Accessible Requires Authentication Published by De Gruyter January 16, 2018

Interaction of the middle domains stabilizes Hsp90α dimer in a closed conformation with high affinity for p23

Kamil Synoradzki, Przemyslaw Miszta, Egidijus Kazlauskas, Aurelija Mickevičiūtė, Vilma Michailovienė, Daumantas Matulis, Slawomir Filipek and Pawel Bieganowski
From the journal Biological Chemistry

Abstract

The human genome encodes two highly similar cytosolic Hsp90 proteins called isoforms Hsp90α and Hsp90β. Of the 300 client proteins for Hsp90 identified so far only a handful interact specifically with one Hsp90 isoform. Here we report for the first time that Hsp90 cochaperone p23 binds preferentially to Hsp90α and that this interaction is mediated by the middle domain of Hsp90α. Based on the homology modeling, we infer that the middle domains in the Hsp90α dimer bind stronger with each other than in the Hsp90β dimer. Therefore, compared to Hsp90β, Hsp90α may adopt closed conformation more easily. Hsp90 interacts with p23 in the closed conformation. Hsp90α binds human recombinant p23 about three times stronger than Hsp90β but with significantly smaller exothermic enthalpy as determined by isothermal titration calorimetry of direct binding between the purified proteins. As p23 binds to Hsp90 in a closed conformation, stabilization of the Hsp90α dimer in the closed conformation by its middle domains explains preference of p23 to this Hsp90 isoform.

Acknowledgments

This work was supported by the Polish National Science Centre grant no. NN303818640 and 2016/23/B/NZ6/02536. The sponsor played no role in study design, in the collection, analysis and interpretation of data, in the writing of the report or in the decision to submit the article for publication. The authors declare no conflicts of interest.

References

Ali, M.M., Roe, S.M., Vaughan, C.K., Meyer, P., Panaretou, B., Piper, P.W., Prodromou, C., and Pearl, L.H. (2006). Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440, 1013–1017. Search in Google Scholar

Boeke, J.D., Trueheart, J., Natsoulis, G., and Fink, G.R. (1987). 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154, 164–175. Search in Google Scholar

Chadli, A., Felts, S.J., and Toft, D.O. (2008). GCUNC45 is the first Hsp90 co-chaperone to show α/β isoform specificity. J. Biol. Chem. 283, 9509–9512. Search in Google Scholar

Chen, B., Zhong, D., and Monteiro, A. (2006). Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 7, 156. Search in Google Scholar

Cikotiene, I., Kazlauskas, E., Matuliene, J., Michailoviene, V., Torresan, J., Jachno, J., and Matulis, D. (2009). 5-Aryl-4-(5-substituted-2,4-dihydroxyphenyl)-1,2,3-thiadiazoles as inhibitors of Hsp90 chaperone. Bioorg. Med. Chem. Lett. 19, 1089–1092. Search in Google Scholar

Cortes-Gonzalez, C., Barrera-Chimal, J., Ibarra-Sanchez, M., Gilbert, M., Gamba, G., Zentella, A., Flores, M.E., and Bobadilla, N.A. (2010). Opposite effect of Hsp90α and Hsp90β on eNOS ability to produce nitric oxide or superoxide anion in human embryonic kidney cells. Cell Physiol. Biochem. 26, 657–668. Search in Google Scholar

Csermely, P., Kajtar, J., Hollosi, M., Jalsovszky, G., Holly, S., Kahn, C.R., Gergely, P., Jr., Soti, C., Mihaly, K., and Somogyi, J. (1993). ATP induces a conformational change of the 90-kDa heat shock protein (hsp90). J. Biol. Chem. 268, 1901–1907. Search in Google Scholar

DeLano, W.L. The PyMOL Molecular Graphics System (San Carlos, CA, USA: DeLano Scientific LLC). Search in Google Scholar

Echeverria, P.C., Bernthaler, A., Dupuis, P., Mayer, B., and Picard, D. (2011). An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS One 6, e26044. Search in Google Scholar

