References
Breckwoldt, M.O., Wittmann, C., Misgeld, T., Kerschensteiner, M., and Grabher C. (2015). Redox imaging using genetically encoded redox indicators in zebrafish and mice. Biol. Chem. 396, 511–522.10.1515/hsz-2014-0294Search in Google Scholar
Delaunay, A., Pflieger, D., Barrault, M.B., Vinh, J., and Toledano, M.B. (2002). A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111, 471–481.10.1016/S0092-8674(02)01048-6Search in Google Scholar
Deponte, M. and Lillig, C.H. (2015). Enzymatic control of cysteinyl thiol switches in proteins. Biol. Chem. 396, 401–413.10.1515/hsz-2014-0280Search in Google Scholar PubMed
Dietz, K.J. and Hell, R. (2015). Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress. Biol. Chem. 396, 483–494.10.1515/hsz-2014-0281Search in Google Scholar PubMed
Gutsche, N., Thurow, C., Zachgo, S., and Gatz, C. (2015). Plant-specific CC-type glutaredoxins: functions in developmental processes and stress responses. Biol. Chem. 396, 495–509.10.1515/hsz-2014-0300Search in Google Scholar PubMed
Hildebrandt, T., Knuesting, J., Berndt, C., Morgan, B., and Scheibe, R. (2015). Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? Biol. Chem. 396, 523–537.Search in Google Scholar
Hillion, M. and Antelmann, H. (2015). Thiol-based redox switches in prokaryotes. Biol. Chem. 396, 415–444.10.1515/hsz-2015-0102Search in Google Scholar PubMed PubMed Central
Klomsiri, C., Karplus, P.A., and Poole, L.B. (2011). Cysteine-based redox switches in enzymes. Antioxid. Redox Signal. 14, 1065–1077.10.1089/ars.2010.3376Search in Google Scholar PubMed PubMed Central
Kojer, K., Bien, M., Gangel, H., Morgan, B., Dick, T.P., and Riemer, J. (2012). Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state. EMBO J. 31, 3169–3182.10.1038/emboj.2012.165Search in Google Scholar PubMed PubMed Central
Leichert, L.I. and Dick, T.P. (2015). Incidence and physiological relevance of protein thiol switches. Biol. Chem. 396, 389–399.10.1515/hsz-2014-0314Search in Google Scholar PubMed
Morgan, B., Ezerina, D., Amoako, T.N., Riemer, J., Seedorf, M., and Dick, T.P. (2013). Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat. Chem. Biol. 9, 119–125.10.1038/nchembio.1142Search in Google Scholar PubMed
Peralta, D., Bronowska, A.K., Morgan, B., Doka, E., Van Laer, K., Nagy, P., Grater, F., and Dick, T.P. (2015). A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 11, 156–163.10.1038/nchembio.1720Search in Google Scholar PubMed
Rahbari, M., Diederich, K., Becker, K., Krauth-Siegel, L., and Jortzik, E. (2015). Detection of thiol-based redox switch processes in parasites – facts and future. Biol. Chem. 396, 445–463.10.1515/hsz-2014-0279Search in Google Scholar PubMed
Rhee, S.G. and Woo, H.A. (2011). Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H2O2, and protein chaperones. Antioxid. Redox Signal. 15, 781–794.10.1089/ars.2010.3393Search in Google Scholar PubMed
Riemer, J., Schwarzländer, M., Conrad., M., and Herrmann, J.M. (2015). Thiol switches in mitochondria: operation and physiological relevance. Biol. Chem. 396, 465–482.10.1515/hsz-2014-0293Search in Google Scholar PubMed
Sies, H. (2015). Oxidative stress: a concept in redox biology and medicine. Redox Biol. 4, 180–183.10.1016/j.redox.2015.01.002Search in Google Scholar PubMed PubMed Central
Simeoni, L. and Bogeski, I. (2015). Redox regulation of T-cell receptor signaling. Biol. Chem. 396, 555–568.10.1515/hsz-2014-0312Search in Google Scholar PubMed
Sobotta, M.C., Liou, W., Stocker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N., and Dick, T.P. (2015). Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 11, 64–70.10.1038/nchembio.1695Search in Google Scholar PubMed
Suzuki, Y. and Schmitt, M.J. (2015). Redox diversity in ERAD-mediated protein retrotranslocation from the endoplasmic reticulum: a complex puzzle. Biol. Chem. 396, 539–554.10.1515/hsz-2014-0299Search in Google Scholar PubMed
©2015 by De Gruyter