Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 5, 2016

E-beam crosslinked nanogels conjugated with monoclonal antibodies in targeting strategies

  • Giorgia Adamo , Natascia Grimaldi , Maria Antonietta Sabatino , Marta Walo , Clelia Dispenza and Giulio Ghersi EMAIL logo
From the journal Biological Chemistry

Abstract

Poly(N-vinyl pyrrolidone)-based-nanogels (NGs), produced by e-beam irradiation, are conjugated with monoclonal antibodies (mAb) for active targeting purposes. The uptake of immuno-functionalized nanogels is tested in an endothelial cell line, ECV304, using confocal and epifluorescence microscopy. Intracellular localization studies reveal a faster uptake of the immuno-nanogel conjugate with respect to the ‘bare’ nanogel. The specific internalization pathway of these immuno-nanogels is clarified by selective endocytosis inhibition experiments, flow cytometry and confocal microscopy. Active targeting ability is also verified by conjugating a monoclonal antibody which recognizes the αvβ3 integrin on activated endothelial cells. Epifluorescence images of the ‘wound healing assay’ on ECV304 cells provide evidence of nanogels localization only in the target cells. Therefore, the immuno-nanogels produced have the potential to recognize specific cell types in heterogeneous systems, which makes them promising candidates for targeted drug delivery applications.

Acknowledgments

This research was partially supported by the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP F22064) ‘Nanosized delivery systems for radiopharmaceuticals’ Research Agreement N° 18349/R0. TEM experimental data were provided by Centro Grandi Apparecchiaturee UniNetLab e Università di Palermo funded by P.O.R. Sicilia 2000e2006, Misura 3.15 Quota Regionale. The authors are grateful to Prof G. Giammona for the experimental support on surface charge density measurements.

  1. Funding: Italian Ministry of University and Scientific Research (Grant/Award number: ‘FFR 2012/2013’, ‘PRIN 2010–2011 NANOMED 2010FTPBSH’).

References

Arruebo, M., Valladares, M., and Gonzalez-Fernandez, A. (2009). Antibody-conjugated nanoparticles for biomedical applications. J. Nanomat. 2009, Article ID 439389.10.1155/2009/439389Search in Google Scholar

Bauminger, S. and Wilchek, M. (1980). The use of carbodiimides in the preparation of immunizing conjugates. Methods Enzymol. 70, 151–159.10.1016/S0076-6879(80)70046-0Search in Google Scholar

Cho, K., Wang, X., Nie, S., Chen, Z., and Shin, D.M. (2008). Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14, 1310–1316.10.1158/1078-0432.CCR-07-1441Search in Google Scholar PubMed

Dharmawardhane, S., Schuermann, A., Sells, M., Chernoff, J., Schmid, S.L., and Bokoch, G.M. (2000). Regulation of macropinocytosis by p21-activated kinase-1. Mol. Biol. Cell 11, 3341–3352.10.1091/mbc.11.10.3341Search in Google Scholar PubMed PubMed Central

Dispenza, C., Sabatino, M.A., Grimaldi, N., Bulone, D., Bondì, M.L., Casaletto, M.P., Rigogliuso, S., Adamo, G., and Ghersi, G. (2012). Minimalism in radiation synthesis of biomedical functional nanogels. Biomacromolecules 13, 1805–1817.10.1021/bm3003144Search in Google Scholar PubMed

Dispenza, C., Adamo, G., Sabatino, M.A., Grimaldi, N., Bulone, D., Bondì, M.L., Rigogliuso, S., and Ghersi, G. (2014). Oligonucleotides-decorated-poly(N-vinyl pyrrolidone) nanogels for gene delivery. J. Appl. Polym. Sci. 131, 39774–39782.10.1002/app.39774Search in Google Scholar

Dispenza, C., Grimaldi, N., Sabatino, M.A., Soroka, I.L., and Jonsson, M. (2015). Radiation-engineered functional nanoparticles in aqueous system. J. Nanosci. Nanotechnol. 15, 3445–3467.10.1166/jnn.2015.9865Search in Google Scholar PubMed

Dispenza, C., Sabatino, M.A., Grimaldi, N., Mangione, M.R., Walo, M., Murugan, E., and Jonsson, M. (2016). On the origin of functionalization in one-pot radiation synthesis of nanogels from aqueous polymer solutions. RSC Adv. 6, 2582–2591.10.1039/C5RA23926ESearch in Google Scholar

Everts, M., Kok, R.J., Asgeirsdottir, S.A., Melgert, B.N., Moolenaar, T.J.M., Koning, G.A., van Luyn, M.J.A., Meijer, D.K.F., and Molema, G. (2002). Selective intracellular delivery of dexamethasone into activated endothelial cells using an E-selectin-directed immunoconjugate. J. Immunol. 168, 883–889.10.4049/jimmunol.168.2.883Search in Google Scholar PubMed

Falcone, S., Cocucci, E., Podini, P., Kirchhausen, T., Clementi, E., and Meldolesi, J. (2006). Macropinocytosis: regulated coordination of endocytic and exocytic membrane traffic events. J. Cell Sci. 119, 4758–4769.10.1242/jcs.03238Search in Google Scholar PubMed

Ghersi, G., Zhao, Q., Salamone, M., Yeh, Y., Zucker, S., and Chen, W.T. (2006). The protease complex consisting of dipeptidyl peptidase IV and Seprase plays a role in the migration and invasion of human endothelial cells in collagenous matrices. Cancer Res. 66, 4652–4661.10.1158/0008-5472.CAN-05-1245Search in Google Scholar PubMed PubMed Central

