Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 4, 2016

Role of chitinase-like proteins in cancer

Julia Kzhyshkowska, Shuiping Yin, Tengfei Liu, Vladimir Riabov and Irina Mitrofanova
From the journal Biological Chemistry


Chitinase-like proteins (CLPs) are lectins combining properties of cytokines and growth factors. Human CLPs include YKL-40, YKL-39 and SI-CLP that are secreted by cancer cells, macrophages, neutrophils, synoviocytes, chondrocytes and other cells. The best investigated CLP in cancer is YKL-40. Serum and plasma levels of YKL-40 correlate with poor prognosis in breast, lung, prostate, liver, bladder, colon and other types of cancers. In combination with other circulating factors YKL-40 can be used as a predictive biomarker of cancer outcome. In experimental models YKL-40 supports tumor initiation through binding to RAGE, and is able to induce cancer cell proliferation via ERK1/2-MAPK pathway. YKL-40 supports tumor angiogenesis by interaction with syndecan-1 on endothelial cells and metastatic spread by stimulating production of pro-inflammatory and pro-invasive factors MMP9, CCL2 and CXCL2. CLPs induce production of pro- and anti-inflammatory cytokines and chemokines, and are potential modulators of inflammatory tumor microenvironment. Targeting YKL-40 using neutralizing antibodies exerts anti-cancer effect in preclinical animal models. Multifunctional role of CLPs in regulation of inflammation and intratumoral processes makes them attractive candidates for tumor therapy and immunomodulation. In this review we comprehensively analyze recent data about expression pattern, and involvement of human CLPs in cancer.

Corresponding author: Julia Kzhyshkowska, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Department of Innate Immunity and Tolerance, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; Laboratory for translational cellular and molecular biomedicine, Tomsk State University, Pr. Lenina 36, 634050 Tomsk, Russia; and German Red Cross Blood Service Baden-Württemberg – Hessen, Friedrich-Ebert Strasse 107, D-68167 Mannheim, Germany, e-mail:


The study was supported by the Russian Scientific Foundation, grant #14-15-00350. The PhD positions of Tengfei Liu and Shuiping Yin were supported by the program of China Scholarships Council (No. 201308130088 and No. 201208080046, respectively).


Akiyama, Y., Ashizawa, T., Komiyama, M., Miyata, H., Oshita, C., Omiya, M., Iizuka, A., Kume, A., Sugino, T., Hayashi, N., et al. (2014). YKL-40 downregulation is a key factor to overcome temozolomide resistance in a glioblastoma cell line. Oncol. Rep. 32, 159–166.10.3892/or.2014.3195Search in Google Scholar

Areshkov, P.A. and Kavsan, V.M. (2010). Chitinase 3-like protein 2 (CHI3L2, YKL-39) activates phosphorylation of extracellular signal-regulated kinases ERK1/ERK2 in human embryonic kidney (HEK293) and human glioblastoma (U87 MG) cells. Tsitol. Genet. 44, 3–9.10.3103/S0095452710010019Search in Google Scholar

Areshkov, P.O., Avdieiev, S.S., Balynska, O.V., Leroith, D., and Kavsan, V.M. (2012). Two closely related human members of chitinase-like family, CHI3L1 and CHI3L2, activate ERK1/2 in 293 and U373 cells but have the different influence on cell proliferation. Int. J. Biol. Sci. 8, 39–48.10.7150/ijbs.8.39Search in Google Scholar

Balkwill, F.R., Capasso, M., and Hagemann, T. (2012). The tumor microenvironment at a glance. J. Cell Sci. 125, 5591–5596.10.1242/jcs.116392Search in Google Scholar

Barbouri, D., Afratis, N., Gialeli, C., Vynios, D.H., Theocharis, A.D., and Karamanos, N.K. (2014). Syndecans as modulators and potential pharmacological targets in cancer progression. Front Oncol. 4, 4.10.3389/fonc.2014.00004Search in Google Scholar

Barderas, R., Bartolome, R.A., Fernandez-Acenero, M.J., Torres, S., and Casal, J.I. (2012). High expression of IL-13 receptor alpha2 in colorectal cancer is associated with invasion, liver metastasis, and poor prognosis. Cancer Res. 72, 2780–2790.10.1158/0008-5472.CAN-11-4090Search in Google Scholar

Bernardi, D., Podswiadek, M., Zaninotto, M., Punzi, L., and Plebani, M. (2003). YKL-40 as a marker of joint involvement in inflammatory bowel disease. Clin. Chem. 49, 1685–1688.10.1373/49.10.1685Search in Google Scholar

Bhardwaj, R., Yester, J.W., Singh, S.K., Biswas, D.D., Surace, M.J., Waters, M.R., Hauser, K.F., Yao, Z., Boyce, B.F., and Kordula, T. (2015). RelB/p50 complexes regulate cytokine-induced YKL-40 expression. J. Immunol. 194, 2862–2870.10.4049/jimmunol.1400874Search in Google Scholar

Bigg, H.F., Wait, R., Rowan, A.D., and Cawston, T.E. (2006). The mammalian chitinase-like lectin, YKL-40, binds specifically to type I collagen and modulates the rate of type I collagen fibril formation. J. Biol. Chem. 281, 21082–21095.10.1074/jbc.M601153200Search in Google Scholar

Biggar, R.J., Johansen, J.S., Smedby, K.E., Rostgaard, K., Chang, E.T., Adami, H.O., Glimelius, B., Molin, D., Hamilton-Dutoit, S., Melbye, M. et al. (2008). Serum YKL-40 and interleukin 6 levels in Hodgkin lymphoma. Clin. Cancer Res. 14, 6974–6978.10.1158/1078-0432.CCR-08-1026Search in Google Scholar

Bonneh-Barkay, D., Bissel, S.J., Kofler, J., Starkey, A., Wang, G., and Wiley, C.A. (2012). Astrocyte and macrophage regulation of YKL-40 expression and cellular response in neuroinflammation. Brain Pathol. 22, 530–546.10.1111/j.1750-3639.2011.00550.xSearch in Google Scholar

