Abstract
Ten secreted aspartic proteases (Saps) of Candida albicans cleave numerous peptides and proteins in the host organism and deregulate its homeostasis. Human kininogens contain two internal antimicrobial peptide sequences, designated NAT26 and HKH20. In our current study, we characterized a Sap-catalyzed cleavage of kininogen-derived antimicrobial peptides that results in the loss of the anticandidal activity of these peptides. The NAT26 peptide was effectively inactivated by all Saps, except Sap10, whereas HKH20 was completely degraded only by Sap9. Proteolytic deactivation of the antifungal potential of human kininogens can help the pathogens to modulate or evade the innate immunity of the host.
Acknowledgments
This work was supported in part by the National Science Centre, Poland (grant no. 2013/09/N/NZ1/00201, awarded to O.B.). The Faculty of Biochemistry, Biophysics and Biotechnology of the Jagiellonian University in Krakow is a beneficiary of structural funds from the European Union (grant no. POIG.02.01.00-12-064/08 – “Molecular biotechnology for health”) and a partner of the Leading National Research Center (KNOW) supported by the Ministry of Science and Higher Education, Poland.
References
Albrecht, A., Felk, A., Pichova, I., Naglik, J.R., Schaller, M., de Groot, P., MacCallum, D., Odds, F.C., Schafer, W., Klis, F., et al. (2006). Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J. Biol. Chem. 281, 688–694.10.1074/jbc.M509297200Search in Google Scholar
Aoki, W., Kitahara, N., Miura, N., Morisaka, H., Yamamoto, Y., Kuroda, K., and Ueda, M. (2011). Comprehensive characterization of secreted aspartic proteases encoded by a virulence gene family in Candida albicans. J. Biochem. 150, 431–438.10.1093/jb/mvr073Search in Google Scholar
Bochenska, O., Rapala-Kozik, M., Wolak, N., Bras, G., Kozik, A., Dubin, A., Aoki, W., Ueda, M., and Mak, P. (2013). Secreted aspartic peptidases of Candida albicans liberate bactericidal hemocidins from human hemoglobin. Peptides 48, 49–58.10.1016/j.peptides.2013.07.023Search in Google Scholar
Bras, G., Bochenska, O., Rapala-Kozik, M., Guevara-Lora, I., Faussner, A., and Kozik, A. (2012). Extracellular aspartic protease SAP2 of Candida albicans yeast cleaves human kininogens and releases proinflammatory peptides, Met-Lys-bradykinin and des-Arg9-Met-Lys-bradykinin. Biol. Chem. 393, 829–839.10.1515/hsz-2012-0157Search in Google Scholar
Colman, R.W. (2001). Role of the light chain of high molecular weight kininogen in adhesion, cell-associated proteolysis and angiogenesis. Biol. Chem. 382, 65–70.10.1515/BC.2001.011Search in Google Scholar
Frick, I.M., Akesson, P., Herwald, H., Mörgelin, M., Malmsten, M., Nägler, D.K., and Björck, L. (2006). The contact system-a novel branch of innate immunity generating antibacterial peptides. EMBO J. 25, 5569–5578.10.1038/sj.emboj.7601422Search in Google Scholar
Frick, I.M., Björck, L., and Herwald, H. (2007). The dual role of the contact system in bacterial infectious disease. Thromb. Haemost. 98, 497–502.10.1160/TH07-01-0051Search in Google Scholar
Gropp, K., Schild, L., Schindler, S., Hube, B., Zipfel, P.F., and Skerka, C. (2009). The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol. Immunol. 47, 465–475.10.1016/j.molimm.2009.08.019Search in Google Scholar
Howl, J. and Jones, S. (2009). Bioactive Peptides (Boca Raton, FL: CRC Press), pp. 357–404.Search in Google Scholar
Karkowska-Kuleta, J., Rapala-Kozik, M., and Kozik, A. (2009). Fungi pathogenic to humans: molecular bases of virulence of Candidaalbicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochim. Pol. 56, 211–224.10.18388/abp.2009_2452Search in Google Scholar
Koelsch, G., Tang, J., Loy, J.A., Monod, M., Jackson, K., Foundling, S.I., and Lin, X. (2000). Enzymic characteristics of secreted aspartic proteases of Candida albicans. Biochim. Biophys. Acta. 1480, 117–131.10.1016/S0167-4838(00)00068-6Search in Google Scholar
Lalmanach, G., Naudin, C., Lecaille, F., and Fritz, H. (2010). Kininogens: more than cysteine protease inhibitors and kinin precursors. Biochimie 92, 1568–1579.10.1016/j.biochi.2010.03.011Search in Google Scholar PubMed
Mavor, A.L. Thewes, S., and Hube, B. (2005). Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Curr. Drug Targets 6, 863–874.10.2174/138945005774912735Search in Google Scholar PubMed
Mayer, F.L., Wilson, D., and Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence 4, 119–128.10.4161/viru.22913Search in Google Scholar PubMed PubMed Central
Mehra, T., Koberle, M., Braunsdorf, C., Mallander-Sanchez, D., Borelli, C., and Schaller, M. (2012). Alternative approaches to antifungal therapies. Exp. Dermatol. 21, 778–782.10.1111/exd.12004Search in Google Scholar PubMed PubMed Central
