Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 14, 2016

The role of Her2 and other oncogenes of the PI3K/AKT pathway in mitochondria

  • Katerina Rohlenova , Jiri Neuzil and Jakub Rohlena ORCID logo EMAIL logo
From the journal Biological Chemistry


Altered metabolism and resistance to cell death are typical hallmarks of cancer phenotype. Mitochondria are organelles central to cellular metabolism as well as to cell death induction. Hyperactivation of pro-survival and pro-proliferative pathways such as PI3K/AKT leads to cancer initiation, which affects mitochondria. Growing body of evidence indicates that oncogenes such as HER2, EGFR and RAS, as well as the downstream members of the PI3K/AKT signaling pathway, directly regulate mitochondria by translocating to the organelle. Here we discuss evidence of this scenario and consider mechanisms for direct regulation of mitochondrial function. Being in close proximity to mitochondrial bioenergetics machinery as well as to the regulators/executors of programed cell death, oncogenes in mitochondria may be ideally placed to perform this task. This represents a thus far under-explored area, which may be relevant to better understanding of cancer initiation, progression and treatment.

Award Identifier / Grant number: DP110105009, DP130101651, DP15010280

Funding statement: The authors’ work is in part supported by grants from the Czech Science Foundation 16-22823S to J. R., the Australian Research Council (DP110105009, DP130101651, DP15010280), the National and Health Medical Research Council of Australia (APP1011955), the Queensland Cancer Council (APP1049104), the Czech Science Foundation 16-12719S to J.N. and by LQ1604 NPU II provided by MEYS and CZ.1.05/1.1.00/02.0109 BIOCEV provided by ERDF and MEYS.


The authors’ work is in part supported by grants from the Czech Science Foundation 16-22823S to J. R., the Australian Research Council (DP110105009, DP130101651, DP15010280), the National and Health Medical Research Council of Australia (APP1011955), the Queensland Cancer Council (APP1049104), the Czech Science Foundation 16-12719S to J.N. and by LQ1604 NPU II provided by MEYS and CZ.1.05/1.1.00/02.0109 BIOCEV provided by ERDF and MEYS.


Acin-Perez, R., Fernandez-Silva, P., Peleato, M.L., Perez-Martos, A., and Enriquez, J.A. (2008). Respiratory active mitochondrial supercomplexes. Mol. Cell 32, 529–539.10.1016/j.molcel.2008.10.021Search in Google Scholar

Alessi, D.R., Deak, M., Casamayor, A., Caudwell, F.B., Morrice, N., Norman, D.G., Gaffney, P., Reese, C.B., MacDougall, C.N., Harbison, D., et al. (1997). 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr. Biol. 7, 776–789.10.1016/S0960-9822(06)00336-8Search in Google Scholar

Antico Arciuch, V.G., Galli, S., Franco, M.C., Lam, P.Y., Cadenas, E., Carreras, M.C., and Poderoso, J.J. (2009). Akt1 intramitochondrial cycling is a crucial step in the redox modulation of cell cycle progression. PLoS One 4, e7523.10.1371/journal.pone.0007523Search in Google Scholar PubMed PubMed Central

Arteaga, C.L. and Engelman, J.A. (2014). ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 25, 282–303.10.1016/j.ccr.2014.02.025Search in Google Scholar PubMed PubMed Central

Barthel, A., Okino, S.T., Liao, J., Nakatani, K., Li, J., Whitlock, J.P., Jr., and Roth, R.A. (1999). Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J. Biol. Chem. 274, 20281–20286.10.1074/jbc.274.29.20281Search in Google Scholar PubMed

Betz, C. and Hall, M.N. (2013). Where is mTOR and what is it doing there? J. Cell Biol. 203, 563–574.10.1083/jcb.201306041Search in Google Scholar PubMed PubMed Central

Betz, C., Stracka, D., Prescianotto-Baschong, C., Frieden, M., Demaurex, N., and Hall, M.N. (2013). mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc. Natl. Acad. Sci. USA 110, 12526–12534.10.1073/pnas.1302455110Search in Google Scholar PubMed PubMed Central

Bijur, G.N. and Jope, R.S. (2003). Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J. Neurochem. 87, 1427–1435.10.1046/j.1471-4159.2003.02113.xSearch in Google Scholar PubMed PubMed Central

