Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 18, 2016

Effect of molecular chaperones on aberrant protein oligomers in vitro: super-versus sub-stoichiometric chaperone concentrations

  • Sara Cappelli , Amanda Penco , Benedetta Mannini , Roberta Cascella , Mark R. Wilson , Heath Ecroyd , Xinyi Li , Joel N. Buxbaum , Christopher M. Dobson , Cristina Cecchi , Annalisa Relini and Fabrizio Chiti EMAIL logo
From the journal Biological Chemistry

Abstract

Living systems protect themselves from aberrant proteins by a network of chaperones. We have tested in vitro the effects of different concentrations, ranging from 0 to 16 μm, of two molecular chaperones, namely αB-crystallin and clusterin, and an engineered monomeric variant of transthyretin (M-TTR), on the morphology and cytotoxicity of preformed toxic oligomers of HypF-N, which represent a useful model of misfolded protein aggregates. Using atomic force microscopy imaging and static light scattering analysis, all were found to bind HypF-N oligomers and increase the size of the aggregates, to an extent that correlates with chaperone concentration. SDS-PAGE profiles have shown that the large aggregates were predominantly composed of the HypF-N protein. ANS fluorescence measurements show that the chaperone-induced clustering of HypF-N oligomers does not change the overall solvent exposure of hydrophobic residues on the surface of the oligomers. αB-crystallin, clusterin and M-TTR can diminish the cytotoxic effects of the HypF-N oligomers at all chaperone concentration, as demonstrated by MTT reduction and Ca2+ influx measurements. The observation that the protective effect is primarily at all concentrations of chaperones, both when the increase in HypF-N aggregate size is minimal and large, emphasizes the efficiency and versatility of these protein molecules.

Acknowledgments:

This work was supported with the ‘Fondi di Ateneo’ of the University of Florence, Italy.

References

Alexopoulos, J.A., Guarné, A., and Ortega, J. (2012). ClpP: a structurally dynamic protease regulated by AAA+ proteins. J. Struct. Biol. 179, 202–210.10.1016/j.jsb.2012.05.003Search in Google Scholar PubMed

Aquilina, J.A., Benesch, J.L., Bateman, O.A., Slingsby, C., and Robinson, C.V. (2003). Polydispersity of a mammalian chaperone: mass spectrometry reveals the population of oligomers in alphaB-crystallin. Proc. Natl. Acad. Sci. USA 100, 10611–10616.10.1073/pnas.1932958100Search in Google Scholar PubMed PubMed Central

Baglioni, S., Casamenti, F., Bucciantini, M., Luheshi, L.M., Taddei, N., Chiti, F., Dobson, C.M., and Stefani, M. (2006). Prefibrillar amyloid aggregates could be generic toxins in higher organisms. J. Neurosci. 26, 8160–8167.10.1523/JNEUROSCI.4809-05.2006Search in Google Scholar PubMed PubMed Central

Bartl, M.M., Luckenbach, T., Bergner, O., Ullrich, O., and Koch-Brandt, C. (2001). Multiple receptors mediate apoJ-dependent clearance of cellular debris into nonprofessional phagocytes. Exp. Cell. Res. 271, 130–141.10.1006/excr.2001.5358Search in Google Scholar PubMed

Bemporad, F. and Chiti, F. (2012). Protein misfolded oligomers: experimental approaches, mechanism of formation, and structure-toxicity relationships. Chem. Biol. 19, 315–327.10.1016/j.chembiol.2012.02.003Search in Google Scholar PubMed

Binger, K.J., Ecroyd, H., Yang, S., Carver, J.A., Howlett, G.J., and Griffin, M.D. (2013). Avoiding the oligomeric state: αB-crystallin inhibits fragmentation and induces dissociation of apolipoprotein C-II amyloid fibrils. FASEB J. 27, 1214–1222.10.1096/fj.12-220657Search in Google Scholar PubMed

Bolognesi, B., Kumita, J.R., Barros, T.P., Esbjorner, E.K., Luheshi, L.M., Crowther, D.C., Wilson, M.R., Dobson, C.M., Favrin, G., and Yerbury, J.J. (2010). ANS binding reveals common features of cytotoxic amyloid species. ACS Chem. Biol. 5, 735–740.10.1021/cb1001203Search in Google Scholar PubMed

Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., Taddei, N., Ramponi, G., Dobson, C.M., and Stefani, M. (2002). Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511.10.1038/416507aSearch in Google Scholar PubMed

Bucciantini, M., Calloni, G., Chiti, F., Formigli, L., Nosi, D., Dobson, C.M., and Stefani, M. (2004). Prefibrillar amyloid protein aggregates share common features of cytotoxicity. J. Biol. Chem. 279, 31374–31382.10.1074/jbc.M400348200Search in Google Scholar PubMed

Bukau, B., Weissman, J., and Horwich, A. (2006). Molecular chaperones and protein quality control. Cell 125, 443–451.10.1016/j.cell.2006.04.014Search in Google Scholar PubMed

Burgio, M.R., Bennett, P.M., and Koretz, J.F. (2001). Heat-induced quaternary transitions in hetero- and homo-polymers of α-crystallin. Mol. Vis. 7, 228–233.Search in Google Scholar

Campioni, S., Mossuto, M.F., Torrassa, S., Calloni, G., de Laureto, P.P., Relini, A., Fontana, A., and Chiti, F. (2008). Conformational properties of the aggregation precursor state of HypF-N. J. Mol. Biol. 379, 554–567.10.1016/j.jmb.2008.04.002Search in Google Scholar

Campioni, S., Mannini, B., Zampagni, M., Pensalfini, A., Parrini, C., Evangelisti, E., Relini, A., Stefani, M., Dobson, C.M., Cecchi, C. et al. (2010). A causative link between the structure of aberrant protein oligomers and their toxicity. Nat. Chem. Biol. 6, 140–147.10.1038/nchembio.283Search in Google Scholar

Cardamone, M. and Puri, N.K. (1992). Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochem. J. 282, 589–593.10.1042/bj2820589Search in Google Scholar

Cascella, R., Conti, S., Mannini, B., Li, X., Buxbaum, J.N., Tiribilli, B., Chiti, F., and Cecchi, C. (2013a). Transthyretin suppresses the toxicity of oligomers formed by misfolded proteins in vitro. Biochim. Biophys. Acta 1832, 2302–2314.10.1016/j.bbadis.2013.09.011Search in Google Scholar

Cascella, R., Conti, S., Tatini, F., Evangelisti E., Scartabelli, T., Casamenti, F., Wilson, M.R., Chiti, F., and Cecchi, C. (2013b). Extracellular chaperones prevent Aβ(42)-induced toxicity in rat brains. Biochim. Biophys. Acta 1832, 1217–1226.10.1016/j.bbadis.2013.04.012Search in Google Scholar

Cecchi, C., Baglioni, S., Fiorillo, C., Pensalfini, A., Liguri, G., Nosi, D., Rigacci, S., Bucciantini, M., and Stefani, M. (2005). Insights into the molecular basis of the differing susceptibility of varying cell types to the toxicity of amyloid aggregates. J. Cell. Sci. 118, 3459–3470.10.1242/jcs.02473Search in Google Scholar

Chen, S.W., Drakulic, S., Deas, E., Ouberai, M., Aprile, F.A., Arranz, R., Ness, S., Roodveldt, C., Guilliams, T., De-Genst, E.J., et al. (2015). Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation. Proc. Natl. Acad. Sci. USA 112, E1994–2003.10.1073/pnas.1421204112Search in Google Scholar

Chiti, F. and Dobson, C.M. (2006). Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366.10.1146/annurev.biochem.75.101304.123901Search in Google Scholar

Chiti, F., Bucciantini, M., Capanni, C., Taddei, N., Dobson, C.M., and Stefani, M. (2001). Solution conditions can promote formation of either amyloid protofilaments or mature fibrils from the HypF N-terminal domain. Protein Sci. 10, 2541–2547.10.1110/ps.ps.10201Search in Google Scholar

Cole, G.M. and Ard, M.D. (2000). Influence of lipoproteins on microglial degradation of Alzheimer’s amyloid β-protein. Microsc. Res. Tech. 50, 316–324.10.1002/1097-0029(20000815)50:4<316::AID-JEMT11>3.0.CO;2-ESearch in Google Scholar

Conti, S., Li, X., Gianni, S., Ghadami, S.A., Buxbaum, J., Cecchi, C., Chiti, F., and Bemporad, F. (2014). A complex equilibrium among partially unfolded conformations in monomeric transthyretin. Biochemistry 53, 4381–4392.10.1021/bi500430wSearch in Google Scholar

