Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 13, 2014

Atypical Rho GTPases RhoD and Rif integrate cytoskeletal dynamics and membrane trafficking

  • Pontus Aspenström EMAIL logo
From the journal Biological Chemistry


The Rho GTPases are essential regulators of basic cellular processes, including cell migration, cell contraction and cell division. Most studies still involve just the three canonical members, RhoA, Rac1 and Cdc42, although the Rho GTPases comprise at least 20 members. The aim of this review is to highlight some of the recent advances in our knowledge regarding the less-studied Rho members, with the focus on RhoD and Rif. The phenotypic alterations to cell behaviour that are triggered by RhoD and Rif suggest that they have unique impacts on cytoskeletal dynamics that distinguish them from the well-studied members of the Rho GTPases. In addition, RhoD has a role in the regulation of intracellular transport of vesicles. Taken together, the available data indicate that RhoD and Rif have functions as master regulators in the integration of cytoskeletal reorganisation and membrane trafficking.

Corresponding author: Pontus Aspenström, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Nobels Väg 16, S-171 77 Stockholm, Sweden, e-mail:


The author is supported by the Karolinska Institutet, the Swedish Cancer Society, and the Swedish Research Council.


Aspenström, P., Fransson, Å., and Saras, J. (2004). The Rho GTPases have diverse effects on the organization of the actin filament system. Biochem. J. 377, 327–337.10.1042/bj20031041Search in Google Scholar PubMed PubMed Central

Aspenström, P., Ruusala, A., and Pacholsky, D. (2007). Taking the Rho GTPases to the next level: the cellular function of the atypical Rho GTPases. Exp. Cell Res. 313, 3673–3679.10.1016/j.yexcr.2007.07.022Search in Google Scholar PubMed

Bailik, S. and Kimchi, A. (2006). The death-associated protein kinases: structure, function, and beyond. Annu. Rev. Biochem. 75, 189–210.10.1146/annurev.biochem.75.103004.142615Search in Google Scholar PubMed

Barrios-Rodiles, M., Brown, K.R., Ozdamar, B., Bose, R., Liu, Z., Donovan, R.S., Shinjo, F., Liu, Y., Dembowy, J., Taylor, I.W., et al. (2005). High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307, 1621–1625.10.1126/science.1105776Search in Google Scholar PubMed

Boureux, A., Vignal, E., Faure, S., and Fort, P. (2007). Evolution of the Rho family of Ras-like GTPases in eukaryotes. Mol. Biol. Evol. 24, 203–216.10.1093/molbev/msl145Search in Google Scholar PubMed PubMed Central

Brognard, J., Zhang, Y.-W., Puto, L.A., and Hunter, T. (2011). Cancer-associated loss-of-function mutations implicate DAPK3 as a tumor-suppressing kinase. Cancer Res. 71, 3152–3161.10.1158/0008-5472.CAN-10-3543Search in Google Scholar PubMed PubMed Central

Campellone, K.G., Webb, N.J., Znameroski, E.A., and Welch, M.D. (2008). WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell 134, 148–161.10.1016/j.cell.2008.05.032Search in Google Scholar PubMed PubMed Central

Chardin, P. (2006). Function and regulation of Rnd proteins. Nat. Rev. Mol. Cell Biol. 7, 54–62.10.1038/nrm1788Search in Google Scholar PubMed

Chavrier, P., Simins, K., and Zerial, M. (1992). The complexity of the Rab and Rho GTP-binding protein subfamilies revealed by a PCR cloning approach. Gene 112, 261–264.10.1016/0378-1119(92)90387-5Search in Google Scholar PubMed

Colicelli, J. (2004). Human RAS superfamily proteins and related GTPases. Sci STKE 250, RE13.10.1126/stke.2502004re13Search in Google Scholar PubMed PubMed Central