Bivona, T.G., Quatela, S.E., Bodemann, B.O., Ahearn, I.M., Soskis, M.J., Mor, A., Miura, J., Wiener, H.H., Wright, L., Saba, S.G., et al. (2006). PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol. Cell 21, 481–493.10.1016/j.molcel.2006.01.012Search in Google Scholar PubMed

Boerner, J.L., Demory, M.L., Silva, C., and Parsons, S.J. (2004). Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol. Cell. Biol. 24, 7059–7071.10.1128/MCB.24.16.7059-7071.2004Search in Google Scholar PubMed PubMed Central

Bollu, L.R., Ren, J., Blessing, A.M., Katreddy, R.R., Gao, G., Xu, L., Wang, J., Su, F., and Weihua, Z. (2014). Involvement of de novo synthesized palmitate and mitochondrial EGFR in EGF induced mitochondrial fusion of cancer cells. Cell Cycle 13, 2415–2430.10.4161/cc.29338Search in Google Scholar PubMed PubMed Central

Calvo, S.E., Clauser, K.R., and Mootha, V.K. (2016). MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 44, D1251–1257.10.1093/nar/gkv1003Search in Google Scholar PubMed PubMed Central

Cardaci, S., Zheng, L., MacKay, G., van den Broek, N.J., MacKenzie, E.D., Nixon, C., Stevenson, D., Tumanov, S., Bulusu, V., Kamphorst, J.J., et al. (2015). Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat. Cell Biol. 17, 1317–1326.10.1038/ncb3233Search in Google Scholar PubMed PubMed Central

Castellano, E., Sheridan, C., Thin, M.Z., Nye, E., Spencer-Dene, B., Diefenbacher, M.E., Moore, C., Kumar, M.S., Murillo, M.M., Gronroos, E., et al. (2013). Requirement for interaction of PI3-kinase p110alpha with RAS in lung tumor maintenance. Cancer Cell 24, 617–630.10.1016/j.ccr.2013.09.012Search in Google Scholar PubMed PubMed Central

Cerniglia, G.J., Dey, S., Gallagher-Colombo, S.M., Daurio, N.A., Tuttle, S., Busch, T.M., Lin, A., Sun, R., Esipova, T.V., Vinogradov, S.A., et al. (2015). The PI3K/Akt pathway regulates oxygen metabolism via pyruvate dehydrogenase (PDH)-E1α phosphorylation. Mol. Cancer Ther. 14, 1928–1938.10.1158/1535-7163.MCT-14-0888Search in Google Scholar PubMed PubMed Central

Commisso, C., Davidson, S.M., Soydaner-Azeloglu, R.G., Parker, S.J., Kamphorst, J.J., Hackett, S., Grabocka, E., Nofal, M., Drebin, J.A., Thompson, C.B., et al. (2013). Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637.10.1038/nature12138Search in Google Scholar PubMed PubMed Central

Demory, M.L., Boerner, J.L., Davidson, R., Faust, W., Miyake, T., Lee, I., Huttemann, M., Douglas, R., Haddad, G., and Parsons, S.J. (2009). Epidermal growth factor receptor translocation to the mitochondria: regulation and effect. J. Biol. Chem. 284, 36592–36604.10.1074/jbc.M109.000760Search in Google Scholar PubMed PubMed Central

Deprez, J., Vertommen, D., Alessi, D.R., Hue, L., and Rider, M.H. (1997). Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J. Biol. Chem. 272, 17269–17275.10.1074/jbc.272.28.17269Search in Google Scholar PubMed

Ding, Y., Liu, Z., Desai, S., Zhao, Y., Liu, H., Pannell, L.K., Yi, H., Wright, E.R., Owen, L.B., Dean-Colomb, W., et al. (2012). Receptor tyrosine kinase ErbB2 translocates into mitochondria and regulates cellular metabolism. Nat. Commun. 3, 1271.10.1038/ncomms2236Search in Google Scholar PubMed PubMed Central

