Nagarkatti, P.S. (2013). Leptin antagonist ameliorates chronic colitis in IL-10-/- mice. Immunobiology 218, 1439–1451.10.1016/j.imbio.2013.04.020Search in Google Scholar

Smiechowska, J., Utech, A., Taffet, G., Hayes, T., Marcelli, M., and Garcia, J.M. (2010). Adipokines in patients with cancer anorexia and cachexia. J. Investig. Med. 58, 554–559.10.2310/JIM.0b013e3181cf91caSearch in Google Scholar

Soma, D., Kitayama, J., Yamashita, H., Miyato, H., Ishikawa, M., and Nagawa, H. (2008). Leptin augments proliferation of breast cancer cells via transactivation of HER2. J. Surg. Res. 149, 9–14.10.1016/j.jss.2007.10.012Search in Google Scholar

Tanaka, M., Suganami, T., Kim-Saijo, M., Toda, C., Tsuiji, M., Ochi, K., Kamei, Y., Minokoshi, Y., and Ogawa, Y. (2011). Role of central leptin signaling in the starvation-induced alteration of B-cell development. J. Neurosci. 31, 8373–8380.10.1523/JNEUROSCI.6562-10.2011Search in Google Scholar

Tartaglia, L.A., Dembski, M., Weng, X., Deng, N., Culpepper, J., Devos, R., Richards, G.J., Campfield, L.A., Clark, F.T., Deeds, J., et al. (1995). Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271.10.1016/0092-8674(95)90151-5Search in Google Scholar

Tarzi, R.M., Cook, H.T., Jackson, I., Pusey, C.D., and Lord, G.M. (2004). Leptin-deficient mice are protected from accelerated nephrotoxic nephritis. Am. J. Pathol. 164, 385–390.10.1016/S0002-9440(10)63128-8Search in Google Scholar

Tian, Z., Sun, R., Wei, H., and Gao, B. (2002). Impaired natural killer (NK). Cell activity in leptin receptor deficient mice: leptin as a critical regulator in NK cell development and activation. Biochem. Biophys. Res. Commun. 298, 297–302.10.1016/S0006-291X(02)02462-2Search in Google Scholar

Tisdale, M.J. (2002). Cachexia in cancer patients. Nat. Rev. Cancer 2, 862–871.10.1038/nrc927Search in Google Scholar

Uotani, S., Abe, T., and Yamaguchi, Y. (2006). Leptin activates AMP-activated protein kinase in hepatic cells via a JAK2-dependent pathway. Biochem. Biophys. Res. Commun. 351, 171–175.10.1016/j.bbrc.2006.10.015Search in Google Scholar

Vaisse, C., Halaas, J.L., Horvath, C.M., Darnell, J.E., Stoffel, M., and Friedman, J.M. (1996). Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat. Genet. 14, 95–97.10.1038/ng0996-95Search in Google Scholar

Van der Linden, R., de Geus, B., Stok, W., Bos, W., van Wassenaar, D., Verrips, T., and Frenken, L. (2000). Induction of immune responses and molecular cloning of the heavy chain antibody repertoire of Lama glama. J. Immunol. Methods 240, 185–195.10.1016/S0022-1759(00)00188-5Search in Google Scholar

Venken, K, Seeuws, S., Zabeau, L., Jacques, P., Decruy, T., Coudenys, J., Verheugen, E., Windels, F., Catteeuw, D., Drennan, M., et al. (2014). A bidirectional crosstalk between iNKT cells and adipocytes mediated by leptin modulates susceptibility for T cell mediated hepatitis. J. Hepatol. 60, 175–182.10.1016/j.jhep.2013.08.008Search in Google Scholar

Verploegen, S.A., Plaetinck, G., Devos, R., Van der Heyden, J., and Guisez, Y. (1997). A human leptin mutant induces weight gain in normal mice. FEBS Lett. 405, 237–240.10.1016/S0014-5793(97)00192-0Search in Google Scholar

Wang, J., Liu, R., Hawkins, M., Barzilai, N., and Rossetti, L. (1998). A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 393, 684–688.10.1038/31474Search in Google Scholar PubMed

Wauman, J. and Tavernier, J. (2011). Leptin receptor signaling: pathways to leptin resistance. Front. Biosci. 16, 2771–2793.10.2741/3885Search in Google Scholar PubMed

Wauman, J., De Smet, A.S., Catteeuw, D., Belsham, D., and Tavernier, J. (2008). Insulin receptor substrate 4 couples the leptin receptor to multiple signaling pathways. Mol. Endocrinol. 22, 965–977.10.1210/me.2007-0414Search in Google Scholar PubMed PubMed Central

Withers, D.J., Gutierrez, J.S., Towery, H., Burks, D.J., Ren, J.M., Previs, S., Zhang, Y., Bernal, D., Pons, S., Shulman, G.I., et al. (1998). Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900–904.10.1038/36116Search in Google Scholar PubMed

