Accessible Requires Authentication Published by De Gruyter January 29, 2015

Redox imaging using genetically encoded redox indicators in zebrafish and mice

Michael O. Breckwoldt, Christine Wittmann, Thomas Misgeld, Martin Kerschensteiner and Clemens Grabher
From the journal Biological Chemistry


Redox signals have emerged as important regulators of cellular physiology and pathology. The advent of redox imaging in vertebrate systems now provides the opportunity to dynamically visualize redox signaling during development and disease. In this review, we summarize recent advances in the generation of genetically encoded redox indicators (GERIs), introduce new redox imaging strategies, and highlight key publications in the field of vertebrate redox imaging. We also discuss the limitations and future potential of in vivo redox imaging in zebrafish and mice.

Corresponding authors: Michael O. Breckwoldt, Department of Neuroradiology, University of Heidelberg, Im Neuenheimer Feld 400, D-69120 Heidelberg, Germany, e-mail: ; and Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; and Clemens Grabher, Karlsruhe Institute für Technologie (KIT), Institut für Toxikologie und Genetik (ITG), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany, e-mail:
aThese authors contributed equally to this article.


M.O.B. acknowledges the support provided by a physician-scientist fellowship of the Medical Faculty, University of Heidelberg. C.W. was supported by a Helmholtz joint project initiative between KIT and DKFZ. C.G. was supported by a Marie Curie International Reintegration Grant within the 7th European Community Framework Program (PIRG07-GA-2010-267552). Further thanks go to Heidelberg-Karlsruhe Research Bridge (HeiKa) for the financial support given to C.G. within the synthetic biology platform. C.G., T.M., and M.K. are supported by the DFG Priority Program ‘Dynamics of thiol-based redox switches in cellular physiology’ (SPP1710).


Akerboom, J., Carreras Calderón, N., Tian, L., Wabnig, S., Prigge, M., Tolö, J., Gordus, A., Orger, M.B., Severi, K.E., Macklin, J.J., et al. (2013). Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 1–29. Search in Google Scholar

Albrecht, S.C., Barata, A.G., Großhans, J., Teleman, A.A., and Dick, T.P. (2011). In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab. 14, 819–829. Search in Google Scholar

Barata, A.G., and Dick, T.P. (2013). In vivo imaging of H2O2 production in Drosophila. Meth. Enzymol. 526, 61–82. Search in Google Scholar

Belousov, V.V., Fradkov, A.F., Lukyanov, K.A., Staroverov, D.B., Shakhbazov, K.S., Terskikh, A.V., and Lukyanov, S. (2006). Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286. Search in Google Scholar

Bilan, D.S., Pase, L., Joosen, L., Gorokhovatsky, A.Y., Ermakova, Y.G., Gadella, T.W.J., Grabher, C., Schultz, C., Lukyanov, S., and Belousov, V.V. (2013). HyPer-3: a genetically encoded H2O2 probe with improved performance for ratiometric and fluorescence lifetime imaging. ACS Chem. Biol. 8, 535–542. Search in Google Scholar

Brecht, M., Fee, M.S., Garaschuk, O., Helmchen, F., Margrie, T.W., Svoboda, K., and Osten, P. (2004). Novel approaches to monitor and manipulate single neurons in vivo. J. Neurosci. 24, 9223–9227. Search in Google Scholar

Breckwoldt, M.O., Pfister, F.M.J., Bradley, P.M., Marinković, P., Williams, P.R., Brill, M.S., Plomer, B., Schmalz, A., Clair, D.K.S., Naumann, R., et al. (2014). Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nat. Med. 20, 555–560. Search in Google Scholar

Carlson, G.C., and Coulter, D.A. (2008). In vitro functional imaging in brain slices using fast voltage-sensitive dye imaging combined with whole-cell patch recording. Nat. Protoc. 3, 249–255. Search in Google Scholar

Chazotte, B. (2011). Labeling mitochondria with TMRM or TMRE. Cold Spring Harb. Protoc. 2011, 895–897. Search in Google Scholar

Chouchani, E.T., Methner, C., Nadtochiy, S.M., Logan, A., Pell, V.R., Ding, S., James, A.M., Cochemé, H.M., Reinhold, J., Lilley, K.S., et al. (2013). Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat. Med. 19, 753–759. Search in Google Scholar

D’Autréaux, B., and Toledano, M.B. (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol 8, 813–824. Search in Google Scholar

Dittgen, T., Nimmerjahn, A., Komai, S., Licznerski, P., Waters, J., Margrie, T.W., Helmchen, F., Denk, W., Brecht, M., and Osten, P. (2004). Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc. Natl. Acad. Sci. USA 101, 18206–18211. Search in Google Scholar