Demuro, A., Mina, E., Kayed, R., Milton, S.C., Parker, I., and Glabe, C.G. (2005). Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem. 280, 17294–17300.10.1074/jbc.M500997200Search in Google Scholar

Demuro, A., Smith, M., and Parker, I. (2011). Single-channel Ca2+ imaging implicates Aβ1-42 amyloid pores in Alzheimer’s disease pathology. J. Cell Biol. 195, 515–524.10.1083/jcb.201104133Search in Google Scholar

Evangelisti, E., Cecchi, C., Cascella, R., Sgromo, C., Becatti, M., Dobson, C.M., Chiti, F., and Stefani, M. (2012). Membrane lipid composition and its physicochemical properties define cell vulnerability to aberrant protein oligomers. J. Cell. Sci. 125, 2416–2427.10.1242/jcs.098434Search in Google Scholar

Haley, D.A., Horwitz, J., and Stewart, P.L. (1998). The small heat-shock protein, αB-crystallin, has a variable quaternary structure. J. Mol. Biol. 277, 27–35.10.1006/jmbi.1997.1611Search in Google Scholar

Hammad, S.M., Ranganathan, S., Loukinova, E., Twal, W.O., and Argraves, W.S. (1997). Interaction of apolipoprotein J-amyloid beta-peptide complex with low density lipoprotein receptor-related protein-2/megalin. A mechanism to prevent pathological accumulation of amyloid β-peptide. J. Biol. Chem. 272, 18644–18649.10.1074/jbc.272.30.18644Search in Google Scholar

Hartl, F.U., Bracher, A., and Hayer-Hartl, M. (2011). Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332.10.1038/nature10317Search in Google Scholar

Hodson, S., Marshall, J.J., and Burston, S.G. (2012). Mapping the road to recovery: the ClpB/Hsp104 molecular chaperone. J. Struct. Biol. 179, 161–171.10.1016/j.jsb.2012.05.015Search in Google Scholar

Horwitz, J., Huang, Q.L., Ding, L., and Bova, M.P. (1998). Lens α-crystallin: chaperone-like properties. Meth. Enzymol. 290, 365–383.10.1016/S0076-6879(98)90032-5Search in Google Scholar

Jiang, X., Smith, C.S., Petrassi, H.M., Hammarström, P., White, J.T., Sacchettini, J.C., and Kelly, J.W. (2001). An engineered transthyretin monomer that is nonamyloidogenic, unless it is partially denatured. Biochemistry 40, 11442–11452.10.1021/bi011194dSearch in Google Scholar PubMed

Kim, Y.E., Hipp, M.S., Bracher, A., Hayer-Hartl, M., and Hartl, F.U. (2013). Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82, 323–355.10.1146/annurev-biochem-060208-092442Search in Google Scholar PubMed

Ladiwala, A.R., Litt, J., Kane, R.S., Aucoin, D.S., Smith, S.O., Ranjan, S., Davis, J., Van Nostrand, W.E., and Tessier, P.M. (2012). Conformational differences between two amyloid β oligomers of similar size and dissimilar toxicity. J. Biol. Chem. 287, 24765–24773.10.1074/jbc.M111.329763Search in Google Scholar PubMed PubMed Central

Li, T. and Lucius, A.L. (2013). Examination of the polypeptide substrate specificity for Escherichia coli ClpA. Biochemistry 52, 4941–4954.10.1021/bi400178qSearch in Google Scholar PubMed

Li, X., Masliah, E., Reixach, N., and Buxbaum, J.N. (2011). Neuronal production of transthyretin in human and murine Alzheimer’s disease: is it protective? J. Neurosci. 31, 12483–12490.10.1523/JNEUROSCI.2417-11.2011Search in Google Scholar PubMed PubMed Central

Li, X., Zhang, X., Ladiwala, A.R., Du, D., Yadav, J.K., Tessier, P.M., Wright, P.E., Kelly, J.W., and Buxbaum, J.N. (2013). Mechanisms of transthyretin inhibition of β-amyloid aggregation in vitro. J. Neurosci. 33, 19423–19433.10.1523/JNEUROSCI.2561-13.2013Search in Google Scholar PubMed PubMed Central

