Accessible Requires Authentication Published by De Gruyter February 25, 2015

Incidence and physiological relevance of protein thiol switches

Lars I. Leichert and Tobias P. Dick
From the journal Biological Chemistry

Abstract

A few small-molecule oxidants, most notably hydrogen peroxide, can act as messengers in signal transduction. They trigger so-called ‘thiol switches’, cysteine residues that are reversibly oxidized to transiently change the functional properties of their host proteins. The proteome-wide identification of functionally relevant ‘thiol switches’ is of significant interest. Unfortunately, prediction of redox-active cysteine residues on the basis of surface accessibility and other computational parameters appears to be of limited use. Proteomic thiol labeling approaches remain the most reliable strategy to discover new thiol switches in a hypothesis-free manner. We discuss if and how genomic knock-in strategies can help establish the physiological relevance of a ‘thiol switch’ on the organismal level. We conclude that surprisingly few attempts have been made to thoroughly verify the physiological relevance of thiol-based redox switches in mammalian model organisms.


Corresponding authors: Lars I. Leichert, Ruhr-Universität Bochum, Institute of Biochemistry and Pathobiochemistry – Microbial Biochemistry, Universitätsstr. 150, D-44780 Bochum, Germany, e-mail: ; and Tobias P. Dick, Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, e-mail:

Acknowledgments

We thank Bruce Morgan for his critical comments regarding the manuscript. We would like to acknowledge funding from the Deutsche Forschungsgemeinschaft under the priority program SPP 1710 (DFG Grants LE 2905/1-1 to L.I.L. and DI 731/3-1 to T.P.D.)

References

Ahmad, S., Gromiha, M.M., and Sarai, A. (2003). Real value prediction of solvent accessibility from amino acid sequence. Proteins 50, 629–635. Search in Google Scholar

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29. Search in Google Scholar

Becker, S., Groner, B., and Müller, C.W. (1998). Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 394, 145–151. Search in Google Scholar

Bossis, G. and Melchior, F. (2006). Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol. Cell 21, 349–357. Search in Google Scholar

Brandes, N., Rinck, A., Leichert, L.I., and Jakob, U. (2007). Nitrosative stress treatment of E. coli targets distinct set of thiol-containing proteins. Mol. Microbiol. 66, 901–914. Search in Google Scholar

Brigelius-Flohé, R. and Flohé, L. (2011). Basic principles and emerging concepts in the redox control of transcription factors. Antioxid. Redox Signal. 15, 2335–2381. Search in Google Scholar

Burgoyne, J.R., Madhani, M., Cuello, F., Charles, R.L., Brennan, J.P., Schröder, E., Browning, D.D., and Eaton, P. (2007). Cysteine redox sensor in PKGIa enables oxidant-induced activation. Science 317, 1393–1397. Search in Google Scholar

Butera, D., Cook, K.M., Chiu, J., Wong, J.W.H., and Hogg, P.J. (2014). Control of blood proteins by functional disulfide bonds. Blood 123, 2000–2007. Search in Google Scholar

Cavallo, L., Kleinjung, J., and Fraternali, F. (2003). POPS: A fast algorithm for solvent accessible surface areas at atomic and residue level. Nucleic Acids Res. 31, 3364–3366. Search in Google Scholar

Chang, J.Y. (1997). A two-stage mechanism for the reductive unfolding of disulfide-containing proteins. J. Biol. Chem. 272, 69–75. Search in Google Scholar

Delaunay, A., Pflieger, D., Barrault, M.B., Vinh, J., and Toledano, M.B. (2002). A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111, 471–481. Search in Google Scholar

Deponte, M., and Lillig, C.H. (2015). Enzymatic control of cysteinyl thiol switches in proteins. Biol. Chem. 396, 401–413. Search in Google Scholar

Dinkel, H., Chica, C., Via, A., Gould, C.M., Jensen, L.J., Gibson, T.J., and Diella, F. (2011). Phospho.ELM: a database of phosphorylation sites--update 2011. Nucleic Acids Res. 39, D261–D267. Search in Google Scholar

Doudna, J.A. and Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096. Search in Google Scholar