Boot, R.G., Blommaart, E.F., Swart, E., Ghauharali-van der Vlugt, K., Bijl, N., Moe, C., Place, A., and Aerts, J.M. (2001). Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J. Biol. Chem. 276, 6770–6778.10.1074/jbc.M009886200Search in Google Scholar

Brocheriou, I., Maouche, S., Durand, H., Braunersreuther, V., Le Naour, G., Gratchev, A., Koskas, F., Mach, F., Kzhyshkowska, J., and Ninio, E. (2011). Antagonistic regulation of macrophage phenotype by M-CSF and GM-CSF: implication in atherosclerosis. Atherosclerosis 214, 316–324.10.1016/j.atherosclerosis.2010.11.023Search in Google Scholar

Chang, N.C., Hung, S.I., Hwa, K.Y., Kato, I., Chen, J.E., Liu, C.H., and Chang, A.C. (2001). A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin. J. Biol. Chem. 276, 17497–17506.10.1074/jbc.M010417200Search in Google Scholar

Chen, C.C., Pekow, J., Llado, V., Kanneganti, M., Lau, C.W., Mizoguchi, A., Mino-Kenudson, M., Bissonnette, M., and Mizoguchi, E. (2011). Chitinase 3-like-1 expression in colonic epithelial cells as a potentially novel marker for colitis-associated neoplasia. Am. J. Pathol. 179, 1494–1503.10.1016/j.ajpath.2011.05.038Search in Google Scholar

Chudecka-Glaz, A., Gorski, B., Zielinska, D., Blogowski, W., Wojciechowska, I., Bedner, R., and Rzepka-Gorska, I. (2009). Serum YKL-40 levels in patients with ovarian cancer and women with BRCA1 gene mutation–comparison to CA 125 antigen. Eur. J. Gynaecol. Oncol. 30, 668–671.Search in Google Scholar

Cintin, C., Johansen, J.S., Christensen, I.J., Price, P.A., Sorensen, S., and Nielsen, H.J. (1999). Serum YKL-40 and colorectal cancer. Br. J. Cancer 79, 1494–1499.10.1038/sj.bjc.6690238Search in Google Scholar

Colton, C.A., Mott, R.T., Sharpe, H., Xu, Q., Van Nostrand, W.E., and Vitek, M.P. (2006). Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J. Neuroinflammation 3, 27.Search in Google Scholar

Cuddapah, V.A., Robel, S., Watkins, S., and Sontheimer, H. (2014). A neurocentric perspective on glioma invasion. Nat. Rev. Neurosci. 15, 455–465.10.1038/nrn3765Search in Google Scholar

Di Rosa, M., Tibullo, D., Malaguarnera, M., Tuttobene, M., and Malaguarnera, L. (2013). Comparison of YKL-39 and CHIT-1 expression during macrophages differentiation and polarization. Modern Research in Inflammation 2, 82–89.10.4236/mri.2013.24011Search in Google Scholar

Diaz-Lagares, A., Alegre, E., Arroyo, A., Gonzalez-Cao, M., Zudaire, M.E., Viteri, S., Martin-Algarra, S., and Gonzalez, A. (2011). Evaluation of multiple serum markers in advanced melanoma. Tumour Biol. 32, 1155–1161.10.1007/s13277-011-0218-xSearch in Google Scholar

Diefenbach, C.S., Shah, Z., Iasonos, A., Barakat, R.R., Levine, D.A., Aghajanian, C., Sabbatini, P., Hensley, M.L., Konner, J., Tew, W., et al. (2007). Preoperative serum YKL-40 is a marker for detection and prognosis of endometrial cancer. Gynecol. Oncol. 104, 435–442.10.1016/j.ygyno.2006.08.028Search in Google Scholar

Egberts, F., Kotthoff, E.M., Gerdes, S., Egberts, J.H., Weichenthal, M., and Hauschild, A. (2012). Comparative study of YKL-40, S-100B and LDH as monitoring tools for Stage IV melanoma. Eur. J. Cancer 48, 695–702.10.1016/j.ejca.2011.08.007Search in Google Scholar

Egeblad, M., Nakasone, E.S., and Werb, Z. (2010). Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901.10.1016/j.devcel.2010.05.012Search in Google Scholar

Elias, J.A., Homer, R.J., Hamid, Q., and Lee, C.G. (2005). Chitinases and chitinase-like proteins in T H 2 inflammation and asthma. J. Allergy Clin. Immunol. 116, 497–500.10.1016/j.jaci.2005.06.028Search in Google Scholar

Erzin, Y., Uzun, H., Karatas, A., and Celik, A.F. (2008). Serum YKL-40 as a marker of disease activity and stricture formation in patients with Crohn’s disease. J. Gastroenterol. Hepatol. 23, e357–362.10.1111/j.1440-1746.2007.05121.xSearch in Google Scholar

Faibish, M., Francescone, R., Bentley, B., Yan, W., and Shao, R. (2011). A YKL-40-neutralizing antibody blocks tumor angiogenesis and progression: a potential therapeutic agent in cancers. Mol. Cancer Ther. 10, 742–751.10.1158/1535-7163.MCT-10-0868Search in Google Scholar

Feodorova, Y., Tashkova, D., Simitchiev, K., Todorov, A., Kostov, G., Dimov, R., and Sarafian, V. (2015). Dependence of YKL-40 mRNA tissue levels on KRAS mutation status in colorectal cancer. IJSM 1, 48–52.10.5455/ijsm.20150723012230Search in Google Scholar

Francescone, R.A., Scully, S., Faibish, M., Taylor, S.L., Oh, D., Moral, L., Yan, W., Bentley, B., and Shao, R. (2011). Role of YKL-40 in the angiogenesis, radioresistance, and progression of glioblastoma. J. Biol. Chem. 286, 15332–15343.10.1074/jbc.M110.212514Search in Google Scholar