Dooley, C.T., Dore, T.M., Hanson, G.T., Jackson, W.C., Remington, S.J., and Tsien, R.Y. (2004). Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J. Biol. Chem. 279, 22284–22293. Search in Google Scholar

Drew, P.J., Shih, A.Y., Driscoll, J.D., Knutsen, P.M., Blinder, P., Davalos, D., Akassoglou, K., Tsai, P.S., and Kleinfeld, D. (2010). Chronic optical access through a polished and reinforced thinned skull. Nat. Methods 7, 981–984. Search in Google Scholar

Enyedi, B., Zana, M., Donkó, Á., and Geiszt, M. (2013). Spatial and temporal analysis of NADPH oxidase-generated hydrogen peroxide signals by novel fluorescent reporter proteins. Antioxidants Redox Signaling 19, 523–534. Search in Google Scholar

Ermakova, Y.G., Bilan, D.S., Matlashov, M.E., Mishina, N.M., Markvicheva, K.N., Subach, O.M., Subach, F.V., Bogeski, I., Hoth, M., Enikolopov, G., et al. (2014). Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide. Nat. Commun. 5, 5222. Search in Google Scholar

Ezeriņa, D., Morgan, B., and Dick, T.P. (2014). Imaging dynamic redox processes with genetically encoded probes. J. Mol. Cell. Cardiol. 73, 43–49. Search in Google Scholar

Goldberg, J.A., Guzman, J.N., Estep, C.M., Ilijic, E., Kondapalli, J., Sanchez-Padilla, J., and Surmeier, D.J. (2012). Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson’s disease. Nat. Neurosci. 15, 1414–1421. Search in Google Scholar

Grienberger, C., and Konnerth, A. (2012). Imaging calcium in neurons. Neuron 73, 862–885. Search in Google Scholar

Gutscher, M., Pauleau, A.-L., Marty, L., Brach, T., Wabnitz, G.H., Samstag, Y., Meyer, A.J., and Dick, T.P. (2008). Real-time imaging of the intracellular glutathione redox potential. Nat. Meth. 5, 553–559. Search in Google Scholar

Gutscher, M., Sobotta, M.C., Wabnitz, G.H., Ballikaya, S., Meyer, A.J., Samstag, Y., and Dick, T.P. (2009). Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J. Biol. Chem. 284, 31532–31540. Search in Google Scholar

Guzman, J.N., Sanchez-Padilla, J., Wokosin, D., Kondapalli, J., Ilijic, E., Schumacker, P.T., and Surmeier, D.J. (2010). Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468, 696–700. Search in Google Scholar

Han, P., Zhou, X.-H., Chang, N., Xiao, C.-L., Yan, S., Ren, H., Yang, X.-Z., Zhang, M.-L., Wu, Q., Tang, B., et al. (2014). Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell. Res. 24, 1091–1107. Search in Google Scholar

Hanson, G.T., Aggeler, R., Oglesbee, D., Cannon, M., Capaldi, R.A., Tsien, R.Y., and Remington, S.J. (2004). Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J. Biol. Chem. 279, 13044–13053. Search in Google Scholar

Helmchen, F., and Denk, W. (2005). Deep tissue two-photon microscopy. Nat. Methods 2, 932–940. Search in Google Scholar

Herrmann, J.M., and Dick, T.P. (2012). Redox biology on the rise. J. Biol. Chem. 393, 999–1004. Search in Google Scholar

Kaludercic, N., Deshwal, S., and Di Lisa, F. (2014). Reactive oxygen species and redox compartmentalization. Front. Physiol. 5, 285. Search in Google Scholar

Kerr, J.N.D., and Denk, W. (2008). Imaging in vivo: watching the brain in action. Nat. Rev. Neurosci. 9, 195–205. Search in Google Scholar

Kerschensteiner, M., Schwab, M.E., Lichtman, J.W., and Misgeld, T. (2005). In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat. Med. 11, 572–577. Search in Google Scholar

Kerschensteiner, M., Reuter, M.S., Lichtman, J.W., and Misgeld, T. (2008). Ex vivo imaging of motor axon dynamics in murine triangularis sterni explants. Nat. Protoc. 3, 1645–1653. Search in Google Scholar

Klugmann, M., Symes, C.W., Leichtlein, C.B., Klaussner, B.K., Dunning, J., Fong, D., Young, D., and During, M.J. (2005). AAV-mediated hippocampal expression of short and long Homer 1 proteins differentially affect cognition and seizure activity in adult rats. Mol. Cell. Neurosci. 28, 347–360. Search in Google Scholar