Dutton, R.J., Boyd, D., Berkmen, M., and Beckwith, J. (2008). Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc. Natl. Acad. Sci. USA 105, 11933–11938. Search in Google Scholar

Ferrer-Sueta, G., Manta, B., Botti, H., Radi, R., Trujillo, M., and Denicola, A. (2011). Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem. Res. Toxicol. 24, 434–450. Search in Google Scholar

Fischer, M., and Riemer, J. (2013). The mitochondrial disulfide relay system: roles in oxidative protein folding and beyond. Int. J.Cell Biol. 2013, 742923. Search in Google Scholar

Fomenko, D.E., Koc, A., Agisheva, N., Jacobsen, M., Kaya, A., Malinouski, M., Rutherford, J.C., Siu, K.-L., Jin, D.-Y., Winge, D.R., et al. (2011). Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide. Proc. Natl. Acad. Sci. USA 108, 2729–2734. Search in Google Scholar

Go, Y.-M., and Jones, D.P. (2013). The redox proteome. J. Biol. Chem. 288, 26512–26520. Search in Google Scholar

Groitl, B. and Jakob, U. (2014). Thiol-based redox switches. Biochim. Biophys. Acta 1844, 1335–1343. Search in Google Scholar

Gulshan, K., Lee, S.S., and Moye-Rowley, W.S. (2011). Differential oxidant tolerance determined by the key transcription factor Yap1 is controlled by levels of the Yap1-binding protein, Ybp1. J. Biol. Chem. 286, 34071–34081. Search in Google Scholar

Hampton, M.B., Stamenkovic, I., and Winterbourn, C.C. (2002). Interaction with substrate sensitises caspase-3 to inactivation by hydrogen peroxide. FEBS Lett. 517, 229–232. Search in Google Scholar

Hatahet, F., Boyd, D., and Beckwith, J. (2014). Disulfide bond formation in prokaryotes: history, diversity and design. Biochim. Biophys. Acta 1844, 1402–1414. Search in Google Scholar

Hildebrandt, T., Knuesting, J., Berndt, C., Morgan, B., Scheibe, R. (2015). Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? Biol. Chem. 396, 523–537. Search in Google Scholar

Holmgren, A., Söderberg, B.O., Eklund, H., and Brändén, C.I. (1975). Three-dimensional structure of Escherichia coli thioredoxin-S2 to 2.8 A resolution. Proc. Natl. Acad. Sci. USA 72, 2305–2309. Search in Google Scholar

Im, W.B., Sih, J.C., Blakeman, D.P., and McGrath, J.P. (1985). Omeprazole, a specific inhibitor of gastric (H+-K+)-ATPase, is a H+-activated oxidizing agent of sulfhydryl groups. J. Biol. Chem. 260, 4591–4597. Search in Google Scholar

Jarvis, R.M., Hughes, S.M., and Ledgerwood, E.C. (2012). Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic. Biol. Med. 53, 1522–1530. Search in Google Scholar

Jia, J., Arif, A., Terenzi, F., Willard, B., Plow, E.F., Hazen, S.L., and Fox, P.L. (2014). Target-selective protein s-nitrosylation by sequence motif recognition. Cell 159, 623–634. Search in Google Scholar

Kadokura, H. and Beckwith, J. (2010). Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid. Redox Signal. 13, 1231–1246. Search in Google Scholar

Kwon, J., Lee, S.-R., Yang, K.-S., Ahn, Y., Kim, Y.J., Stadtman, E.R., and Rhee, S.G. (2004). Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl. Acad. Sci. USA 101, 16419–16424. Search in Google Scholar

Lee, B.C., Péterfi, Z., Hoffmann, F.W., Moore, R.E., Kaya, A., Avanesov, A., Tarrago, L., Zhou, Y., Weerapana, E., Fomenko, D.E., et al. (2013). MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation. Mol. Cell 51, 397–404. Search in Google Scholar

Leichert, L.I. and Jakob, U. (2004). Protein thiol modifications visualized in vivo. PLoS Biol. 2, e333. Search in Google Scholar