Cook, D.R., Rossman, K.L., and Der, C.J. (2013). Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. Oncogene. DOI: 10.1038/onc.2013.362 [Epub ahead of print].10.1038/onc.2013.362Search in Google Scholar PubMed PubMed Central

Ellis, S. and Mellor, H. (2000). The novel Rho-family GTPase Rif regulates coordinated actin-based membrane rearrangements. Curr. Biol. 10, 1387–1390.10.1016/S0960-9822(00)00777-6Search in Google Scholar

Espinosa, E.J., Calero, M., Sridevi, K., and Pfeffer, S.R. (2009). RhoBTB3: a Rho GTPase-family ATPase required for endosome to Golgi transport. Cell 137, 938–948.10.1016/j.cell.2009.03.043Search in Google Scholar PubMed PubMed Central

Fan, L., Pellegrin, S., Scott A., and Mellor, H. (2010). The small GTPase Rif is an alternative trigger for the formation of actin stress fibers in epithelial cells. J. Cell Sci. 123, 1247–1252.10.1242/jcs.061754Search in Google Scholar PubMed PubMed Central

Gad, A.K.B. and Aspenström, P. (2010). Rif proteins take to the RhoD: Rho GTPases at the crossroads of actin dynamics and membrane trafficking. Cell. Signal. 22, 183–189.10.1016/j.cellsig.2009.10.001Search in Google Scholar PubMed

Gad, A.K.B., Nehru, V., Ruusala, A., and Aspenström, P. (2012). RhoD regulates cytoskeletal dynamics via the actin-nucleation-promoting factor WHAMM. Mol. Biol. Cell 23, 4807–4819.10.1091/mbc.e12-07-0555Search in Google Scholar PubMed PubMed Central

Garcia-Mata, R., Boulter, E., and Burridge, K. (2011). The ‘invisible hand’: regulation of RHO GTPases by RHO-GDIs. Nat. Rev. Mol. Cell Biol. 12, 493–504.10.1038/nrm3153Search in Google Scholar PubMed PubMed Central

Gasman, S., Kalaidzidis, Y., and Zerial, M. (2003). RhoD regulates endosome dynamics through Diaphanous-related formin and Src kinase. Nat. Cell Biol. 5, 195–204.10.1038/ncb935Search in Google Scholar PubMed

Goggs, R., Savage, J.S., Mellor, H., and Poole, A.W. (2013). The small GTPase Rif is dispensable for platelet filopodia generation in mice. PLoS One. 8, e54663.10.1371/journal.pone.0054663Search in Google Scholar PubMed PubMed Central

Goh, W.I., Sudhaharan, T., Lim, K.B., Sem, K.P., Lau, C.L., and Ahmed, S. (2011). Rif-mDia1 interaction is involved in filopodium formation independent of Cdc42 and Rac effectors. J. Biol. Chem. 286, 13681–13694.10.1074/jbc.M110.182683Search in Google Scholar PubMed PubMed Central

Gorelik, R., Yang, C., Kameswaran, V., Dominguez, R., and Svitkina, T. (2011). Mechanisms of plasma membrane targeting of formin mDia2 through its amino terminal domains. Mol. Biol. Cell. 22, 189–201.10.1091/mbc.e10-03-0256Search in Google Scholar PubMed PubMed Central

Gouw, L.G., Reading, N.S., Jenson, S.D., Lim, M.S., and Elenitoba-Johnson, K.S. (2005). Expression of the Rho-family GTPase gene RHOF in lymphocyte subsets and malignant lymphomas. Br. J. Haematol. 129, 531–533.10.1111/j.1365-2141.2005.05481.xSearch in Google Scholar PubMed

Gozuacik, D. and Kimchi, A. (2006). DAPK protein family and cancer. Autophagy 2, 74–79.10.4161/auto.2.2.2459Search in Google Scholar PubMed

Gradilla, A.C. and Guerrero, I. (2013). Cytoneme-mediated cell-to-cell signaling during development. Cell Tissue Res. 352, 59–66.10.1007/s00441-013-1578-xSearch in Google Scholar PubMed

