Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 15, 2017

TGF-β requires the activation of canonical and non-canonical signalling pathways to induce skeletal muscle atrophy

Johanna Ábrigo , Fabian Campos , Felipe Simon , Claudia Riedel , Daniel Cabrera , Cristian Vilos and Claudio Cabello-Verrugio EMAIL logo
From the journal Biological Chemistry

Abstract

The transforming growth factor type-beta (TGF-β) induces skeletal muscle atrophy characterised by a decrease in the fibre’s diameter and levels of myosin heavy chain (MHC), also as an increase of MuRF-1 expression. In addition, TGF-β induces muscle atrophy by a mechanism dependent on reactive oxygen species (ROS). TGF-β signals by activating both canonical Smad-dependent, and non-canonical signalling pathways such as ERK1/2, JNK1/2, and p38 MAPKs. However, the participation of canonical and non-canonical signalling pathways in the TGF-β atrophic effect on skeletal muscle is unknown. We evaluate the impact of Smad and MAPK signalling pathways on the TGF-β-induced atrophic effect in C2C12 myotubes. The results indicate that TGF-β activates Smad2/3, ERK1/2 and JNK1/2, but not p38 in myotubes. The pharmacological inhibition of Smad3, ERK1/2 and JNK1/2 activation completely abolished the atrophic effect of TGF-β. Finally, the inhibition of these canonical and non-canonical pathways did not decrease the ROS increment, while the inhibition of ROS production entirely abolished the phosphorylation of Smad3, ERK1/2 and JNK1/2. These results suggest that TGF-β requires Smad3, ERK1/2 and JNK1/2 activation to produce skeletal muscle atrophy. Moreover, the induction of ROS by TGF-β is an upstream event to canonical and non-canonical pathways.

Acknowledgements

This study was supported by research grants from the National Fund for Science and Technology Development, [FONDECYT 1161646 (CCV), 1161288 (FS), 1161438 (CV)]; Programa de Cooperación Científica ECOS-CONICYT [C16S02]; the Millennium Institute on Immunology and Immunotherapy [P09-016-F (CCV-FS-CR)]; and the Universidad Andrés Bello-Dirección de Investigación [741-15/N (CCV-FS-CR)]. J. Ábrigo would like to thank Conicyt for providing a PhD Scholarship [21161353]. C.V. acknowledges support from BASAL Grant [FB0807], MECESUP PMI-UAB [1301], and the European Union’s Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement [734801].

References

Abrigo, J., Morales, M.G., Simon, F., Cabrera, D., Di Capua, G., and Cabello-Verrugio, C. (2015). Apocynin inhibits the upregulation of TGF-β1 expression and ROS production induced by TGF-beta in skeletal muscle cells. Phytomedicine 22, 885–93.10.1016/j.phymed.2015.06.011Search in Google Scholar

Abrigo, J., Rivera, J.C., Simon, F., Cabrera, D., and Cabello-Verrugio, C. (2016). Transforming growth factor type β (TGF-β) requires reactive oxygen species to induce skeletal muscle atrophy. Cell Signal. 28, 366–376.10.1016/j.cellsig.2016.01.010Search in Google Scholar

Acuna, M.J., Pessina, P., Olguin, H., Cabrera, D., Vio, C.P., Bader, M., Munoz-Canoves, P., Santos, R.A., Cabello-Verrugio, C., and Brandan, E. (2014). Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-β signalling. Hum. Mol. Genet. 23, 1237–1249.10.1093/hmg/ddt514Search in Google Scholar

Argiles, J.M., Busquets, S., Felipe, A., and Lopez-Soriano, F.J. (2006). Muscle wasting in cancer and ageing: cachexia versus sarcopenia. Adv. Gerontol. 18, 39–54.10.1007/978-90-481-9713-2_2Search in Google Scholar

Barbieri, E. and Sestili, P. (2012). Reactive oxygen species in skeletal muscle signaling. J. Signal. Transduct. 2012, 982794.10.1155/2012/982794Search in Google Scholar

Bennett, B.L., Sasaki, D.T., Murray, B.W., O’Leary, E.C., Sakata, S.T., Xu, W., Leisten, J.C., Motiwala, A., Pierce, S., Satoh, Y., et al. (2001). SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA 98, 13681–13686.10.1073/pnas.251194298Search in Google Scholar