Leichert, L.I. and Jakob, U. (2006). Global methods to monitor the thiol-disulfide state of proteins in vivo. Antioxid. Redox Signal. 8, 763–772. Search in Google Scholar

Leichert, L.I., Gehrke, F., Gudiseva, H.V., Blackwell, T., Ilbert, M., Walker, A.K., Strahler, J.R., Andrews, P.C., and Jakob, U. (2008). Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc. Natl. Acad. Sci. USA 105, 8197–8202. Search in Google Scholar

Li, L. and Shaw, P.E. (2006). Elevated activity of STAT3C due to higher DNA binding affinity of phosphotyrosine dimer rather than covalent dimer formation. J. Biol. Chem. 281, 33172–33181. Search in Google Scholar

Li, L., Cheung, S.H., Evans, E.L., and Shaw, P.E. (2010). Modulation of gene expression and tumor cell growth by redox modification of STAT3. Cancer Res 70, 8222–8232. Search in Google Scholar

Lindemann, C. and Leichert, L.I. (2012). Quantitative redox proteomics: the NOxICAT method. Methods Mol. Biol. 893, 387–403. Search in Google Scholar

Lindemann, C., Lupilova, N., Müller, A., Warscheid, B., Meyer, H.E., Kuhlmann, K., Eisenacher, M. and Leichert, L.I. (2013). Redox proteomics uncovers peroxynitrite-sensitive proteins that help Escherichia coli to overcome nitrosative stress. J. Biol. Chem. 288, 19698–19714. Search in Google Scholar

Liu, Q., Wang, H., Liu, H., Teng, M., and Li, X. (2012). Preliminary crystallographic analysis of glyceraldehyde-3-phosphate dehydrogenase 3 from Saccharomyces cerevisiae. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68, 978–980. Search in Google Scholar

Lu, C.-T., Huang, K.-Y., Su, M.-G., Lee, T.-Y., Bretaña, N.A., Chang, W.-C., Chen, Y.-J., Chen, Y.-J., and Huang, H.-D. (2013). DbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications. Nucleic Acids Res. 41, D295–D305. Search in Google Scholar

Luo, D., Smith, S.W., and Anderson, B.D. (2005). Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution. J. Pharm. Sci. 94, 304–316. Search in Google Scholar

Luo, M., Zhang, J., He, H., Su, D., Chen, Q., Gross, M.L., Kelley, M.R., and Georgiadis, M.M. (2012). Characterization of the redox activity and disulfide bond formation in apurinic/apyrimidinic endonuclease. Biochemistry 51, 695–705. Search in Google Scholar

Morinaka, A., Yamada, M., Itofusa, R., Funato, Y., Yoshimura, Y., Nakamura, F., Yoshimura, T., Kaibuchi, K., Goshima, Y., Hoshino, M., et al. (2011). Thioredoxin mediates oxidation-dependent phosphorylation of CRMP2 and growth cone collapse. Sci. Signal. 4, ra26. Search in Google Scholar

Nagy, P. (2013). Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways. Antioxid. Redox Signal. 18, 1623–1641. Search in Google Scholar

Oka, O.B.V. and Bulleid, N.J. (2013). Forming disulfides in the endoplasmic reticulum. Biochim. Biophys. Acta 1833, 2425–2429. Search in Google Scholar

Ordway, J.M., Eberhart, D., and Curran, T. (2003). Cysteine 64 of Ref-1 is not essential for redox regulation of AP-1 DNA binding. Mol. Cell. Biol. 23, 4257–4266. Search in Google Scholar

Pattison, D.I., and Davies, M.J. (2001). Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem. Res. Toxicol. 14, 1453–1464. Search in Google Scholar

Peralta, D., Bronowska, A.K., Morgan, B., Dóka, É., Van Laer, K., Nagy, P., Gräter, F., and Dick, T.P. (2015). A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 11, 156–163. Search in Google Scholar

Pineda-Molina, E., Klatt, P., Vázquez, J., Marina, A., García de Lacoba, M., Pérez-Sala, D., and Lamas, S. (2001). Glutathionylation of the p50 subunit of NF-κB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry 40, 14134–14142. Search in Google Scholar