Francescone, R., Ngernyuang, N., Yan, W., Bentley, B., and Shao, R. (2014). Tumor-derived mural-like cells coordinate with endothelial cells: role of YKL-40 in mural cell-mediated angiogenesis. Oncogene 33, 2110–2122.10.1038/onc.2013.160Search in Google Scholar

Fujisawa, T., Joshi, B.H., and Puri, R.K. (2012). IL-13 regulates cancer invasion and metastasis through IL-13Ralpha2 via ERK/AP-1 pathway in mouse model of human ovarian cancer. Int. J. Cancer 131, 344–356.10.1002/ijc.26366Search in Google Scholar

Fusetti, F., Pijning, T., Kalk, K.H., Bos, E., and Dijkstra, B.W. (2003). Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39. J. Biol. Chem. 278, 37753–37760.10.1074/jbc.M303137200Search in Google Scholar

Gara, S.K., Wang, Y., Patel, D., Liu-Chittenden, Y., Jain, M., Boufraqech, M., Zhang, L., Meltzer, P. S. and Kebebew, E. (2015). Integrated genome-wide analysis of genomic changes and gene regulation in human adrenocortical tissue samples. Nuc. Acids Res. 43, 9327–9339.10.1093/nar/gkv908Search in Google Scholar

Goerdt, S., Walsh, L.J., Murphy, G.F., and Pober, J.S. (1991). Identification of a novel high molecular weight protein preferentially expressed by sinusoidal endothelial cells in normal human tissues. J. Cell Biol. 113, 1425–1437.10.1083/jcb.113.6.1425Search in Google Scholar

Golestaneh, N. and Mishra, B. (2005). TGF-β, neuronal stem cells and glioblastoma. Oncogene 24, 5722–5730.10.1038/sj.onc.1208925Search in Google Scholar

Gratchev, A., Schmuttermaier, C., Mamidi, S., Gooi, L., Goerdt, S., and Kzhyshkowska, J. (2008). Expression of osteoarthritis marker YKL-39 is stimulated by transforming growth factor b (TGF-b) and IL-4 in differentiating macrophages. Biomark. Insights 3, 39–44.10.1177/117727190800300003Search in Google Scholar

Hakala, B.E., White, C., and Recklies, A.D. (1993). Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. J. Biol. Chem. 268, 25803–25810.10.1016/S0021-9258(19)74461-5Search in Google Scholar

He, C.H., Lee, C.G., Dela Cruz, C.S., Lee, C.M., Zhou, Y., Ahangari, F., Ma, B., Herzog, E.L., Rosenberg, S.A., Li, Y., et al. (2013). Chitinase 3-like 1 regulates cellular and tissue responses via IL-13 receptor a2. Cell Rep. 4, 830–841.10.1016/j.celrep.2013.07.032Search in Google Scholar

Henrissat, B. and Davies, G. (1997). Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637–644.10.1016/S0959-440X(97)80072-3Search in Google Scholar

Hogdall, E.V., Ringsholt, M., Hogdall, C.K., Christensen, I.J., Johansen, J.S., Kjaer, S.K., Blaakaer, J., Ostenfeld-Moller, L., Price, P.A., and Christensen, L.H. (2009). YKL-40 tissue expression and plasma levels in patients with ovarian cancer. BMC Cancer 9, 8.10.1186/1471-2407-9-8Search in Google Scholar

Hollak, C.E., van Weely, S., van Oers, M.H., and Aerts, J.M. (1994). Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J. Clin. Invest. 93, 1288–1292.10.1172/JCI117084Search in Google Scholar

Hormigo, A., Gu, B., Karimi, S., Riedel, E., Panageas, K.S., Edgar, M.A., Tanwar, M.K., Rao, J.S., Fleisher, M., DeAngelis, L.M., and Holland, E.C. (2006). YKL-40 and matrix metalloproteinase-9 as potential serum biomarkers for patients with high-grade gliomas. Clin. Cancer. Res. 12, 5698–5704.10.1158/1078-0432.CCR-06-0181Search in Google Scholar

Hu, B., Trinh, K., Figueira, W.F., and Price, P.A. (1996). Isolation and sequence of a novel human chondrocyte protein related to mammalian members of the chitinase protein family. J. Biol. Chem. 271, 19415–19420.10.1074/jbc.271.32.19415Search in Google Scholar

Iwamoto, F.M. and Hormigo, A. (2014). Unveiling YKL-40, from serum marker to target therapy in glioblastoma. Front Oncol. 4, 90.10.3389/fonc.2014.00090Search in Google Scholar

Iwamoto, F.M., Hottinger, A.F., Karimi, S., Riedel, E., Dantis, J., Jahdi, M., Panageas, K.S., Lassman, A.B., Abrey, L.E., Fleisher, M., et al. (2011). Serum YKL-40 is a marker of prognosis and disease status in high-grade gliomas. Neuro. Oncol. 13, 1244–1251.10.1093/neuonc/nor117Search in Google Scholar

Jensen, B.V., Johansen, J.S., and Price, P.A. (2003). High levels of serum HER-2/neu and YKL-40 independently reflect aggressiveness of metastatic breast cancer. Clin. Cancer. Res. 9, 4423–4434.Search in Google Scholar

Jin, H.M., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Kirkpatrick, R.B., and Rosenberg, M. (1998). Genetic characterization of the murine Ym1 gene and identification of a cluster of highly homologous genes. Genomics 54, 316–322.10.1006/geno.1998.5593Search in Google Scholar

Johansen, J.S., Williamson, M.K., Rice, J.S., and Price, P.A. (1992). Identification of proteins secreted by human osteoblastic cells in culture. J. Bone Miner. Res. 7, 501–512.10.1002/jbmr.5650070506Search in Google Scholar