Kolossov, V.L., Spring, B.Q., Sokolowski, A., Conour, J.E., Clegg, R.M., Kenis, P.J.A., and Gaskins, H.R. (2008). Engineering redox-sensitive linkers for genetically encoded FRET-based biosensors. Exp. Biol. Med. 233, 238–248. Search in Google Scholar

Kumar, C., Igbaria, A., D’Autréaux, B., Planson, A.-G., Junot, C., Godat, E., Bachhawat, A.K., Delaunay-Moisan, A., and Toledano, M.B. (2011). Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J. 30, 2044–2056. Search in Google Scholar

Lichtman, J.W., and Conchello, J.-A. (2005). Fluorescence microscopy. Nat. Methods 2, 910–919. Search in Google Scholar

Lichtman, J.W., and Sanes, J.R. (2003). Watching the neuromuscular junction. J. Neurocytol. 32, 767–775. Search in Google Scholar

Lin, M.T., and Beal, M.F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795. Search in Google Scholar

Lukyanov, K.A., and Belousov, V.V. (2013). Genetically encoded fluorescent redox sensors. Biochim. Biophys. Acta. Gen. Subj. 1840, 745–756. Search in Google Scholar

Marinković, P., Reuter, M.S., Brill, M.S., Godinho, L., Kerschensteiner, M., and Misgeld, T. (2012). Axonal transport deficits and degeneration can evolve independently in mouse models of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 109, 4296–4301. Search in Google Scholar

Meyer, A.J., and Dick, T.P. (2010). Fluorescent protein-based redox probes. Antioxidants Redox Signaling 13, 621–650. Search in Google Scholar

Misgeld, T., and Kerschensteiner, M. (2006). In vivo imaging of the diseased nervous system. Nat. Rev. Neurosci. 7, 449–463. Search in Google Scholar

Murphy, M.P., Holmgren, A., Larsson, N.-G., Halliwell, B., Chang, C.J., Kalyanaraman, B., Rhee, S.G., Thornalley, P.J., Partridge, L., Gems, D., et al. (2011). Unraveling the biological roles of reactive oxygen species. Cell Metabolism 13, 361–366. Search in Google Scholar

Nagai, T., Sawano, A., Park, E.S., and Miyawaki, A. (2001). Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl. Acad. Sci. USA 98, 3197–3202. Search in Google Scholar

Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K., and Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90. Search in Google Scholar

Niethammer, P., Grabher, C., Look, A.T., and Mitchison, T.J. (2009). A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999. Search in Google Scholar

O’Donnell, K.C., Vargas, M.E., and Sagasti, A. (2013). WldS and PGC-1 regulate mitochondrial transport and oxidation state after axonal injury. J. Neurosci. 33, 14778–14790. Search in Google Scholar

Pase, L., Layton, J.E., Wittmann, C., Ellett, F., Nowell, C.J., Reyes-Aldasoro, C.C., Varma, S., Rogers, K.L., Hall, C.J., Keightley, M.C., et al. (2012). Neutrophil-delivered myeloperoxidase dampens the hydrogen peroxide burst after tissue wounding in zebrafish. Curr. Biol. 22, 1818–1824. Search in Google Scholar

Rawls, J.F., Mellgren, E.M., and Johnson, S.L. (2001). How the zebrafish gets its stripes. Dev. Biol. 240, 301–314. Search in Google Scholar

Rieger, S., Wang, F., and Sagasti, A. (2011). Time-lapse imaging of neural development: zebrafish lead the way into the fourth dimension. Genesis 49, 534–545. Search in Google Scholar

Sanchez-Padilla, J., Guzman, J.N., Ilijic, E., Kondapalli, J., Galtieri, D.J., Ben Yang, Schieber, S., Oertel, W., Wokosin, D., Schumacker, P.T., et al. (2014). Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase. Nat. Neurosci. 17, 832–840. Search in Google Scholar

Schinzel, A.C., Takeuchi, O., Huang, Z., Fisher, J.K., Zhou, Z., Rubens, J., Hetz, C., Danial, N.N., Moskowitz, M.A., and Korsmeyer, S.J. (2005). Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl. Acad. Sci. USA 102, 12005–12010. Search in Google Scholar

Schwarzländer, M., Logan, D.C., Fricker, M.D., and Sweetlove, L.J. (2011). The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide “flashes.” Biochem. J. 437, 381–387. Search in Google Scholar

Schwarzländer, M., Murphy, M.P., Duchen, M.R., Logan, D.C., Fricker, M.D., Halestrap, A.P., Müller, F.L., Rizzuto, R., Dick, T.P., Meyer, A.J., et al. (2012). Mitochondrial “flashes”: a radical concept repHined. Trends. Cell. Biol. 22, 503–508. Search in Google Scholar