Prysyazhna, O., Rudyk, O., and Eaton, P. (2012). Single atom substitution in mouse protein kinase G eliminates oxidant sensing to cause hypertension. Nat. Med. 18, 286–290. Search in Google Scholar

Radi, R., Beckman, J.S., Bush, K.M., and Freeman, B.A. (1991). Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266, 4244–4250. Search in Google Scholar

Rothwell, D.G., Barzilay, G., Gorman, M., Morera, S., Freemont, P., and Hickson, I.D. (1997). The structure and functions of the HAP1/Ref-1 protein. Oncol. Res. 9, 275–280. Search in Google Scholar

Sanchez, R., Riddle, M., Woo, J., and Momand, J. (2008). Prediction of reversibly oxidized protein cysteine thiols using protein structure properties. Protein Sci 17, 473–481. Search in Google Scholar

Schein, C.H. (1990). Solubility as a function of protein structure and solvent components. Biotechnology (N.Y.) 8, 308–317. Search in Google Scholar

Schröder, E., Littlechild, J.A., Lebedev, A.A., Errington, N., Vagin, A.A., and Isupov, M.N. (2000). Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 Å resolution. Structure 8, 605–615. Search in Google Scholar

Sobotta, M.C., Liou, W., Stöcker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N.D., and Dick, T.P. (2015). Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 11, 64–70. Search in Google Scholar

Sun, M.-A., Wang, Y., Cheng, H., Zhang, Q., Ge, W., and Guo, D. (2012). RedoxDB--a curated database for experimentally verified protein oxidative modification. Bioinformatics 28, 2551–2552. Search in Google Scholar

Trost, B. and Kusalik, A. (2011). Computational prediction of eukaryotic phosphorylation sites. Bioinformatics 27, 2927–2935. Search in Google Scholar

UniProt Consortium (2014). Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 42, D191–D198. Search in Google Scholar

Veal, E.A., Ross, S.J., Malakasi, P., Peacock, E., and Morgan, B.A. (2003). Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor. J. Biol. Chem. 278, 30896–30904. Search in Google Scholar

Walker, L.J., Robson, C.N., Black, E., Gillespie, D., and Hickson, I.D. (1993). Identification of residues in the human DNA repair enzyme HAP1 (Ref-1) that are essential for redox regulation of Jun DNA binding. Mol. Cell. Biol. 13, 5370–5376. Search in Google Scholar

Wessel, F., Winderlich, M., Holm, M., Frye, M., Rivera-Galdos, R., Vockel, M., Linnepe, R., Ipe, U., Stadtmann, A., Zarbock, A., et al. (2014). Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin. Nat. Immunol. 15, 223–230. Search in Google Scholar

Winterbourn, C.C. (2008). Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278–286. Search in Google Scholar

Wojdyla, K., Williamson, J., Roepstorff, P., and Rogowska-Wrzesinska, A. (2015). The SNO/SOH TMT strategy for combinatorial analysis of reversible cysteine oxidations. J. Proteomics 113, 415–434. Search in Google Scholar

Xu, Z., Lam, L.S.M., Lam, L.H., Chau, S.F., Ng, T.B., and Au, S.W.N. (2008). Molecular basis of the redox regulation of SUMO proteases: a protective mechanism of intermolecular disulfide linkage against irreversible sulfhydryl oxidation. FASEB J. 22, 127–137. Search in Google Scholar

Xue, Y., Gao, X., Cao, J., Liu, Z., Jin, C., Wen, L., Yao, X., and Ren, J. (2010). A summary of computational resources for protein phosphorylation. Curr. Protein Pept. Sci. 11, 485–496. Search in Google Scholar

Zhang, H., Zhang, T., Chen, K., Shen, S., Ruan, J., and Kurgan, L. (2009). On the relation between residue flexibility and local solvent accessibility in proteins. Proteins 76, 617–636. Search in Google Scholar

Received: 2014-12-14
Accepted: 2015-2-21
Published Online: 2015-2-25
Published in Print: 2015-5-1

©2015 by De Gruyter