Jaffe, A.B. and Hall, A. (2005). Rho GTPases: biochemistry and biology. Annu. Rev. Cell. Dev. Biol. 21, 247–269.10.1146/annurev.cellbio.21.020604.150721Search in Google Scholar PubMed

Jaiswal, M., Fansa, E.K., Dvorsky, R., and Ahmadian, M.R. (2013). New insight into the molecular switch mechanism of human Rho family proteins: shifting a paradigm. Biol. Chem. 394, 89–95.10.1515/hsz-2012-0207Search in Google Scholar PubMed

Kawai, T., Matsumoto, M., Takeda, K., Sanjo, H., and Akira, S. (1998). ZIP kinase, a novel serine/threonine kinase which mediates apoptosis. Mol. Cell. Biol. 18, 1642–1651.10.1128/MCB.18.3.1642Search in Google Scholar PubMed PubMed Central

Kögel, D., Plöttner, O., Landsberg, G., Christian, S., and Scheidtmann, K.H. (1998). Cloning and characterization of Dlk, a novel serine/threonine kinase that is tightly associated with chromatin and phosphorylates core histones. Oncogene 17, 2645–2654.10.1038/sj.onc.1202204Search in Google Scholar PubMed

Koizumi, K., Takano, K., Kaneyasu, A., Watanabe-Takano, H., Tokuda, E., Abe, T., Watanabe, N., Takenawa, T., and Endo, T. (2012). RhoD activated by fibroblast growth factor induces cytoneme-like cellular protrusions through mDia3C. Mol. Biol. Cell 23, 4647–4661.10.1091/mbc.e12-04-0315Search in Google Scholar

Kyrkou, A., Soufi, M., Bahtz, R., Ferguson, C., Bai, M., Parton, R.G., Hoffmann, I., Zerial, M., Fotsis, T., and Murphy, C. (2013). RhoD participates in the regulation of cell-cycle progression and centrosome duplication. Oncogene 32, 1831–1842.10.1038/onc.2012.195Search in Google Scholar PubMed

Murata-Hori, M., Fukata, Y., Ueda, K., Iwasaki, T., and Hosoya, H. (2001). HeLa ZIP kinase induces diphosphorylation of myosinII regulatory light chain and reorganization of actin filaments in nonmuscle cells. Oncogene 20, 8175–8183.10.1038/sj.onc.1205055Search in Google Scholar PubMed

Murphy, C., Saffrich, R., Grummt, M., Gournier, H., Rybin, V., Rubino, M., Auvinen, P., Lütcke, A., Parton, R.G., and Zerial, M. (1996). Endosome dynamics regulated by a Rho protein. Nature 384, 427–432.10.1038/384427a0Search in Google Scholar PubMed

Murphy, C., Saffrich, R., Olivo-Marin, J.C., Giner, A., Ansorge, W., Fotsis, T., and Zerial, M. (2001). Dual function of RhoD in vesicular movement and cell motility. Eur. J. Cell Biol. 80, 391–398.10.1078/0171-9335-00173Search in Google Scholar PubMed

Nagano, T., Yoneda, T., Hatanaka, Y., Kubota, C., Murakami, F., and Sato, M. (2002). Filamin A-interacting protein (FILIP) regulates cortical cell migration out of the ventricular zone. Nat. Cell Biol. 4, 495–501.10.1038/ncb808Search in Google Scholar PubMed

Nehru, V., Almeida, F.N., and Aspenström, P. (2013a). Interaction of RhoD and ZIP kinase modulates actin filament assembly and focal adhesion dynamics. Biochem. Biophys. Res. Commun. 433, 163–169.10.1016/j.bbrc.2013.02.046Search in Google Scholar PubMed