Mannini, B., Cascella, R., Zampagni, M., van Waarde-Verhagen, M., Meehan, S., Roodveldt, C., Campioni, S., Boninsegna, M., Penco, A., Relini, A., et al. (2012). Molecular mechanisms used by chaperones to reduce the toxicity of aberrant protein oligomers. Proc. Natl. Acad. Sci. USA 109, 12479–12484.10.1073/pnas.1117799109Search in Google Scholar PubMed PubMed Central

Mannini, B., Mulvihill, E., Sgromo, C., Cascella, R., Khodarahmi, R., Ramazzotti, M., Dobson, C.M., Cecchi, C., and Chiti, F. (2014). Toxicity of protein oligomers is rationalized by a function combining size and surface hydrophobicity. ACS Chem. Biol. 9, 2309–2317.10.1021/cb500505mSearch in Google Scholar PubMed

Narayan, P., Orte, A., Clarke, R.W., Bolognesi, B., Hook, S., Ganzinger, K.A., Meehan, S., Wilson, M.R., Dobson, C.M., and Klenerman, D. (2011). The extracellular chaperone clusterin sequesters oligomeric forms of the amyloid-β (1-40) peptide. Nat. Struct. Mol. Biol. 19, 79–83.10.1038/nsmb.2191Search in Google Scholar PubMed PubMed Central

Narayan, P., Meehan, S., Carver, J.A., Wilson, M.R., Dobson, C.M., and Klenerman, D. (2012). Amyloid-β oligomers are sequestered by both intracellular and extracellular chaperones. Biochemistry 51, 9270–9276.10.1021/bi301277kSearch in Google Scholar PubMed PubMed Central

Ojha, J., Masilamoni, G., Dunlap, D., Udoff, R.A., and Cashikar, A.G. (2011). Sequestration of toxic oligomers by HspB1 as a cytoprotective mechanism. Mol. Cell. Biol. 31, 3146–3157.10.1128/MCB.01187-10Search in Google Scholar PubMed PubMed Central

Olzscha, H., Schermann, S.M., Woerner, A.C., Pinkert, S., Hecht, M.H., Tartaglia, G.G., Vendruscolo, M., Hayer-Hartl, M., Hartl, F.U., and Vabulas, R.M. (2011). Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144, 67–78.10.1016/j.cell.2010.11.050Search in Google Scholar PubMed

Oma, Y., Kino, Y., Sasagawa, N., and Ishiura, S. (2005). Comparative analysis of the cytotoxicity of homopolymeric amino acids. Biochim. Biophys. Acta 1748,174–179.10.1016/j.bbapap.2004.12.017Search in Google Scholar PubMed

Pellistri, F., Bucciantini, M., Relini, A., Nosi, D., Gliozzi, A., Robello, M., and Stefani, M. (2008). Nonspecific interaction of prefibrillar amyloid aggregates with glutamatergic receptors results in Ca2+ increase in primary neuronal cells. J. Biol. Chem. 283, 29950–29960.10.1074/jbc.M803992200Search in Google Scholar PubMed PubMed Central

Peschek, J., Braun, N., Franzmann, T.M., Georgalis, Y., Haslbeck, M., Weinkauf, S., and Buchner, J. (2009). The eye lens chaperone α-crystallin forms defined globular assemblies. Proc. Natl. Acad. Sci. USA 106, 13272–13277.10.1073/pnas.0902651106Search in Google Scholar PubMed PubMed Central

Pickart, C.M. and Cohen, R.E. (2004). Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell. Biol. 5, 177–187.10.1038/nrm1336Search in Google Scholar PubMed

Pires, R.H., Karsai, Á., Saraiva, M.J., Damas, A.M., and Kellermayer, M.S. (2012). Distinct annular oligomers captured along the assembly and disassembly pathways of transthyretin amyloid protofibrils. PLoS One 7, e44992.10.1371/journal.pone.0044992Search in Google Scholar PubMed PubMed Central

Rambaran, R.N. and Serpell, L.C. (2008). Amyloid fibrils: abnormal protein assembly. Prion 2, 112–117.10.4161/pri.2.3.7488Search in Google Scholar PubMed PubMed Central