Bernasconi, P., Di Blasi, C., Mora, M., Morandi, L., Galbiati, S., Confalonieri, P., Cornelio, F., and Mantegazza, R. (1999). Transforming growth factor-β1 and fibrosis in congenital muscular dystrophies. Neuromuscul. Disord. 9, 28–33.10.1016/S0960-8966(98)00093-5Search in Google Scholar

Brandan, E., Cabello-Verrugio, C., and Vial, C. (2008). Novel regulatory mechanisms for the proteoglycans decorin and biglycan during muscle formation and muscular dystrophy. Matrix Biol. 27, 700–708.10.1016/j.matbio.2008.07.004Search in Google Scholar

Brink, M., Price, S.R., Chrast, J., Bailey, J.L., Anwar, A., Mitch, W.E., and Delafontaine, P. (2001). Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I. Endocrinology 142, 1489–1496.10.1210/endo.142.4.8082Search in Google Scholar

Burks, T.N. and Cohn, R.D. (2011). Role of TGF-beta signaling in inherited and acquired myopathies. Skelet. Muscle 1, 19.10.1186/2044-5040-1-19Search in Google Scholar

Burks, T.N., Andres-Mateos, E., Marx, R., Mejias, R., Van Erp, C., Simmers, J.L., Walston, J.D., Ward, C.W., and Cohn, R.D. (2011). Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcopenia. Sci. Transl. Med. 3, 82ra37.10.1126/scitranslmed.3002227Search in Google Scholar

Cabello-Verrugio, C. and Brandan, E. (2007). A novel modulatory mechanism of transforming growth factor-beta signaling through decorin and LRP-1. J. Biol. Chem. 282, 18842–18850.10.1074/jbc.M700243200Search in Google Scholar

Cabello-Verrugio, C., Acuna, M.J., Morales, M.G., Becerra, A., Simon, F., and Brandan, E. (2011). Fibrotic response induced by angiotensin-II requires NAD(P)H oxidase-induced reactive oxygen species (ROS) in skeletal muscle cells. Biochem. Biophys. Res. Commun. 410, 665–670.10.1016/j.bbrc.2011.06.051Search in Google Scholar

Cabello-Verrugio, C., Cordova, G., and Salas, J.D. (2012a). Angiotensin II: role in skeletal muscle atrophy. Curr. Protein Pept. Sci. 13, 560–569.10.2174/138920312803582933Search in Google Scholar

Cabello-Verrugio, C., Santander, C., Cofre, C., Acuna, M.J., Melo, F., and Brandan, E. (2012b). The internal region leucine-rich repeat 6 of decorin interacts with low density lipoprotein receptor-related protein-1, modulates transforming growth factor (TGF)-β-dependent signaling, and inhibits TGF-β-dependent fibrotic response in skeletal muscles. J. Biol. Chem. 287, 6773–6787.10.1074/jbc.M111.312488Search in Google Scholar

Cabello-Verrugio, C., Morales, M.G., Rivera, J.C., Cabrera, D., and Simon, F. (2015). Renin-angiotensin system: an old player with novel functions in skeletal muscle. Med. Res. Rev. 35, 437–463.10.1002/med.21343Search in Google Scholar

Cencetti, F., Bernacchioni, C., Nincheri, P., Donati, C., and Bruni, P. (2010). Transforming growth factor-beta1 induces transdifferentiation of myoblasts into myofibroblasts via up-regulation of sphingosine kinase-1/S1P3 axis. Mol. Biol. Cell. 21, 1111–1124.10.1091/mbc.e09-09-0812Search in Google Scholar

Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.10.1016/0003-2697(87)90021-2Search in Google Scholar

Cofre, C., Acuna, M.J., Contreras, O., Morales, M.G., Riquelme, C., Cabello-Verrugio, C., and Brandan, E. (2015). Transforming growth factor type-beta inhibits Mas receptor expression in fibroblasts but not in myoblasts or differentiated myotubes; Relevance to fibrosis associated to muscular dystrophies. Biofactors 41, 111–120.10.1002/biof.1208Search in Google Scholar

Cooney, R.N., Kimball, S.R., and Vary, T.C. (1997). Regulation of skeletal muscle protein turnover during sepsis: mechanisms and mediators. Shock 7, 1–16.10.1097/00024382-199701000-00001Search in Google Scholar

Derynck, R. and Zhang, Y.E. (2003). Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577–584.10.1038/nature02006Search in Google Scholar