Xu, X., Su, S., Barnes, V.A., De Miguel, C., Pollock, J., Ownby, D., Shi, H., Zhu, H., Snieder, H., and Wang, X. (2013a). A genome-wide methylation study on obesity: differential variability and differential methylation. Epigenetics 8, 522–533.10.4161/epi.24506Search in Google Scholar PubMed PubMed Central

Xu, X., Zeng, H., Xiao, D., Zhou, H., and Liu, Z. (2013b). Genome wide association study of obesity. Zhong Nan Da Xue Xue Bao. Yi Xue Ban 38, 95–100.Search in Google Scholar

Yin, N., Wang, D., Zhang, H., Yi, X., Sun, X., Shi, B., Wu, H., Wu, G., Wang, X., and Shang, Y. (2004). Molecular mechanisms involved in the growth stimulation of breast cancer cells by leptin. Cancer Res. 64, 5870–5875.10.1158/0008-5472.CAN-04-0655Search in Google Scholar PubMed

Yu, Y., Liu, Y., Shi, F.-D., Zou, H., Matarese, G., and La Cava, A. (2013). Cutting edge: leptin-induced RORγt expression in CD4+ T cells promotes Th17 responses in systemic lupus erythematosus. J. Immunol. 190, 3054–3058.10.4049/jimmunol.1203275Search in Google Scholar PubMed PubMed Central

Zabeau, L., Defeau, D., Van der Heyden, J., Iserentant, H., Vandekerckhove, J., and Tavernier, J. (2004). Functional analysis of leptin receptor activation using a Janus kinase/signal transducer and activator of transcription complementation assay. Mol. Endocrinol. 18, 150–161.10.1210/me.2003-0078Search in Google Scholar PubMed

Zabeau, L., Defeau, D., Iserentant, H., Vandekerckhove, J., Peelman, F., and Tavernier, J. (2005). Leptin receptor activation depends on critical cysteine residues in its fibronectin type III subdomains. J. Biol. Chem. 280, 22632–22640.10.1074/jbc.M413308200Search in Google Scholar PubMed

Zabeau, L., Verhee, A., Catteeuw, D., Faes, L., Seeuws, S., Decruy, T., Elewaut, D., Peelman, F., and Tavernier, J. (2012). Selection of non-competitive leptin antagonists using a random nanobody-based approach. Biochem. J. 441, 425–434.10.1042/BJ20110438Search in Google Scholar PubMed

Zarkesh-Esfahani, H., Pockley, G., Metcalfe, R.A., Bidlingmaier, M., Wu, Z., Ajami, A., Weetman, A.P., Strasburger, C.J., and Ross, R.J. (2001). High-dose leptin activates human leukocytes via receptor expression on monocytes. J. Immunol. 167, 4593–4599.10.4049/jimmunol.167.8.4593Search in Google Scholar PubMed

Zarkesh-Esfahani, H., Pockley, A.G., Wu, Z., Hellewell, P.G., Weetman, A.P., and Ross, R.J.M. (2004). Leptin indirectly activates human neutrophils via induction of TNF-α. J. Immunol. 172, 1809–1814.10.4049/jimmunol.172.3.1809Search in Google Scholar PubMed

Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J.M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432.10.1038/372425a0Search in Google Scholar

Zhang, F., Basinski, M.B., Beals, J.M., Briggs, S.L., Churgay, L.M., Clawson, D.K., DiMarchi, R.D., Furman, T.C., Hale, J.E., Hsiung, H.M., et al. (1997). Crystal structure of the obese protein leptin-E100. Nature 387, 206–209.10.1038/387206a0Search in Google Scholar

Zhang, E.E., Chapeau, E., Hagihara, K., and Feng, G.-S. (2004). Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proc. Natl. Acad. Sci. USA 101, 16064–16069.10.1073/pnas.0405041101Search in Google Scholar

Zhao, A.Z., Huan, J.-N., Gupta, S., Pal, R., and Sahu, A. (2002). A phosphatidylinositol 3-kinase phosphodiesterase 3B-cyclic AMP pathway in hypothalamic action of leptin on feeding. Nat. Neurosci. 5, 727–728.10.1038/nn885Search in Google Scholar

Zhao, Y., Sun, R., You, L., Gao, C., and Tian, Z. (2003). Expression of leptin receptors and response to leptin stimulation of human natural killer cell lines. Biochem. Biophys. Res. Commun. 300, 247–252.10.1016/S0006-291X(02)02838-3Search in Google Scholar

Received: 2013-11-21
Accepted: 2014-2-5
Published Online: 2014-2-11
Published in Print: 2014-5-1

©2014 by Walter de Gruyter Berlin/Boston

Downloaded on 4.10.2023 from https://www.degruyter.com/document/doi/10.1515/hsz-2013-0283/html
Scroll to top button