Meiller, T.F., Hube, B., Schild, L., Shirtliff, M.E., Scheper, M., Winkler, R., Ton, A., and Jabra-Rizk, M.A. (2009). A novel immune evasion strategy of Candida albicans: proteolytic cleavage of a salivary antimicrobial peptide. PLoS One 4, e5039.10.1371/journal.pone.0005039Search in Google Scholar PubMed PubMed Central
Naglik, J.R., Newport, G., White, T.C., Fernandes-Naglik, L.L., Greenspan, J.S., Greenspan, D., Sweet, S.P., Challacombe, S.J., and Agabian, N. (1999). In vivo analysis of secreted aspartyl proteinase expression in human oral candidiasis. Infect. Immun. 67, 2482–2490.10.1128/IAI.67.5.2482-2490.1999Search in Google Scholar PubMed PubMed Central
Naglik, J.R., Challacombe, S.J., and Hube, B. (2003). Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 67, 400–428.10.1128/MMBR.67.3.400-428.2003Search in Google Scholar PubMed PubMed Central
Naglik, J.R., Moyes, D., Makwana, J., Kanzaria, P., Tsichlaki, E., Weindl, G., Tappuni, A.R., Rodgers, C.A., Woodman, A.J., Challacombe, S.J., et al. (2008). Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology 154, 3266–3280.10.1099/mic.0.2008/022293-0Search in Google Scholar PubMed PubMed Central
Nawrot, U., Pajączkowska, M., Fleischer, M., Przondo-Mordarska, H., Samet, A., Piasecka-Pazik, D., Komarnicka, J., Sulik-Tyszka, B., Swoboda-Kopeć, E., Cieślik, J., et al. (2013). Candidaemia in polish hospitals – a multicentre survey. Mycoses 56, 576–581.10.1111/myc.12077Search in Google Scholar PubMed
Nordahl, E.A., Rydengård, V., Mörgelin, M., and Schmidtchen, A. (2005). Domain 5 of high molecular weight kininogen is antibacterial. J. Biol. Chem. 280, 34832–34839.10.1074/jbc.M507249200Search in Google Scholar PubMed
Rapala-Kozik, M., Karkowska, J., Jacher, A., Golda, A., Barbasz, A., Guevara-Lora, I., and Kozik, A. (2008). Kininogen adsorption to the cell surface of Candida spp. Int. Immunopharmacol. 8, 237–241.10.1016/j.intimp.2007.07.005Search in Google Scholar PubMed
Rapala-Kozik, M., Karkowska-Kuleta, J., Ryzanowska, A., Golda, A., Barbasz, A., Faussner, A., and Kozik, A. (2010). Degradation of human kininogens with the release of kinin peptides by extracellular proteinases of Candida spp. Biol. Chem. 391, 823–830.10.1515/bc.2010.083Search in Google Scholar
Rapala-Kozik, M., Bochenska, O., Zawrotniak, M., Wolak, N., Trebacz, G., Gogol, M., Ostrowska, D., Aoki, W., Ueda, M., and Kozik, A. (2015). Inactivation of the antifungal and immunomodulatory properties of human cathelicidin LL-37 by aspartic proteases produced by the pathogenic yeast Candida albicans. Infect. Immun. 83, 2518–2530.10.1128/IAI.00023-15Search in Google Scholar PubMed PubMed Central
Ruchel, R. (1986). Cleavage of immunoglobulins by pathogenic yeasts of the genus Candida. Microbiol. Sci. 3, 316–319.Search in Google Scholar
Schaller, M., Korting, H.C., Schafer, W., Bastert, J., Chen, W., Hube, B., and Scha, W. (1999). Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol. Microbiol. 34, 169–180.10.1046/j.1365-2958.1999.01590.xSearch in Google Scholar PubMed
Schaller, M., Januschke, E., Schackert, C., Woerle, B., and Korting, H.C. (2001). Different isoforms of secreted aspartyl proteinases (Sap) are expressed by Candida albicans during oral and cutaneous candidosis in vivo. J. Med. Microbiol. 50, 743–747.10.1099/0022-1317-50-8-743Search in Google Scholar PubMed
Schaller, M., Bein, M., Korting, H.C., Baur, S., Hamm, G., Monod, M., Beinhauer, S., Hube, B., and Mmun, I.N.I. (2003). The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect. Immun. 71, 3227–3234.10.1128/IAI.71.6.3227-3234.2003Search in Google Scholar PubMed PubMed Central
Schaller, M., Borelli, C., Korting, H.C., and Hube, B. (2005). Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48, 365–377.10.1111/j.1439-0507.2005.01165.xSearch in Google Scholar PubMed
Schmidtchen, A., Frick, I.M., Andersson, E., Tapper, H., and Björck, L. (2002). Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol. 46, 157–168.10.1046/j.1365-2958.2002.03146.xSearch in Google Scholar PubMed
Silva, N.C., Nery, J.M., and Dias, A.L.T. (2014). Aspartic proteinases of Candida spp.: role in pathogenicity and antifungal resistance. Mycoses 57, 1–11.10.1111/myc.12095Search in Google Scholar PubMed
Sonesson, A., Nordahl, E.A., Malmsten, M., and Schmidtchen, A. (2011). Antifungal activities of peptides derived from domain 5 of high-molecular-weight kininogen. Int. J. Pept. 2011, 1–11.10.1155/2011/761037Search in Google Scholar PubMed PubMed Central
Wiesner, J. and Vilcinskas, A. (2010). Antimicrobial peptides. The ancient arm of the human immune system. Virulence 1, 440–464.10.4161/viru.1.5.12983Search in Google Scholar PubMed
©2015 by De Gruyter