Johansen, J.S., Christensen, I.J., Riisbro, R., Greenall, M., Han, C., Price, P.A., Smith, K., Brunner, N., and Harris, A.L. (2003). High serum YKL-40 levels in patients with primary breast cancer is related to short recurrence free survival. Breast Cancer Res. Treat. 80, 15–21.10.1023/A:1024431000710Search in Google Scholar

Johansen, J.S., Milman, N., Hansen, M., Garbarsch, C., Price, P.A., and Graudal, N. (2005). Increased serum YKL-40 in patients with pulmonary sarcoidosis–a potential marker of disease activity? Respir. Med. 99, 396–402.Search in Google Scholar

Johansen, J.S., Brasso, K., Iversen, P., Teisner, B., Garnero, P., Price, P.A., and Christensen, I.J. (2007). Changes of biochemical markers of bone turnover and YKL-40 following hormonal treatment for metastatic prostate cancer are related to survival. Clin. Cancer Res. 13, 3244–3249.10.1158/1078-0432.CCR-06-2616Search in Google Scholar

Johansen, J.S., Schultz, N.A., and Jensen, B.V. (2009). Plasma YKL-40: a potential new cancer biomarker? Future Oncol. 5, 1065–1082.Search in Google Scholar

Johansen, J.S., Bojesen, S.E., Tybjaerg-Hansen, A., Mylin, A.K., Price, P.A., and Nordestgaard, B.G. (2010). Plasma YKL-40 and total and disease-specific mortality in the general population. Clin. Chem. 56, 1580–1591.10.1373/clinchem.2010.146530Search in Google Scholar

Johansen, J.S., Christensen, I.J., Jorgensen, L.N., Olsen, J., Rahr, H.B., Nielsen, K.T., Laurberg, S., Brunner, N., and Nielsen, H. J. (2015). Serum YKL-40 in risk assessment for colorectal cancer: a prospective study of 4,496 subjects at risk of colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 24, 621–626.10.1158/1055-9965.EPI-13-1281Search in Google Scholar

Joshi, A. and Cao, D. (2009). TGF-b signaling, tumor microenvironment and tumor progression: the butterfly effect. Front Biosci. (Landmark edition) 15, 180–194.10.2741/3614Search in Google Scholar

Junker, N., Johansen, J.S., Andersen, C.B., and Kristjansen, P.E. (2005). Expression of YKL-40 by peritumoral macrophages in human small cell lung cancer. Lung Cancer 48, 223–231.10.1016/j.lungcan.2004.11.011Search in Google Scholar

Kang, E.J., Jung, H., Woo, O.H., Park, K.H., Woo, S.U., Yang, D.S., Kim, A.R., Lee, J.B., Kim, Y.H., Kim, J.S., et al. (2014). YKL-40 expression could be a poor prognostic marker in the breast cancer tissue. Tumour Biol. 35, 277–286.10.1007/s13277-013-1036-0Search in Google Scholar

Karikoski, M., Marttila-Ichihara, F., Elima, K., Rantakari, P., Hollmen, M., Kelkka, T., Gerke, H., Huovinen, V., Irjala, H., Holmdahl, R., et al. (2014). Clever-1/stabilin-1 controls cancer growth and metastasis. Clin. Cancer Res. 20, 6452–6464.10.1158/1078-0432.CCR-14-1236Search in Google Scholar

Kavsan, V., Dmitrenko, V., Boyko, O., Filonenko, V., Avdeev, S., Areshkov, P., Marusyk, A., Malisheva, T., Rozumenko, V., and Zozulya, Y. (2008). Overexpression of YKL-39 gene in glial brain tumors. Scholarly Research Exchange 2008.10.3814/2008/814849Search in Google Scholar

Kawada, M., Seno, H., Kanda, K., Nakanishi, Y., Akitake, R., Komekado, H., Kawada, K., Sakai, Y., Mizoguchi, E., and Chiba, T. (2012). Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer. Oncogene 31, 3111–3123.10.1038/onc.2011.498Search in Google Scholar

Kjaergaard, A.D., Bojesen, S.E., Johansen, J.S., and Nordestgaard, B.G. (2010). Elevated plasma YKL-40 levels and ischemic stroke in the general population. Ann. Neurol. 68, 672–680.10.1002/ana.22220Search in Google Scholar

Kjaergaard, A.D., Nordestgaard, B.G., Johansen, J.S., and Bojesen, S.E. (2015). Observational and genetic plasma YKL-40 and cancer in 96,099 individuals from the general population. Int. J. Cancer 137, 2696–2704.10.1002/ijc.29638Search in Google Scholar

Knorr, T., Obermayr, F., Bartnik, E., Zien, A., and Aigner, T. (2003). YKL-39 (chitinase 3-like protein 2), but not YKL-40 (chitinase 3-like protein 1), is up regulated in osteoarthritic chondrocytes. Ann. Rheum. Dis. 62, 995–998.10.1136/ard.62.10.995Search in Google Scholar

Ku, B.M., Lee, Y.K., Ryu, J., Jeong, J.Y., Choi, J., Eun, K.M., Shin, H.Y., Kim, D.G., Hwang, E.M., Yoo, J.C., et al. (2011). CHI3L1 (YKL-40) is expressed in human gliomas and regulates the invasion, growth and survival of glioma cells. Int. J. Cancer 128, 1316–1326.10.1002/ijc.25466Search in Google Scholar

Kzhyshkowska, J., Gratchev, A., Martens, J.H., Pervushina, O., Mamidi, S., Johansson, S., Schledzewski, K., Hansen, B., He, X., Tang, J., et al. (2004). Stabilin-1 localizes to endosomes and the trans-Golgi network in human macrophages and interacts with GGA adaptors. J. Leukoc. Biol. 76, 1151–1161.10.1189/jlb.0504300Search in Google Scholar