Echeverria, P.C., Briand, P.A., and Picard, D. (2016). A remodeled Hsp90 molecular chaperone ensemble with the novel cochaperone aarsd1 is required for muscle differentiation. Mol. Cell Biol. 36, 1310–1321. Search in Google Scholar

Fang, Y., Fliss, A.E., Rao, J., and Caplan, A.J. (1998). SBA1 encodes a yeast hsp90 cochaperone that is homologous to vertebrate p23 proteins. Mol. Cell Biol. 18, 3727–3734. Search in Google Scholar

Finka, A. and Goloubinoff, P. (2013). Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones 18, 591–605. Search in Google Scholar

Gao, Y., Yechikov, S., Vazquez, A.E., Chen, D., and Nie, L. (2013). Distinct roles of molecular chaperones HSP90α and HSP90β in the biogenesis of KCNQ4 channels. PLoS One 8, e57282. Search in Google Scholar

Ghaemmaghami, S., Huh, W.K., Bower, K., Howson, R.W., Belle, A., Dephoure, N., O’Shea, E.K., and Weissman, J.S. (2003). Global analysis of protein expression in yeast. Nature 425, 737–741. Search in Google Scholar

Grad, I., Cederroth, C.R., Walicki, J., Grey, C., Barluenga, S., Winssinger, N., De Massy, B., Nef, S., and Picard, D. (2010). The molecular chaperone Hsp90β is required for meiotic progression of spermatocytes beyond pachytene in the mouse. PLoS One 5, e15770. Search in Google Scholar

Harst, A., Lin, H., and Obermann, W.M. (2005). Aha1 competes with Hop, p50 and p23 for binding to the molecular chaperone Hsp90 and contributes to kinase and hormone receptor activation. Biochem. J. 387, 789–796. Search in Google Scholar

Hartson, S.D., Thulasiraman, V., Huang, W., Whitesell, L., and Matts, R.L. (1999). Molybdate inhibits hsp90, induces structural changes in its C-terminal domain, and alters its interactions with substrates. Biochemistry 38, 3837–3849. Search in Google Scholar

Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular dynamics. J. Mol. Graphics Model. 14, 33–38. Search in Google Scholar

Kajiwara, C., Kondo, S., Uda, S., Dai, L., Ichiyanagi, T., Chiba, T., Ishido, S., Koji, T., and Udono, H. (2012). Spermatogenesis arrest caused by conditional deletion of Hsp90α in adult mice. Biol. Open. 1, 977–982. Search in Google Scholar

Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858. Search in Google Scholar

Kubo, R., Toda, M., and Hashitsume, N. (1991). Statistical Physics II: Nonequilibrium Statistical Mechanics (Berlin, Germany: Springer-Verlag). Search in Google Scholar

Meyer, P., Prodromou, C., Hu, B., Vaughan, C., Roe, S.M., Panaretou, B., Piper, P.W., and Pearl, L.H. (2003). Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol. Cell 11, 647–658. Search in Google Scholar

Nemoto, T., Ohara-Nemoto, Y., Ota, M., Takagi, T., and Yokoyama, K. (1995). Mechanism of dimer formation of the 90-kDa heat-shock protein. Eur. J. Biochem. 233, 1–8. Search in Google Scholar

Panaretou, B., Siligardi, G., Meyer, P., Maloney, A., Sullivan, J.K., Singh, S., Millson, S.H., Clarke, P.A., Naaby-Hansen, S., Stein, R., et al. (2002). Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol. Cell 10, 1307–1318. Search in Google Scholar

Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., and Schulten, K. (2005). Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802. Search in Google Scholar

Prince, T.L., Kijima, T., Tatokoro, M., Lee, S., Tsutsumi, S., Yim, K., Rivas, C., Alarcon, S., Schwartz, H., Khamit-Kush, K., et al. (2015). Client proteins and small molecule inhibitors display distinct binding preferences for constitutive and stress-induced Hsp90 isoforms and their conformationally restricted mutants. PLoS One 10, e0141786. Search in Google Scholar

Retzlaff, M., Hagn, F., Mitschke, L., Hessling, M., Gugel, F., Kessler, H., Richter, K., and Buchner, J. (2010). Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Mol. Cell 37, 344–354. Search in Google Scholar