Dong, L.F., Jameson, V.J., Tilly, D., Cerny, J., Mahdavian, E., Marin-Hernandez, A., Hernandez-Esquivel, L., Rodriguez-Enriquez, S., Stursa, J., Witting, P.K., et al. (2011a). Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J. Biol. Chem. 286, 3717–3728.10.1074/jbc.M110.186643Search in Google Scholar PubMed PubMed Central

Dong, L.F., Jameson, V.J., Tilly, D., Prochazka, L., Rohlena, J., Valis, K., Truksa, J., Zobalova, R., Mahdavian, E., Kluckova, K., et al. (2011b). Mitochondrial targeting of alpha-tocopheryl succinate enhances its pro-apoptotic efficacy: a new paradigm for effective cancer therapy. Free Radic. Biol. Med. 50, 1546–1555.10.1016/j.freeradbiomed.2011.02.032Search in Google Scholar PubMed

Dudek, J., Rehling, P., and van der Laan, M. (2013). Mitochondrial protein import: common principles and physiological networks. Biochim. Biophys. Acta 1833, 274–285.10.1016/j.bbamcr.2012.05.028Search in Google Scholar PubMed

Elstrom, R.L., Bauer, D.E., Buzzai, M., Karnauskas, R., Harris, M.H., Plas, D.R., Zhuang, H., Cinalli, R.M., Alavi, A., Rudin, C.M., et al. (2004). Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64, 3892–3899.10.1158/0008-5472.CAN-03-2904Search in Google Scholar PubMed

Engelman, J.A. (2009). Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9, 550–562.10.1038/nrc2664Search in Google Scholar PubMed

Frezza, C. (2014). The role of mitochondria in the oncogenic signal transduction. Int. J. Biochem. Cell Biol. 48, 11–17.10.1016/j.biocel.2013.12.013Search in Google Scholar PubMed

Gallo, R.M., Bryant, I.N., Mill, C.P., Kaverman, S., and Riese, D.J., 2nd (2013). Multiple functional motifs are required for the tumor suppressor activity of a constitutively-active ErbB4 mutant. J. Cancer. Res. Ther. Oncol. 1, 10.10.17303/jcrto.2013.104Search in Google Scholar

Galluzzi, L., Kepp, O., Trojel-Hansen, C., and Kroemer, G. (2012). Mitochondrial control of cellular life, stress, and death. Circ. Res. 111, 1198–1207.10.1161/CIRCRESAHA.112.268946Search in Google Scholar PubMed

Gonzalvez, F., Schug, Z.T., Houtkooper, R.H., MacKenzie, E.D., Brooks, D.G., Wanders, R.J., Petit, P.X., Vaz, F.M., and Gottlieb, E. (2008). Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J. Cell Biol. 183, 681–696.10.1083/jcb.200803129Search in Google Scholar PubMed PubMed Central

Goo, C.K., Lim, H.Y., Ho, Q.S., Too, H.P., Clement, M.V., and Wong, K.P. (2012). PTEN/Akt signaling controls mitochondrial respiratory capacity through 4E-BP1. PLoS One 7, e45806.10.1371/journal.pone.0045806Search in Google Scholar PubMed PubMed Central

Gottlob, K., Majewski, N., Kennedy, S., Kandel, E., Robey, R.B., and Hay, N. (2001). Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 15, 1406–1418.10.1101/gad.889901Search in Google Scholar PubMed PubMed Central

Gupta, S., Ramjaun, A.R., Haiko, P., Wang, Y., Warne, P.H., Nicke, B., Nye, E., Stamp, G., Alitalo, K., and Downward, J. (2007). Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129, 957–968.10.1016/j.cell.2007.03.051Search in Google Scholar PubMed

Hanahan, D. and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674.10.1016/j.cell.2011.02.013Search in Google Scholar PubMed

Hoshi, M., Takashima, A., Noguchi, K., Murayama, M., Sato, M., Kondo, S., Saitoh, Y., Ishiguro, K., Hoshino, T., and Imahori, K. (1996). Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3β in brain. Proc. Natl. Acad. Sci. USA 93, 2719–2723.10.1073/pnas.93.7.2719Search in Google Scholar PubMed PubMed Central

Hu, Y., Lu, W., Chen, G., Wang, P., Chen, Z., Zhou, Y., Ogasawara, M., Trachootham, D., Feng, L., Pelicano, H., et al. (2012). K-rasG12V transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res. 22, 399–412.10.1038/cr.2011.145Search in Google Scholar PubMed PubMed Central