Nehru, V., Voytyuk, O., Lennartsson, J., and Aspenström, P. (2013b.) RhoD binds the Rab5 effector Rabankyrin-5 and has a role in trafficking of the platelet-derived growth factor receptor. Traffic 14, 1242–1254.10.1111/tra.12121Search in Google Scholar PubMed

Olson, M.F. and Sahai, E. (2009). The actin cytoskeleton in cancer cell motility. Clin. Exp. Metastasis 26, 273–287.10.1007/s10585-008-9174-2Search in Google Scholar PubMed

Pellegrin, S. and Mellor, H. (2005). The Rho family GTPase Rif induces filopodia through mDia2. Curr. Biol. 15, 129–133.10.1016/j.cub.2005.01.011Search in Google Scholar PubMed

Ridley, A.J. (2013). RhoA, RhoB and RhoC have different roles in cancer cell migration. J. Microsc. 251, 242–249.10.1111/jmi.12025Search in Google Scholar PubMed

Rottner, K. and Stradal, T.E. (2011). Actin dynamics and turnover in cell motility. Curr. Opin. Cell Biol. 23, 569–578.10.1016/ in Google Scholar PubMed

Sandilands, E., Brunton, V.G., and Frame, M.C. (2007). The membrane targeting and spatial activation of Src, Yes and Fyn is influenced by palmitoylation and distinct RhoB/RhoD endosome requirements. J. Cell Sci. 120, 2555–2564.10.1242/jcs.003657Search in Google Scholar PubMed

Schnatwinkel, C., Christoforidis, S., Lindsay, M.R., Uttenweiler-Joseph, S., Wilm, M., Parton, R.G., and Zerial, M. (2004). The Rab5 effector Rabankyrin-5 regulates and coordinates different endocytic mechanisms. PLoS Biol. 2, E261.10.1371/journal.pbio.0020261Search in Google Scholar PubMed PubMed Central

Tcherkezian, J. and Lamarche-Vane, N. (2007). Current knowledge of the large RhoGAP family of proteins. Biol. Cell. 99, 67–86.10.1042/BC20060086Search in Google Scholar PubMed

Tong, Y., Chugha, P., Hota, P.K., Alviani, R.S., Li, M., Tempel, W., Shen, L., Park, H.W., and Buck, M. (2007). Binding of Rac1, Rnd1, and RhoD to a novel Rho GTPase interaction motif destabilizes dimerization of the plexin-B1 effector domain. J. Biol. Chem. 282, 37215–37224.10.1074/jbc.M703800200Search in Google Scholar PubMed PubMed Central

Tsubikamoto, K., Matsumoto, K., Abe, H., Ishii, J., Amano, M., Kaibuchi, K., and Endo, T. (1999). Small GTPase RhoD suppresses cell migration and cytokinesis. Oncogene 18, 2431–2440.10.1038/sj.onc.1202604Search in Google Scholar PubMed

Wennerberg, K. and Der, C.J. (2004). Rho-family GTPases: it’s not only Rac and Rho (and I like it). J. Cell Sci. 117, 1301–1312.10.1242/jcs.01118Search in Google Scholar PubMed

Zanata, S.M., Hovatta, I., Rohm, B., and Püschel, A.W. (2002). Antagonistic effects of Rnd1 and RhoD GTPases regulate receptor activity in Semaphorin 3A-induced cytoskeletal collapse. J. Neurosci. 22, 471–477.10.1523/JNEUROSCI.22-02-00471.2002Search in Google Scholar PubMed PubMed Central

Zhou, A.X., Hartwig, J.H., and Akyürek, L.M. (2010). Filamins in cell signaling, transcription and organ development. Trends Cell Biol. 20, 113–123.10.1016/j.tcb.2009.12.001Search in Google Scholar PubMed

Received: 2013-12-17
Accepted: 2014-3-11
Published Online: 2014-3-13
Published in Print: 2014-5-1

©2014 by Walter de Gruyter Berlin/Boston

Downloaded on 23.9.2023 from
Scroll to top button