Schwarzländer, M., Wagner, S., Ermakova, Y.G., Belousov, V.V., Radi, R., Beckman, J.S., Buettner, G.R., Demaurex, N., Duchen, M.R., Forman, H.J., et al. (2014). The “mitoflash” probe cpYFP does not respond to superoxide. Nature 514, E12–E14. Search in Google Scholar

Seiler, C., Davuluri, G., Abrams, J., Byfield, F.J., Janmey, P.A., and Pack, M. (2012). Smooth muscle tension induces invasive remodeling of the zebrafish intestine. PLoS Biol. 10, e1001386. Search in Google Scholar

Sena, L.A., Li, S., Jairaman, A., Prakriya, M., Ezponda, T., Hildeman, D.A., Wang, C.-R., Schumacker, P.T., Licht, J.D., Perlman, H., et al. (2013). Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236. Search in Google Scholar

Shen, E.-Z., Song, C.-Q., Lin, Y., Zhang, W.-H., Su, P.-F., Liu, W.-Y., Zhang, P., Xu, J., Lin, N., Zhan, C., et al. (2014). Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans. Nature 508, 128–132. Search in Google Scholar

Tantama, M., Hung, Y.P., and Yellen, G. (2012). Optogenetic reporters: fluorescent protein-based genetically-encoded indicators of signaling and metabolism in the brain. Progr. Brain. Res. 196, 235–263. Search in Google Scholar

Thestrup, T., Litzlbauer, J., Bartholomäus, I., Mues, M., Russo, L., Dana, H., Kovalchuk, Y., Liang, Y., Kalamakis, G., Laukat, Y., et al. (2014). Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat. Methods 11, 175–182. Search in Google Scholar

Tian, L., Hires, S.A., Mao, T., Huber, D., Chiappe, M.E., Chalasani, S.H., Petreanu, L., Akerboom, J., McKinney, S.A., Schreiter, E.R., et al. (2009). Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881. Search in Google Scholar

Trachtenberg, J.T., Chen, B.E., Knott, G.W., Feng, G., Sanes, J.R., Welker, E., and Svoboda, K. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794. Search in Google Scholar

Wang, W., Fang, H., Groom, L., Cheng, A., Zhang, W., Liu, J., Wang, X., Li, K., Han, P., and Zheng, M. (2008). Superoxide flashes in single mitochondria. Cell 134, 279–290. Search in Google Scholar

Wang, H., Karadge, U., Humphries, W.H., IV, and Fisher, A.L. (2014). Analyzing cell physiology in C. elegans with fluorescent ratiometric reporters. Methods 68, 508–517. Search in Google Scholar

Weber, T., and Köster, R. (2013). Genetic tools for multicolor imaging in zebrafish larvae. Methods 62, 279–291. Search in Google Scholar

Wei-LaPierre, L., Gong, G., Gerstner, B.J., Ducreux, S., Yule, D.I., Pouvreau, S., Wang, X., Sheu, S.-S., Cheng, H., and Dirksen, R.T. (2013). Respective contribution of mitochondrial superoxide and pH to Mt-cpYFP flash activity. J. Biol. Chem. 288, 10567–10577. Search in Google Scholar

White, R.M., Sessa, A., Burke, C., Bowman, T., LeBlanc, J., Ceol, C., Bourque, C., Dovey, M., Goessling, W., Burns, C.E., et al. (2008). Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell. 2, 183–189. Search in Google Scholar

Xie, H., Hou, S., Jiang, J., Sekutowicz, M., Kelly, J., and Bacskai, B.J. (2013). Rapid cell death is preceded by amyloid plaque-mediated oxidative stress. Proc. Natl. Acad. Sci. USA 110, 7904–7909. Search in Google Scholar

Yamada, Y., and Mikoshiba, K. (2012). Quantitative comparison of novel GCaMP-type genetically encoded calcium indicators in mammalian neurons. Front. Cell. Neurosci. 6, 41. Search in Google Scholar

Yoo, S.K., Starnes, T.W., Deng, Q., and Huttenlocher, A. (2011). Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480, 109–112. Search in Google Scholar

Zhao, Y., Araki, S., Wu, J., Teramoto, T., Chang, Y.F., Nakano, M., Abdelfattah, A.S., Fujiwara, M., Ishihara, T., Nagai, T., et al. (2011). An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891. Search in Google Scholar

Received: 2014-12-3
Accepted: 2015-1-26
Published Online: 2015-1-29
Published in Print: 2015-5-1

©2015 by De Gruyter