Droguett, R., Cabello-Verrugio, C., Santander, C., and Brandan, E. (2010). TGF-β receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation. Exp. Cell Res. 316, 2487–2503.10.1016/j.yexcr.2010.04.031Search in Google Scholar

Eley, H.L., Russell, S.T., and Tisdale, M.J. (2008). Mechanism of attenuation of muscle protein degradation induced by tumor necrosis factor-α and angiotensin II by β-hydroxy-β-methylbutyrate. Am. J. Physiol. Endocrinol. Metab. 295, E1417–E1426.10.1152/ajpendo.90567.2008Search in Google Scholar

Evans, W.J., Morley, J.E., Argiles, J., Bales, C., Baracos, V., Guttridge, D., Jatoi, A., Kalantar-Zadeh, K., Lochs, H., Mantovani, G., et al. (2008). Cachexia: a new definition. Clin. Nutr. 27, 793–799.10.1016/j.clnu.2008.06.013Search in Google Scholar

Glass, D.J. (2005). Skeletal muscle hypertrophy and atrophy signaling pathways. Int. J. Biochem. Cell Biol. 37, 1974–1984.10.1016/j.biocel.2005.04.018Search in Google Scholar

Greco, S.H., Tomkotter, L., Vahle, A.K., Rokosh, R., Avanzi, A., Mahmood, S.K., Deutsch, M., Alothman, S., Alqunaibit, D., Ochi, A., et al. (2015). TGF-β blockade reduces mortality and metabolic changes in a validated murine model of pancreatic cancer cachexia. PLoS One 10, e0132786.10.1371/journal.pone.0132786Search in Google Scholar

Guadagnin, E., Narola, J., Bonnemann, C.G., and Chen, Y.W. (2015). Tyrosine 705 phosphorylation of STAT3 is associated with phenotype severity in TGFβ1 transgenic mice. Biomed. Res. Int. 2015, 843743.10.1155/2015/843743Search in Google Scholar

Huang, Z., Chen, D., Zhang, K., Yu, B., Chen, X., and Meng, J. (2007). Regulation of myostatin signaling by c-Jun N-terminal kinase in C2C12 cells. Cell Signal. 19, 2286–2295.10.1016/j.cellsig.2007.07.002Search in Google Scholar

Ishitobi, M., Haginoya, K., Zhao, Y., Ohnuma, A., Minato, J., Yanagisawa, T., Tanabu, M., Kikuchi, M., and Iinuma, K. (2000). Elevated plasma levels of transforming growth factor β1 in patients with muscular dystrophy. Neuroreport 11, 4033–4035.10.1097/00001756-200012180-00026Search in Google Scholar

Jackman, R.W. and Kandarian, S.C. (2004). The molecular basis of skeletal muscle atrophy. Am J. Physiol. Cell Physiol. 287, C834–843.10.1152/ajpcell.00579.2003Search in Google Scholar

Kefaloyianni, E., Gaitanaki, C., and Beis, I. (2006). ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-κB transactivation during oxidative stress in skeletal myoblasts. Cell Signal. 18, 2238–2251.10.1016/j.cellsig.2006.05.004Search in Google Scholar

Kollias, H.D. and McDermott, J.C. (2008). Transforming growth factor-β and myostatin signaling in skeletal muscle. J. Appl. Physiol. 104, 579–587.10.1152/japplphysiol.01091.2007Search in Google Scholar

Massague, J. (2012). TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616–630.10.1038/nrm3434Search in Google Scholar

Mauro, A., Ciccarelli, C., De Cesaris, P., Scoglio, A., Bouche, M., Molinaro, M., Aquino, A., and Zani, B.M. (2002). PKCα-mediated ERK, JNK and p38 activation regulates the myogenic program in human rhabdomyosarcoma cells. J. Cell Sci. 115, 3587–3599.10.1242/jcs.00037Search in Google Scholar

Mendias, C.L., Gumucio, J.P., Davis, M.E., Bromley, C.W., Davis, C.S., and Brooks, S.V. (2012). Transforming growth factor-β induces skeletal muscle atrophy and fibrosis through the induction of atrogin-1 and scleraxis. Muscle Nerve 45, 55–59.10.1002/mus.22232Search in Google Scholar