Kzhyshkowska, J., Mamidi, S., Gratchev, A., Kremmer, E., Schmuttermaier, C., Krusell, L., Haus, G., Utikal, J., Schledzewski, K., Scholtze, J., et al. (2006). Novel stabilin-1 interacting chitinase-like protein (SI-CLP) is up-regulated in alternatively activated macrophages and secreted via lysosomal pathway. Blood 107, 3221–3228.10.1182/blood-2005-07-2843Search in Google Scholar

Kzhyshkowska, J., Gratchev, A., and Goerdt, S. (2007). Human chitinases and chitinase-like proteins as indicators for inflammation and cancer. Biomark. Insights 2, 128–146.10.1177/117727190700200023Search in Google Scholar

Kzhyshkowska, J., Gratchev, A., Schmuttermaier, C., Brundiers, H., Krusell, L., Mamidi, S., Zhang, J., Workman, G., Sage, E. H., Anderle, C., et al. (2008). Alternatively activated macrophages regulate extracellular levels of the hormone placental lactogen via receptor-mediated uptake and transcytosis. J. Immunol. 180, 3028–3037.10.4049/jimmunol.180.5.3028Search in Google Scholar

Landskron, G., De la Fuente, M., Thuwajit, P., Thuwajit, C., and Hermoso, M. A. (2014). Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014, 149185. doi: 10.1155/2014/149185.10.1155/2014/149185Search in Google Scholar

Lasek, W., Zagozdzon, R., and Jakobisiak, M. (2014). Interleukin 12: still a promising candidate for tumor immunotherapy? Cancer Immunol. Immunother. 63, 419–435.10.1007/s00262-014-1523-1Search in Google Scholar

Lee, C.G., Da Silva, C.A., Dela Cruz, C.S., Ahangari, F., Ma, B., Kang, M.J., He, C.H., Takyar, S., and Elias, J.A. (2011). Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu. Rev. Physiol. 73, 479–501.10.1146/annurev-physiol-012110-142250Search in Google Scholar

Leivonen, M., Lundin, J., Nordling, S., von Boguslawski, K., and Haglund, C. (2004). Prognostic value of syndecan-1 expression in breast cancer. Oncology 67, 11–18.10.1159/000080280Search in Google Scholar

Libreros, S. and Iragavarapu-Charyulu, V. (2015). YKL-40/CHI3L1 drives inflammation on the road of tumor progression. J. Leukoc. Biol. 98, 931–936.10.1189/jlb.3VMR0415-142RSearch in Google Scholar

Libreros, S., Garcia-Areas, R., Shibata, Y., Carrio, R., Torroella-Kouri, M., and Iragavarapu-Charyulu, V. (2012). Induction of proinflammatory mediators by CHI3L1 is reduced by chitin treatment: decreased tumor metastasis in a breast cancer model. Int. J. Cancer 131, 377–386.10.1002/ijc.26379Search in Google Scholar

Libreros, S., Garcia-Areas, R., Keating, P., Carrio, R., and Iragavarapu-Charyulu, V.L. (2013). Exploring the role of CHI3L1 in “pre-metastatic” lungs of mammary tumor-bearing mice. Front Physiol. 4, 392.10.3389/fphys.2013.00392Search in Google Scholar

Libreros, S., Garcia-Areas, R., Keating, P., Gazaniga, N., Robinson, P., Humbles, A., and Iragavarapu-Charyulu, V.L. (2015). Allergen induced pulmonary inflammation enhances mammary tumor growth and metastasis: role of CHI3L1. J Leukoc Biol. 97, 929–940.10.1189/jlb.3A0214-114RRSearch in Google Scholar

Low, D., Subramaniam, R., Lin, L., Aomatsu, T., Mizoguchi, A., Ng, A., DeGruttola, A.K., Lee, C.G., Elias, J.A., Andoh, A., et al. (2015). Chitinase 3-like 1 induces survival and proliferation of intestinal epithelial cells during chronic inflammation and colitis-associated cancer by regulating S100A9. Oncotarget 6, 36535–36550.10.18632/oncotarget.5440Search in Google Scholar

Lu, K.V., Jong, K.A., Rajasekaran, A.K., Cloughesy, T.F., and Mischel, P.S. (2004). Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activation and cell invasion in a human glioblastoma cell line. Lab Invest. 84, 8–20.10.1038/labinvest.3700003Search in Google Scholar

Ma, B., Herzog, E.L., Lee, C.G., Peng, X., Lee, C.M., Chen, X., Rockwell, S., Koo, J.S., Kluger, H., Herbst, R.S., et al. (2015). Role of chitinase 3-like-1 and semaphorin 7a in pulmonary melanoma metastasis. Cancer Res. 75, 487–496.10.1158/0008-5472.CAN-13-3339Search in Google Scholar

Maeda, T., Desouky, J., and Friedl, A. (2006). Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene 25, 1408–1412.10.1038/sj.onc.1209168Search in Google Scholar

Malik, P., Chaudhry, N., Mittal, R., and Mukherjee, T.K. (2015). Role of receptor for advanced glycation end products in the complication and progression of various types of cancers. Biochim. Biophys. Acta 1850, 1898–1904.10.1016/j.bbagen.2015.05.020Search in Google Scholar

Malinda, K.M., Ponce, L., Kleinman, H.K., Shackelton, L.M., and Millis, A.J. (1999). Gp38k, a protein synthesized by vascular smooth muscle cells, stimulates directional migration of human umbilical vein endothelial cells. Exp. Cell Res. 250, 168–173.10.1006/excr.1999.4511Search in Google Scholar

Martens, J.H., Kzhyshkowska, J., Falkowski-Hansen, M., Schledzewski, K., Gratchev, A., Mansmann, U., Schmuttermaier, C., Dippel, E., Koenen, W., Riedel, F., et al. (2006). Differential expression of a gene signature for scavenger/lectin receptors by endothelial cells and macrophages in human lymph node sinuses, the primary sites of regional metastasis. J. Pathol. 208, 574–589.10.1002/path.1921Search in Google Scholar

