Accessible Requires Authentication Published by De Gruyter April 9, 2015

Highlight: Dynamics of Thiol-Based Redox Switches

Johannes M. Herrmann, Katja Becker and Tobias P. Dick
From the journal Biological Chemistry

References

Breckwoldt, M.O., Wittmann, C., Misgeld, T., Kerschensteiner, M., and Grabher C. (2015). Redox imaging using genetically encoded redox indicators in zebrafish and mice. Biol. Chem. 396, 511–522. Search in Google Scholar

Delaunay, A., Pflieger, D., Barrault, M.B., Vinh, J., and Toledano, M.B. (2002). A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111, 471–481. Search in Google Scholar

Deponte, M. and Lillig, C.H. (2015). Enzymatic control of cysteinyl thiol switches in proteins. Biol. Chem. 396, 401–413. Search in Google Scholar

Dietz, K.J. and Hell, R. (2015). Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress. Biol. Chem. 396, 483–494. Search in Google Scholar

Gutsche, N., Thurow, C., Zachgo, S., and Gatz, C. (2015). Plant-specific CC-type glutaredoxins: functions in developmental processes and stress responses. Biol. Chem. 396, 495–509. Search in Google Scholar

Hildebrandt, T., Knuesting, J., Berndt, C., Morgan, B., and Scheibe, R. (2015). Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? Biol. Chem. 396, 523–537. Search in Google Scholar

Hillion, M. and Antelmann, H. (2015). Thiol-based redox switches in prokaryotes. Biol. Chem. 396, 415–444. Search in Google Scholar

Klomsiri, C., Karplus, P.A., and Poole, L.B. (2011). Cysteine-based redox switches in enzymes. Antioxid. Redox Signal. 14, 1065–1077. Search in Google Scholar

Kojer, K., Bien, M., Gangel, H., Morgan, B., Dick, T.P., and Riemer, J. (2012). Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state. EMBO J. 31, 3169–3182. Search in Google Scholar

Leichert, L.I. and Dick, T.P. (2015). Incidence and physiological relevance of protein thiol switches. Biol. Chem. 396, 389–399. Search in Google Scholar

Morgan, B., Ezerina, D., Amoako, T.N., Riemer, J., Seedorf, M., and Dick, T.P. (2013). Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat. Chem. Biol. 9, 119–125. Search in Google Scholar

Peralta, D., Bronowska, A.K., Morgan, B., Doka, E., Van Laer, K., Nagy, P., Grater, F., and Dick, T.P. (2015). A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 11, 156–163. Search in Google Scholar

Rahbari, M., Diederich, K., Becker, K., Krauth-Siegel, L., and Jortzik, E. (2015). Detection of thiol-based redox switch processes in parasites – facts and future. Biol. Chem. 396, 445–463. Search in Google Scholar

Rhee, S.G. and Woo, H.A. (2011). Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H2O2, and protein chaperones. Antioxid. Redox Signal. 15, 781–794. Search in Google Scholar

Riemer, J., Schwarzländer, M., Conrad., M., and Herrmann, J.M. (2015). Thiol switches in mitochondria: operation and physiological relevance. Biol. Chem. 396, 465–482. Search in Google Scholar

Sies, H. (2015). Oxidative stress: a concept in redox biology and medicine. Redox Biol. 4, 180–183. Search in Google Scholar

Simeoni, L. and Bogeski, I. (2015). Redox regulation of T-cell receptor signaling. Biol. Chem. 396, 555–568. Search in Google Scholar

Sobotta, M.C., Liou, W., Stocker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N., and Dick, T.P. (2015). Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 11, 64–70. Search in Google Scholar

Suzuki, Y. and Schmitt, M.J. (2015). Redox diversity in ERAD-mediated protein retrotranslocation from the endoplasmic reticulum: a complex puzzle. Biol. Chem. 396, 539–554. Search in Google Scholar

Published Online: 2015-4-9
Published in Print: 2015-5-1

©2015 by De Gruyter