Meneses, C., Morales, M.G., Abrigo, J., Simon, F., Brandan, E., and Cabello-Verrugio, C. (2015). The angiotensin-(1-7)/Mas axis reduces myonuclear apoptosis during recovery from angiotensin II-induced skeletal muscle atrophy in mice. Pflüger’s Arch. 467, 1975–1984.10.1007/s00424-014-1617-9Search in Google Scholar

Miro, O., Pedrol, E., Cebrian, M., Masanes, F., Casademont, J., Mallolas, J., and Grau, J.M. (1997). Skeletal muscle studies in patients with HIV-related wasting syndrome. J. Neurol. Sci. 150, 153–159.10.1016/S0022-510X(97)00079-8Search in Google Scholar

Morales, M.G., Vazquez, Y., Acuna, M.J., Rivera, J.C., Simon, F., Salas, J.D., Alvarez Ruf, J., Brandan, E., and Cabello-Verrugio, C. (2012). Angiotensin II-induced pro-fibrotic effects require p38MAPK activity and transforming growth factor β1 expression in skeletal muscle cells. Int. J. Biochem. Cell Biol. 44, 1993–2002.10.1016/j.biocel.2012.07.028Search in Google Scholar

Morales, M.G., Abrigo, J., Meneses, C., Simon, F., Cisternas, F., Rivera, J.C., Vazquez, Y., and Cabello-Verrugio, C. (2014). The Ang-(1-7)/Mas-1 axis attenuates the expression and signalling of TGF-β1 induced by AngII in mouse skeletal muscle. Clin. Sci. 127, 251–264.10.1042/CS20130585Search in Google Scholar

Morris, R.T., Spangenburg, E.E., and Booth, F.W. (2004). Responsiveness of cell signaling pathways during the failed 15-day regrowth of aged skeletal muscle. J. Appl. Physiol. 96, 398–404.10.1152/japplphysiol.00454.2003Search in Google Scholar

Narola, J., Pandey, S.N., Glick, A., and Chen, Y.W. (2013). Conditional expression of TGF-β1 in skeletal muscles causes endomysial fibrosis and myofibers atrophy. PLoS One 8, e79356.10.1371/journal.pone.0079356Search in Google Scholar

Sartori, R., Milan, G., Patron, M., Mammucari, C., Blaauw, B., Abraham, R., and Sandri, M. (2009). Smad2 and 3 transcription factors control muscle mass in adulthood. Am. J. Physiol. Cell Physiol. 296, C1248–C1257.10.1152/ajpcell.00104.2009Search in Google Scholar

Schmittgen, T.D., Zakrajsek, B.A., Mills, A.G., Gorn, V., Singer, M.J., and Reed, M.W. (2000). Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal. Biochem. 285, 194–204.10.1006/abio.2000.4753Search in Google Scholar

Tando, T., Hirayama, A., Furukawa, M., Sato, Y., Kobayashi, T., Funayama, A., Kanaji, A., Hao, W., Watanabe, R., Morita, M., et al. (2016). Smad2/3 are required for immobilization-induced skeletal muscle atrophy. J. Biol. Chem. 291, 12184–12194.10.1074/jbc.M115.680579Search in Google Scholar

ten Dijke, P. and Hill, C.S. (2004). New insights into TGF-β-Smad signalling. Trends Biochem. Sci. 29, 265–273.10.1016/j.tibs.2004.03.008Search in Google Scholar

Tisdale, M.J. (2009). Mechanisms of cancer cachexia. Physiol. Rev. 89, 381–410.10.1152/physrev.00016.2008Search in Google Scholar

Trendelenburg, A.U., Meyer, A., Rohner, D., Boyle, J., Hatakeyama, S., and Glass, D.J. (2009). Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am. J. Physiol. Cell Physiol. 296, C1258–C1270.10.1152/ajpcell.00105.2009Search in Google Scholar

Winer, J., Jung, C.K., Shackel, I., and Williams, P.M. (1999). Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal. Biochem. 270, 41–49.10.1006/abio.1999.4085Search in Google Scholar

Zhang, P., Chen, X., and Fan, M. (2007). Signaling mechanisms involved in disuse muscle atrophy. Med. Hypotheses 6, 310–321.10.1016/j.mehy.2006.11.043Search in Google Scholar


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2017-0217).


Received: 2017-8-11
Accepted: 2017-11-3
Published Online: 2017-11-15
Published in Print: 2018-2-23

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/hsz-2017-0217/html
Scroll Up Arrow