Hynes, N.E. and Lane, H.A. (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer 5, 341–354.10.1038/nrc1609Search in Google Scholar PubMed

Iskandar, K., Rezlan, M., Yadav, S.K., Foo, C.H., Sethi, G., Qiang, Y., Bellot, G.L., and Pervaiz, S. (2016). Synthetic lethality of a novel small molecule against mutant KRAS-expressing cancer cells involves AKT-dependent ROS production. Antioxid. Redox. Signal., Epub ahead of print, DOI: 10.1089/ars.2015.6362.Search in Google Scholar PubMed

Kennedy, S.G., Wagner, A.J., Conzen, S.D., Jordan, J., Bellacosa, A., Tsichlis, P.N., and Hay, N. (1997). The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. 11, 701–713.10.1101/gad.11.6.701Search in Google Scholar PubMed

Kennedy, S.G., Kandel, E.S., Cross, T.K., and Hay, N. (1999). Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol. Cell. Biol. 19, 5800–5810.10.1128/MCB.19.8.5800Search in Google Scholar PubMed PubMed Central

Kluckova, K., Sticha, M., Cerny, J., Mracek, T., Dong, L., Drahota, Z., Gottlieb, E., Neuzil, J., and Rohlena, J. (2015). Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation. Cell Death Dis. 6, e1749.10.1038/cddis.2015.110Search in Google Scholar PubMed PubMed Central

Koppenol, W.H., Bounds, P.L., and Dang, C.V. (2011). Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325–337.10.1038/nrc3038Search in Google Scholar PubMed

Lapuente-Brun, E., Moreno-Loshuertos, R., Acin-Perez, R., Latorre-Pellicer, A., Colas, C., Balsa, E., Perales-Clemente, E., Quiros, P.M., Calvo, E., Rodriguez-Hernandez, M.A., et al. (2013). Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567–1570.10.1126/science.1230381Search in Google Scholar PubMed

Lee-Hoeflich, S.T., Crocker, L., Yao, E., Pham, T., Munroe, X., Hoeflich, K.P., Sliwkowski, M.X., and Stern, H.M. (2008). A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res. 68, 5878–5887.10.1158/0008-5472.CAN-08-0380Search in Google Scholar PubMed

Lussey-Lepoutre, C., Hollinshead, K.E., Ludwig, C., Menara, M., Morin, A., Castro-Vega, L.J., Parker, S.J., Janin, M., Martinelli, C., Ottolenghi, C., et al. (2015). Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism. Nat. Commun. 6, 8784.10.1038/ncomms9784Search in Google Scholar PubMed PubMed Central

Majewski, N., Nogueira, V., Bhaskar, P., Coy, P.E., Skeen, J.E., Gottlob, K., Chandel, N.S., Thompson, C.B., Robey, R.B., and Hay, N. (2004a). Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell 16, 819–830.10.1016/j.molcel.2004.11.014Search in Google Scholar PubMed

Majewski, N., Nogueira, V., Robey, R.B., and Hay, N. (2004b). Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol. Cell. Biol. 24, 730–740.10.1128/MCB.24.2.730-740.2004Search in Google Scholar PubMed PubMed Central

Maranzana, E., Barbero, G., Falasca, A.I., Lenaz, G., and Genova, M.L. (2013). Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid. Redox. Signal. 19, 1469–1480.10.1089/ars.2012.4845Search in Google Scholar PubMed PubMed Central

Matallanas, D., Arozarena, I., Berciano, M.T., Aaronson, D.S., Pellicer, A., Lafarga, M., and Crespo, P. (2003). Differences on the inhibitory specificities of H-Ras, K-Ras, and N-Ras (N17) dominant negative mutants are related to their membrane microlocalization. J. Biol. Chem. 278, 4572–4581.10.1074/jbc.M209807200Search in Google Scholar PubMed

Maurer, U., Charvet, C., Wagman, A.S., Dejardin, E., and Green, D.R. (2006). Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol. Cell 21, 749–760.10.1016/j.molcel.2006.02.009Search in Google Scholar PubMed