Meng, G., Zhao, Y., Bai, X., Liu, Y., Green, T.J., Luo, M., and Zheng, X. (2010). Structure of human stabilin-1 interacting chitinase-like protein (SI-CLP) reveals a saccharide-binding cleft with lower sugar-binding selectivity. J. Biol. Chem. 285, 39898–39904.10.1074/jbc.M110.130781Search in Google Scholar

Miyatake, K., Tsuji, K., Yamaga, M., Yamada, J., Matsukura, Y., Abula, K., Sekiya, I., and Muneta, T. (2013). Human YKL39 (chitinase 3-like protein 2), an osteoarthritis-associated gene, enhances proliferation and type II collagen expression in ATDC5 cells. Biochem. Biophys. Res. Commun. 431, 52–57.10.1016/j.bbrc.2012.12.094Search in Google Scholar

Mosig, S., Rennert, K., Krause, S., Kzhyshkowska, J., Neunubel, K., Heller, R., and Funke, H. (2009). Different functions of monocyte subsets in familial hypercholesterolemia: potential function of CD14+ CD16+ monocytes in detoxification of oxidized LDL. FASEB J 23, 866–874.10.1096/fj.08-118240Search in Google Scholar

Nielsen, A.R., Erikstrup, C., Johansen, J.S., Fischer, C.P., Plomgaard, P., Krogh-Madsen, R., Taudorf, S., Lindegaard, B., and Pedersen, B.K. (2008). Plasma YKL-40: a BMI-independent marker of type 2 diabetes. Diabetes 57, 3078–3082.10.2337/db08-0182Search in Google Scholar

Nishikawa, K.C. and Millis, A.J. (2003). gp38k (CHI3L1) is a novel adhesion and migration factor for vascular cells. Exp. Cell Res. 287, 79–87.10.1016/S0014-4827(03)00069-7Search in Google Scholar

Otsuka, K., Matsumoto, H., Niimi, A., Muro, S., Ito, I., Takeda, T., Terada, K., Yamaguchi, M., Matsuoka, H., Jinnai, M., et al. (2012). Sputum YKL-40 levels and pathophysiology of asthma and chronic obstructive pulmonary disease. Respiration 83, 507–519.10.1159/000330840Search in Google Scholar

Otterdal, K., Janardhanan, J., Astrup, E., Ueland, T., Prakash, J.A., Lekva, T., Abraham, O.C., Thomas, K., Damas, J.K., Mathews, P., et al. (2014). Increased endothelial and macrophage markers are associated with disease severity and mortality in scrub typhus. J. Infect. 69, 462–469.10.1016/j.jinf.2014.06.018Search in Google Scholar

Ozdemir, E., Cicek, T., and Kaya, M.O. (2012). Association of serum YKL-40 level with tumor burden and metastatic stage of prostate cancer. Urol. J. 9, 568–573.Search in Google Scholar

Park, J.A., Drazen, J.M., and Tschumperlin, D.J. (2010). The chitinase-like protein YKL-40 is secreted by airway epithelial cells at base line and in response to compressive mechanical stress. J. Biol. Chem. 285, 29817–29825.10.1074/jbc.M110.103416Search in Google Scholar

Pelloski, C.E., Mahajan, A., Maor, M., Chang, E.L., Woo, S., Gilbert, M., Colman, H., Yang, H., Ledoux, A., Blair, H., et al. (2005). YKL-40 expression is associated with poorer response to radiation and shorter overall survival in glioblastoma. Clin. Cancer Res. 11, 3326–3334.10.1158/1078-0432.CCR-04-1765Search in Google Scholar

Petersson, M., Bucht, E., Granberg, B., and Stark, A. (2006). Effects of arginine-vasopressin and parathyroid hormone-related protein (1-34) on cell proliferation and production of YKL-40 in cultured chondrocytes from patients with rheumatoid arthritis and osteoarthritis. Osteoarthritis Cartilage 14, 652–659.10.1016/j.joca.2006.01.003Search in Google Scholar

Qian, H., Johansson, S., McCourt, P., Smedsrod, B., Ekblom, M., and Johansson, S. (2009). Stabilins are expressed in bone marrow sinusoidal endothelial cells and mediate scavenging and cell adhesive functions. Biochem. Biophys. Res. Commun. 390, 883–886.10.1016/j.bbrc.2009.10.068Search in Google Scholar

Qian, B.Z., Li, J., Zhang, H., Kitamura, T., Zhang, J., Campion, L.R., Kaiser, E.A., Snyder, L.A., and Pollard, J.W. (2011). CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225.10.1038/nature10138Search in Google Scholar

Qureshi, A.M., Hannigan, A., Campbell, D., Nixon, C., and Wilson, J.B. (2011). Chitinase-like proteins are autoantigens in a model of inflammation-promoted incipient neoplasia. Genes Cancer 2, 74–87.10.1177/1947601911402681Search in Google Scholar

Ranok, A., Wongsantichon, J., Robinson, R.C., and Suginta, W. (2015). Structural and thermodynamic insights into chitooligosaccharide binding to human cartilage chitinase 3-like protein 2 (CHI3L2 or YKL-39). J. Biol. Chem. 290, 2617–2629.10.1074/jbc.M114.588905Search in Google Scholar

Rathcke, C.N., Persson, F., Tarnow, L., Rossing, P., and Vestergaard, H. (2009). YKL-40, a marker of inflammation and endothelial dysfunction, is elevated in patients with type 1 diabetes and increases with levels of albuminuria. Diabetes Care 32, 323–328.10.2337/dc08-1144Search in Google Scholar

Renkema, G.H., Boot, R.G., Au, F.L., Donker-Koopman, W.E., Strijland, A., Muijsers, A.O., Hrebicek, M., and Aerts, J.M. (1998). Chitotriosidase, a chitinase, and the 39-kDa human cartilage glycoprotein, a chitin-binding lectin, are homologues of family 18 glycosyl hydrolases secreted by human macrophages. Eur. J. Biochem. 251, 504–509.10.1046/j.1432-1327.1998.2510504.xSearch in Google Scholar