Richter, K., Walter, S., and Buchner, J. (2004). The Co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle. J. Mol. Biol. 342, 1403–1413. Search in Google Scholar

Richter, K., Soroka, J., Skalniak, L., Leskovar, A., Hessling, M., Reinstein, J., and Buchner, J. (2008). Conserved conformational changes in the ATPase cycle of human Hsp90. J. Biol. Chem. 283, 17757–17765. Search in Google Scholar

Ryckaert, J., Ciccotti, G., and Berendsen, H. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints. J. Comput. Phys. 23, 327–341. Search in Google Scholar

Scroggins, B.T., Robzyk, K., Wang, D., Marcu, M.G., Tsutsumi, S., Beebe, K., Cotter, R.J., Felts, S., Toft, D., Karnitz, L., et al. (2007). An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol. Cell 25, 151–159. Search in Google Scholar

Siligardi, G., Hu, B., Panaretou, B., Piper, P.W., Pearl, L.H., and Prodromou, C. (2004). Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle. J. Biol. Chem. 279, 51989–51998. Search in Google Scholar

Sullivan, W., Stensgard, B., Caucutt, G., Bartha, B., McMahon, N., Alnemri, E.S., Litwack, G., and Toft, D. (1997). Nucleotides and two functional states of hsp90. J. Biol. Chem. 272, 8007–8012. Search in Google Scholar

Sun, L., Prince, T., Manjarrez, J.R., Scroggins, B.T., and Matts, R.L. (2012). Characterization of the interaction of Aha1 with components of the Hsp90 chaperone machine and client proteins. Biochim. Biophys. Acta 1823, 1092–1101. Search in Google Scholar

Synoradzki, K. and Bieganowski, P. (2015). Middle domain of human Hsp90 isoforms differentially binds Aha1 in human cells and alters Hsp90 activity in yeast. Biochim. Biophys. Acta 1853, 445–452. Search in Google Scholar

Taherian, A., Krone, P.H., and Ovsenek, N. (2008). A comparison of Hsp90α and Hsp90β interactions with cochaperones and substrates. Biochem. Cell Biol. 86, 37–45. Search in Google Scholar

Voss, A.K., Thomas, T., and Gruss, P. (2000). Mice lacking HSP90β fail to develop a placental labyrinth. Development 127, 1–11. Search in Google Scholar

Yim, K.H., Prince, T.L., Qu, S., Bai, F., Jennings, P.A., Onuchic, J.N., Theodorakis, E.A., and Neckers, L. (2016). Gambogic acid identifies an isoform-specific druggable pocket in the middle domain of Hsp90β. Proc. Natl. Acad. Sci. USA 113, E4801–E4809. Search in Google Scholar

Zhao, R., Davey, M., Hsu, Y.C., Kaplanek, P., Tong, A., Parsons, A.B., Krogan, N., Cagney, G., Mai, D., Greenblatt, J., et al. (2005). Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120, 715–727. Search in Google Scholar

Zubriene, A., Gutkowska, M., Matuliene, J., Chaleckis, R., Michailoviene, V., Voroncova, A., Venclovas, C., Zylicz, A., Zylicz, M., and Matulis, D. (2010). Thermodynamics of radicicol binding to human Hsp90 α and β isoforms. Biophys. Chem. 152, 153–163. Search in Google Scholar

Zuehlke, A.D., Beebe, K., Neckers, L., and Prince, T. (2015). Regulation and function of the human HSP90AA1 gene. Gene 570, 8–16. Search in Google Scholar

Zurawska, A., Urbanski, J., Matuliene, J., Baraniak, J., Klejman, M.P., Filipek, S., Matulis, D., and Bieganowski, P. (2010). Mutations that increase both Hsp90 ATPase activity in vitro and Hsp90 drug resistance in vivo. Biochim. Biophys. Acta 1803, 575–583. Search in Google Scholar

Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2017-0172).

Received: 2017-5-31
Accepted: 2017-12-14
Published Online: 2018-1-16
Published in Print: 2018-3-28

©2018 Walter de Gruyter GmbH, Berlin/Boston