Miyamoto, S., Murphy, A.N., and Brown, J.H. (2008). Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ. 15, 521–529.10.1038/sj.cdd.4402285Search in Google Scholar PubMed

Naresh, A., Long, W., Vidal, G.A., Wimley, W.C., Marrero, L., Sartor, C.I., Tovey, S., Cooke, T.G., Bartlett, J.M., and Jones, F.E. (2006). The ERBB4/HER4 intracellular domain 4ICD is a BH3-only protein promoting apoptosis of breast cancer cells. Cancer Res. 66, 6412–6420.10.1158/0008-5472.CAN-05-2368Search in Google Scholar PubMed

Naresh, A., Thor, A.D., Edgerton, S.M., Torkko, K.C., Kumar, R., and Jones, F.E. (2008). The HER4/4ICD estrogen receptor coactivator and BH3-only protein is an effector of tamoxifen-induced apoptosis. Cancer Res. 68, 6387–6395.10.1158/0008-5472.CAN-08-0538Search in Google Scholar PubMed PubMed Central

Niederst, M.J. and Engelman, J.A. (2013). Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer. Sci. Signal. 6, re6.10.1126/scisignal.2004652Search in Google Scholar PubMed PubMed Central

Nogueira, V., Park, Y., Chen, C.C., Xu, P.Z., Chen, M.L., Tonic, I., Unterman, T., and Hay, N. (2008). Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 14, 458–470.10.1016/j.ccr.2008.11.003Search in Google Scholar PubMed PubMed Central

Omidvar, N., Kogan, S., Beurlet, S., le Pogam, C., Janin, A., West, R., Noguera, M.E., Reboul, M., Soulie, A., Leboeuf, C., et al. (2007). BCL-2 and mutant NRAS interact physically and functionally in a mouse model of progressive myelodysplasia. Cancer Res. 67, 11657–11667.10.1158/0008-5472.CAN-07-0196Search in Google Scholar PubMed

Pastorino, J.G., Hoek, J.B., and Shulga, N. (2005). Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res. 65, 10545–10554.10.1158/0008-5472.CAN-05-1925Search in Google Scholar PubMed

Pavlova, N.N. and Thompson, C.B. (2016). The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47.10.1016/j.cmet.2015.12.006Search in Google Scholar PubMed PubMed Central

Pylayeva-Gupta, Y., Grabocka, E., and Bar-Sagi, D. (2011). RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer 11, 761–774.10.1038/nrc3106Search in Google Scholar PubMed PubMed Central

Rebollo, A., Perez-Sala, D., and Martinez, A.C. (1999). Bcl-2 differentially targets K-, N-, and H-Ras to mitochondria in IL-2 supplemented or deprived cells: implications in prevention of apoptosis. Oncogene 18, 4930–4939.10.1038/sj.onc.1202875Search in Google Scholar PubMed

Renner, L.D. and Weibel, D.B. (2011). Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc. Natl. Acad. Sci. USA 108, 6264–6269.10.1073/pnas.1015757108Search in Google Scholar PubMed PubMed Central

Rimessi, A., Marchi, S., Patergnani, S., and Pinton, P. (2014). H-Ras-driven tumoral maintenance is sustained through caveolin-1-dependent alterations in calcium signaling. Oncogene 33, 2329–2340.10.1038/onc.2013.192Search in Google Scholar PubMed

Roberts, D.J., Tan-Sah, V.P., Smith, J.M., and Miyamoto, S. (2013). Akt phosphorylates HK-II at Thr-473 and increases mitochondrial HK-II association to protect cardiomyocytes. J. Biol. Chem. 288, 23798–23806.10.1074/jbc.M113.482026Search in Google Scholar PubMed PubMed Central

Rohlena, J., Dong, L.F., Kluckova, K., Zobalova, R., Goodwin, J., Tilly, D., Stursa, J., Pecinova, A., Philimonenko, A., Hozak, P., et al. (2011). Mitochondrially targeted alpha-tocopheryl succinate is antiangiogenic: potential benefit against tumor angiogenesis but caution against wound healing. Antioxid. Redox. Signal. 15, 2923–2935.10.1089/ars.2011.4192Search in Google Scholar PubMed PubMed Central