Riabov, V., Gudima, A., Wang, N., Mickley, A., Orekhov, A., and Kzhyshkowska, J. (2014). Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 5, 75.10.3389/fphys.2014.00075Search in Google Scholar

Roslind, A., Johansen, J.S., Christensen, I.J., Kiss, K., Balslev, E., Nielsen, D.L., Bentzen, J., Price, P.A., and Andersen, E. (2008a). High serum levels of YKL-40 in patients with squamous cell carcinoma of the head and neck are associated with short survival. Int. J. Cancer 122, 857–863.10.1002/ijc.23152Search in Google Scholar

Roslind, A., Knoop, A.S., Jensen, M.B., Johansen, J.S., Nielsen, D.L., Price, P.A., and Balslev, E. (2008b). YKL-40 protein expression is not a prognostic marker in patients with primary breast cancer. Breast Cancer Res. Treat. 112, 275–285.10.1007/s10549-007-9870-7Search in Google Scholar

Saidi, A., Javerzat, S., Bellahcene, A., De Vos, J., Bello, L., Castronovo, V., Deprez, M., Loiseau, H., Bikfalvi, A., and Hagedorn, M. (2008). Experimental anti-angiogenesis causes upregulation of genes associated with poor survival in glioblastoma. Int. J. Cancer 122, 2187–2198.10.1002/ijc.23313Search in Google Scholar

Salamon, J., Hoffmann, T., Elies, E., Peldschus, K., Johansen, J.S., Luers, G., Schumacher, U., and Wicklein, D. (2014). Antibody directed against human YKL-40 increases tumor volume in a human melanoma xenograft model in scid mice. PLoS One 9, e95822.10.1371/journal.pone.0095822Search in Google Scholar

Schimpl, M., Rush, C.L., Betou, M., Eggleston, I.M., Recklies, A.D., and van Aalten, D.M. (2012). Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties. Biochem. J. 446, 149–157.10.1042/BJ20120377Search in Google Scholar

Schledzewski, K., Falkowski, M., Moldenhauer, G., Metharom, P., Kzhyshkowska, J., Ganss, R., Demory, A., Falkowska-Hansen, B., Kurzen, H., Ugurel, S., et al. (2006). Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis. J. Pathol. 209, 67–77.10.1002/path.1942Search in Google Scholar

Schmidt, H., Johansen, J.S., Gehl, J., Geertsen, P.F., Fode, K., and von der Maase, H. (2006a). Elevated serum level of YKL-40 is an independent prognostic factor for poor survival in patients with metastatic melanoma. Cancer 106, 1130–1139.10.1002/cncr.21678Search in Google Scholar

Schmidt, H., Johansen, J.S., Sjoegren, P., Christensen, I.J., Sorensen, B.S., Fode, K., Larsen, J., and von der Maase, H. (2006b). Serum YKL-40 predicts relapse-free and overall survival in patients with American Joint Committee on Cancer stage I and II melanoma. J. Clin. Oncol. 24, 798–804.10.1200/JCO.2005.03.7960Search in Google Scholar

Schonhaar, K., Schledzewski, K., Michel, J., Dollt, C., Gkaniatsou, C., Geraud, C., Kzhyshkowska, J., Goerdt, S., and Schmieder, A. (2014). Expression of stabilin-1 in M2 macrophages in human granulomatous disease and melanocytic lesions. Int. J. Clin. Exp. Pathol. 7, 1625–1634.Search in Google Scholar

Schultz, N.A., Christensen, I.J., Werner, J., Giese, N., Jensen, B.V., Larsen, O., Bjerregaard, J.K., Pfeiffer, P., Calatayud, D., Nielsen, S. E., et al. (2013). Diagnostic and prognostic impact of circulating YKL-40, IL-6, and CA 19.9 in patients with pancreatic cancer. PLoS One 8, e67059.Search in Google Scholar

Sengupta, S., Thaci, B., Crawford, A.C., and Sampath, P. (2014). Interleukin-13 receptor alpha 2-targeted glioblastoma immunotherapy. Biomed. Res. Int. 2014, 952128. doi: 10.1155/2014/952128.10.1155/2014/952128Search in Google Scholar

Shackelton, L.M., Mann, D.M., and Millis, A.J. (1995). Identification of a 38-kDa heparin-binding glycoprotein (gp38k) in differentiating vascular smooth muscle cells as a member of a group of proteins associated with tissue remodeling. J. Biol. Chem. 270, 13076–13083.10.1074/jbc.270.22.13076Search in Google Scholar

Shao, R. (2013). YKL-40 acts as an angiogenic factor to promote tumor angiogenesis. Front Physiol. 4, 122.10.3389/fphys.2013.00122Search in Google Scholar

Shao, R., Hamel, K., Petersen, L., Cao, Q.J., Arenas, R.B., Bigelow, C., Bentley, B., and Yan, W. (2009). YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene 28, 4456–4468.10.1038/onc.2009.292Search in Google Scholar

Shao, R., Cao, Q.J., Arenas, R.B., Bigelow, C., Bentley, B., and Yan, W. (2011). Breast cancer expression of YKL-40 correlates with tumour grade, poor differentiation, and other cancer markers. Br. J. Cancer 105, 1203–1209.10.1038/bjc.2011.347Search in Google Scholar

Shao, R., Francescone, R., Ngernyuang, N., Bentley, B., Taylor, S.L., Moral, L., and Yan, W. (2014). Anti-YKL-40 antibody and ionizing irradiation synergistically inhibit tumor vascularization and malignancy in glioblastoma. Carcinogenesis 35, 373–382.10.1093/carcin/bgt380Search in Google Scholar