Relini, A., Torrassa, S., Rolandi, R., Gliozzi, A., Rosano, C., Canale, C., Bolognesi, M., Plakoutsi, G., Bucciantini, M., Chiti, F., et al. (2004). Monitoring the process of HypF fibrillization and liposome permeabilization by protofibrils. J. Mol. Biol. 338, 943–957.10.1016/j.jmb.2004.03.054Search in Google Scholar PubMed

Semisotnov, G.V., Rodionova, N.A., Razgulyaev, O.I., Uversky, V.N., Gripas’, A.F., and Gilmanshin, R.I. (1991). Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31, 119–128.10.1002/bip.360310111Search in Google Scholar PubMed

Tatini, F., Pugliese, A.M., Traini, C., Niccoli, S., Maraula, G., Ed Dami, T., Mannini, B., Scartabelli, T., Pedata, F., Casamenti, F., et al. (2013). Amyloid-β oligomer synaptotoxicity is mimicked by oligomers of the model protein HypF-N. Neurobiol. Aging. 34, 2100–2109.10.1016/j.neurobiolaging.2013.03.020Search in Google Scholar PubMed

Walther, D.M., Kasturi, P., Zheng, M., Pinkert, S., Vecchi, G., Ciryam, P., Morimoto, R.I., Dobson, C.M., Vendruscolo, M., Mann, M., et al. (2015). Widespread proteome remodeling and aggregation in aging C. elegans. Cell 161, 919–932.10.1016/j.cell.2015.03.032Search in Google Scholar

Wang, X., Cattaneo, F., Ryno, L., Hulleman J., Reixach N., and Buxbaum, J.N. (2014) The systemic amyloid precursor transthyretin (TTR) behaves as a neuronal stress protein regulated by HSF1 in SH-SY5Y human neuroblastoma cells and APP23 Alzheimer’s disease model mice. J. Neurosci. 34, 7253–7265.10.1523/JNEUROSCI.4936-13.2014Search in Google Scholar

Weibezahn, J., Schlieker, C., Tessarz, P., Mogk, A., and Bukau, B. (2005). Novel insights into the mechanism of chaperone-assisted protein disaggregation. Biol. Chem. 386, 739–744.10.1515/BC.2005.086Search in Google Scholar

Wilson, M.R. and Easterbrook-Smith, S.B. (1992). Clusterin binds by a multivalent mechanism to the Fc and Fab regions of IgG. Biochim. Biophys. Acta 1159, 319–326.10.1016/0167-4838(92)90062-ISearch in Google Scholar

Winkler, J., Tyedmers, J., Bukau, B., and Mogk, A. (2012). Chaperone networks in protein disaggregation and prion propagation. J. Struct. Biol. 179, 152–160.10.1016/j.jsb.2012.05.002Search in Google Scholar PubMed

Wyatt, A.R., Yerbury, J.J., and Wilson, M.R. (2009). Structural characterization of clusterin-client protein complexes. J. Biol. Chem. 284, 21920–21927.10.1074/jbc.M109.033688Search in Google Scholar PubMed PubMed Central

Wyatt, A.R., Yerbury, J.J., Dabbs, R.A., and Wilson, M.R. (2012). Roles of extracellular chaperones in amyloidosis. J. Mol. Biol. 421, 499–516.10.1016/j.jmb.2012.01.004Search in Google Scholar PubMed

Wyatt, A.R., Yerbury, J.J., Ecroyd, H., and Wilson, M.R. (2013). Extracellular chaperones and proteostasis. Annu. Rev. Biochem. 82, 295–322.10.1146/annurev-biochem-072711-163904Search in Google Scholar PubMed

Zampagni, M., Cascella, R., Casamenti, F., Grossi, C., Evangelisti, E., Wright, D., Becatti, M., Liguri, G., Mannini, B., Campioni, S., et al. (2011). A comparison of the biochemical modifications caused by toxic and non-toxic protein oligomers in cells. J. Cell. Mol. Med. 15, 2106–2116.10.1111/j.1582-4934.2010.01239.xSearch in Google Scholar PubMed PubMed Central

Received: 2015-9-10
Accepted: 2016-1-11
Published Online: 2016-1-18
Published in Print: 2016-5-1

©2016 by De Gruyter

Downloaded on 4.12.2023 from https://www.degruyter.com/document/doi/10.1515/hsz-2015-0250/pdf
Scroll to top button