Sarbassov, D.D., Guertin, D.A., Ali, S.M., and Sabatini, D.M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101.10.1126/science.1106148Search in Google Scholar PubMed

Scheffler, I. (2008). Mitochondria, Second Edition (Hoboken, New Jersey, USA: John Wiley & Sons, Inc.).Search in Google Scholar

Schneider, H.C., Berthold, J., Bauer, M.F., Dietmeier, K., Guiard, B., Brunner, M., and Neupert, W. (1994). Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature 371, 768–774.10.1038/371768a0Search in Google Scholar PubMed

Schug, Z.T., Peck, B., Jones, D.T., Zhang, Q., Grosskurth, S., Alam, I.S., Goodwin, L.M., Smethurst, E., Mason, S., Blyth, K., et al. (2015). Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27, 57–71.10.1016/j.ccell.2014.12.002Search in Google Scholar PubMed PubMed Central

Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A., and McGuire, W.L. (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182.10.1126/science.3798106Search in Google Scholar PubMed

Sorice, M., Manganelli, V., Matarrese, P., Tinari, A., Misasi, R., Malorni, W., and Garofalo, T. (2009). Cardiolipin-enriched raft-like microdomains are essential activating platforms for apoptotic signals on mitochondria. FEBS Lett. 583, 2447–2450.10.1016/j.febslet.2009.07.018Search in Google Scholar PubMed

Su, C.C., Yang, J.Y., Leu, H.B., Chen, Y., and Wang, P.H. (2012). Mitochondrial Akt-regulated mitochondrial apoptosis signaling in cardiac muscle cells. Am. J. Physiol. Heart Circ. Physiol. 302, H716–723.10.1152/ajpheart.00455.2011Search in Google Scholar PubMed PubMed Central

Sun, Y., Lin, H., Zhu, Y., Ma, C., Ye, J., and Luo, J. (2002). Induction or suppression of expression of cytochrome c oxidase subunit II by heregulin β1 in human mammary epithelial cells is dependent on the levels of ErbB2 expression. J. Cell. Physiol. 192, 225–233.10.1002/jcp.10132Search in Google Scholar PubMed

Tan, A.S., Baty, J.W., Dong, L.F., Bezawork-Geleta, A., Endaya, B., Goodwin, J., Bajzikova, M., Kovarova, J., Peterka, M., Yan, B., et al. (2015). Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 21, 81–94.10.1016/j.cmet.2014.12.003Search in Google Scholar PubMed

Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033.10.1126/science.1160809Search in Google Scholar PubMed PubMed Central

Vidal, G.A., Naresh, A., Marrero, L., and Jones, F.E. (2005). Presenilin-dependent gamma-secretase processing regulates multiple ERBB4/HER4 activities. J. Biol. Chem. 280, 19777–19783.10.1074/jbc.M412457200Search in Google Scholar PubMed

Wallace, D.C. (2012). Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698.10.1038/nrc3365Search in Google Scholar PubMed PubMed Central

Wolfman, J.C., Planchon, S.M., Liao, J., and Wolfman, A. (2006). Structural and functional consequences of c-N-Ras constitutively associated with intact mitochondria. Biochim. Biophys. Acta 1763, 1108–1124.10.1016/j.bbamcr.2006.07.015Search in Google Scholar PubMed

Yan, B., Stantic, M., Zobalova, R., Bezawork-Geleta, A., Stapelberg, M., Stursa, J., Prokopova, K., Dong, L., and Neuzil, J. (2015). Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner. BMC Cancer 15, 401.10.1186/s12885-015-1394-7Search in Google Scholar PubMed PubMed Central

Yang, J.Y., Deng, W., Chen, Y., Fan, W., Baldwin, K.M., Jope, R.S., Wallace, D.C., and Wang, P.H. (2013). Impaired translocation and activation of mitochondrial Akt1 mitigated mitochondrial oxidative phosphorylation complex V activity in diabetic myocardium. J. Mol. Cell. Cardiol. 59, 167–175.10.1016/j.yjmcc.2013.02.016Search in Google Scholar PubMed PubMed Central

Received: 2016-2-1
Accepted: 2016-4-13
Published Online: 2016-4-14
Published in Print: 2016-7-1

©2016 by De Gruyter

Downloaded on 1.3.2024 from
Scroll to top button