Singh, S.K., Bhardwaj, R., Wilczynska, K.M., Dumur, C.I., and Kordula, T. (2011). A complex of nuclear factor I-X3 and STAT3 regulates astrocyte and glioma migration through the secreted glycoprotein YKL-40. J. Biol. Chem. 286, 39893–39903.10.1074/jbc.M111.257451Search in Google Scholar

Sohn, M.H., Kang, M.J., Matsuura, H., Bhandari, V., Chen, N.Y., Lee, C.G., and Elias, J.A. (2010). The chitinase-like proteins breast regression protein-39 and YKL-40 regulate hyperoxia-induced acute lung injury. Am. J. Respir. Crit. Care Med. 182, 918–928.10.1164/rccm.200912-1793OCSearch in Google Scholar

St-Jacques, S. and Bleau, G. (1988). Monoclonal antibodies specific for an oviductal component associated with the hamster zona pellucida. J. Reprod. Immunol. 12, 247–261.10.1016/0165-0378(88)90011-3Search in Google Scholar

Steck, E., Breit, S., Breusch, S.J., Axt, M., and Richter, W. (2002). Enhanced expression of the human chitinase 3-like 2 gene (YKL-39) but not chitinase 3-like 1 gene (YKL-40) in osteoarthritic cartilage. Biochem. Biophys. Res. Commun. 299, 109–115.10.1016/S0006-291X(02)02585-8Search in Google Scholar

Tschirdewahn, S., Reis, H., Niedworok, C., Nyirady, P., Szendroi, A., Schmid, K.W., Shariat, S.F., Kramer, G., vom Dorp, F., Rubben, H., et al. (2014). Prognostic effect of serum and tissue YKL-40 levels in bladder cancer. Urol. Oncol. 32, 663–669.10.1016/j.urolonc.2014.02.004Search in Google Scholar

Volck, B., Price, P.A., Johansen, J.S., Sorensen, O., Benfield, T.L., Nielsen, H.J., Calafat, J., and Borregaard, N. (1998). YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils. Proc. Assoc. Am. Physicians. 110, 351–360.Search in Google Scholar

Vom Dorp, F., Tschirdewahn, S., Niedworok, C., Reis, H., Krause, H., Kempkensteffen, C., Busch, J., Kramer, G., Shariat, S.F., Nyirady, P., et al. (2015). Circulating and tissue expression levels of YKL-40 in renal cell cancer. J. Urol. 5347, 04920–04924.Search in Google Scholar

Voronov, E., Dotan, S., Krelin, Y., Song, X., Elkabets, M., Carmi, Y., Rider, P., Idan, C., Romzova, M., Kaplanov, I., et al. (2013). Unique versus redundant functions of IL-1a and IL-1b in the tumor microenvironment. Front Immunol. 4, 177.10.3389/fimmu.2013.00177Search in Google Scholar

Vos, K., Steenbakkers, P., Miltenburg, A.M., Bos, E., van Den Heuvel, M.W., van Hogezand, R.A., de Vries, R.R., Breedveld, F.C., and Boots, A.M. (2000). Raised human cartilage glycoprotein-39 plasma levels in patients with rheumatoid arthritis and other inflammatory conditions. Ann. Rheum. Dis. 59, 544–548.10.1136/ard.59.7.544Search in Google Scholar

Ward, J.M., Yoon, M., Anver, M.R., Haines, D.C., Kudo, G., Gonzalez, F.J., and Kimura, S. (2001). Hyalinosis and Ym1/Ym2 gene expression in the stomach and respiratory tract of 129S4/SvJae and wild-type and CYP1A2-null B6, 129 mice. Am. J. Pathol. 158, 323–332.10.1016/S0002-9440(10)63972-7Search in Google Scholar

Xiao, W., Meng, G., Zhao, Y., Yuan, H., Li, T., Peng, Y., Zhao, Y., Luo, M., Zhao, W., Li, Z., and Zheng, X. (2014). Human secreted protein SI-CLP aggravates the inflammation of rheumatoid arthritis and is a potential macrophage inflammatory regulator. Arthritis Rheumatol. 66, 1141–1152.10.1002/art.38356Search in Google Scholar

Xu, Y., Yuan, J., Zhang, Z., Lin, L., and Xu, S. (2012). Syndecan-1 expression in human glioma is correlated with advanced tumor progression and poor prognosis. Mol. Biol. Rep. 39, 8979–8985.10.1007/s11033-012-1767-9Search in Google Scholar

Xu, C.H., Yu, L.K., and Hao, K.K. (2014). Serum YKL-40 level is associated with the chemotherapy response and prognosis of patients with small cell lung cancer. PLoS One 9, e96384.10.1371/journal.pone.0096384Search in Google Scholar

Zhang, J., Gratchev, A., Riabov, V., Mamidi, S., Schmuttermaier, C., Krusell, L., Kremmer, E., Workman, G., Sage, E. H., Jalkanen, S., et al. (2009). A novel GGA-binding site is required for intracellular sorting mediated by stabilin-1. Mol. Cell Biol. 29, 6097–6105.10.1128/MCB.00505-09Search in Google Scholar

Zheng, X., Xing, S., Liu, X.M., Liu, W., Liu, D., Chi, P.D., Chen, H., Dai, S.Q., Zhong, Q., Zeng, M.S., et al. (2014). Establishment of using serum YKL-40 and SCCA in combination for the diagnosis of patients with esophageal squamous cell carcinoma. BMC Cancer 14, 490.10.1186/1471-2407-14-490Search in Google Scholar

Zhu, C.B., Chen, L.L., Tian, J.J., Su, L., Wang, C., Gai, Z.T., Du, W.J., and Ma, G.L. (2012). Elevated serum YKL-40 level predicts poor prognosis in hepatocellular carcinoma after surgery. Ann. Surg. Oncol. 19, 817–825.10.1245/s10434-011-2026-3Search in Google Scholar

Received: 2015-11-2
Accepted: 2015-12-21
Published Online: 2016-1-4
Published in Print: 2016-3-1

©2016 by De Gruyter