Grimaldi, N., Sabatino, M.A., Bulone, D., Adamo, G., Rigogliuso, S., Ghersi, G., Dispenza, C. (2013). Water-borne polymeric nanoparticles for glutathione-mediated intracellular delivery of anticancer drugs. In: NSTI-Nanotech 2013, Vol. 3 (Washington, USA: Nanotech), ISBN 978-1-4822-0586-2. www.nsti.org.Search in Google Scholar

Grimaldi, N., Sabatino, M.A., Przybytniak, G., Kaluska, I., Bondì, M.L., Bulone, D., Alessi, S., Spadaro, G., and Dispenza, C. (2014). High-energy radiation processing, a smart approach to obtain PVP-graft-AA nanogels. Radiat. Phys. Chem. 94, 76–79.10.1016/j.radphyschem.2013.04.012Search in Google Scholar

Howard, M.D., Hood, E.D., Zern, B., Shuvaev, V.V., Grosser, T., and Muzykantov, V.R. (2014). Nanocarriers for vascular delivery of anti-inflammatory agents. Annu. Rev. Pharmacol. Toxicol. 54, 205–226.10.1146/annurev-pharmtox-011613-140002Search in Google Scholar PubMed PubMed Central

Kayser, O., Lemke, A., and Hernández-Trejo, N. (2005). The impact of nanobiotechnology on the development of new drug delivery systems. Curr. Pharm. Biotechnol. 6, 3–5.10.2174/1389201053167158Search in Google Scholar PubMed

Lambert, J.M. (2005). Drug-conjugated monoclonal antibodies for treatment of cancer. Curr. Opin. Pharmacol. 5, 543–549.10.1016/j.coph.2005.04.017Search in Google Scholar PubMed

Panyam, J., Wen-Zhong, Z., Swayam, P., Sanjeeb, K.S., and Vinod, L. (2002). Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implication for drug and gene delivery. FASEB J. 16, 1217–1226.10.1096/fj.02-0088comSearch in Google Scholar PubMed

Patil, Y., Toti, U., Khdair, A., Ma, L., and Panyam, J. (2009). Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30, 859–866.10.1016/j.biomaterials.2008.09.056Search in Google Scholar PubMed PubMed Central

Picone, P., Ditta, L.A., Sabatino, M.A., Militello, V., San Biagio, P.L., Di Giacinto, M.L., Cristaldi, L., Nuzzo, D., Dispenza, C., Giacomazza, D., and Di Carlo, M. (2016). Ionizing radiation-engineered nanogels as insulin nanocarriers for the development of a new strategy for the treatment of Alzheimer’s disease. Biomaterials 80, 179–194.10.1016/j.biomaterials.2015.11.057Search in Google Scholar PubMed

Shidhaye, S., Lotlikar, V., Malke S., and Kadam, V. (2008). Nanogel engineered polymeric micelles for drug delivery. Curr. Drug Ther. 3, 209–217.10.2174/157488508785747880Search in Google Scholar

Slomiany, M.G., Dai, L., Tolliver, L.B., Grass, G.D., Zeng, Y., and Toole, B.P. (2009). Inhibition of functional hyaluronan-CD44 interactions in CD133-positive primary human ovarian carcinoma cells by small hyaluronan oligosaccharides. Clin. Cancer Res. 15, 7593–7601.10.1158/1078-0432.CCR-09-2317Search in Google Scholar PubMed PubMed Central

Thiery, J.P. and Sleeman, J.P. (2014). Complex networks orchestrate epithelial–mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 15, 178–196.10.1038/nrm1835Search in Google Scholar

Trail, P.A., King, H.D., and Dubowchik, G.M. (2003). Monoclonal antibody drug immunoconjugates for targeted treatment of cancer. Cancer Immunol. Immunother. 52, 328–337.10.1007/s00262-002-0352-9Search in Google Scholar

Vasir, J.K., Reddy, M.K., and Labhasetwar, V.D. (2005). Nanosystems in drug targeting: opportunities and challenges. Curr. Nanosci. 1, 47–64.10.2174/1573413052953110Search in Google Scholar

Vinogradov, S.V., Bronich, T.K., and Kabanov, A.V. (2002). Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Delivery Rev. 54, 135–147.10.1016/S0169-409X(01)00245-9Search in Google Scholar

Wang, A.Z., Gu, F., Zhang, L., Chan, J.M., Radovic-Moreno, A., Shaikh, M.R., and Farokhzad, O.C. (2008). Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin. Biol. Ther. 8, 1063–1070.10.1517/14712598.8.8.1063Search in Google Scholar PubMed PubMed Central

Weis, S.M. and Cheresh, D.A. (2011). αv Integrins in angiogenesis and cancer. Cold Spring Harbor Perspect. Med. 1, a006478.10.1101/cshperspect.a006478Search in Google Scholar PubMed PubMed Central

You, J., Li, X., de Cui, F., Du, Y.Z., Yuan, H., and Hu, F.Q. (2008). Folate-conjugated polymer micelles for active targeting to cancer cells: preparation, in vitro evaluation of targeting ability and cytotoxicity. Nanotechnology 19, 045102.10.1088/0957-4484/19/04/045102Search in Google Scholar PubMed

Received: 2016-4-22
Accepted: 2016-8-2
Published Online: 2016-8-5
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.3.2023 from https://www.degruyter.com/document/doi/10.1515/hsz-2016-0255/html
Scroll to top button