Accessible Requires Authentication Published by De Gruyter June 8, 2018

Specificity profiling of human trypsin-isoenzymes

Oliver Schilling, Martin L. Biniossek, Bettina Mayer, Brigitta Elsässer, Hans Brandstetter, Peter Goettig ORCID logo, Ulf-Håkan Stenman and Hannu Koistinen
From the journal Biological Chemistry


In humans, three different trypsin-isoenzymes have been described. Of these, trypsin-3 appears to be functionally different from the others. In order to systematically study the specificity of the trypsin-isoenzymes, we utilized proteome-derived peptide libraries and quantitative proteomics. We found similar specificity profiles dominated by the well-characterized preference for cleavage after lysine and arginine. Especially, trypsin-1 slightly favored lysine over arginine in this position, while trypsin-3 did not discriminate between them. In the P1′ position, which is the residue C-terminal to the cleavage site, we noticed a subtle enrichment of alanine and glycine for all three trypsins and for trypsin-3 there were additional minor P1′ and P2′ preferences for threonine and aspartic acid, respectively. These findings were confirmed by FRET peptide substrates showing different susceptibility to cleavage by different trypsins. The preference of trypsin-3 for aspartic acid in P2′ is explained by salt bridge formation with the unique Arg193. This salt bridge enables and stabilizes a canonical oxyanion conformation by the amides of Ser195 and Arg193, thus manifesting a selective substrate-assisted catalysis. As trypsin-3 has been proposed to be a therapeutic target and marker for cancers, our results may aid the development of specific inhibitors for cancer therapy and diagnostic probes.

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: SCHI 871/5, SCHI 871/8, SCHI 871/9, SCHI 871/11, INST 39/900-1, and SFB850-Project Z1

Funding source: German-Israeli Foundation for Scientific Research and Development

Award Identifier / Grant number: 1444

Funding statement: The authors thank Ms. Annikki Löfhjelm for excellent technical assistance. HK acknowledges support from the Finnish Cancer Foundation, Sigrid Jusélius Foundation and the Finnish Society of Clinical Chemistry. O.S. acknowledges support by Deutsche Forschungsgemeinschaft (SCHI 871/5, SCHI 871/8, SCHI 871/9, SCHI 871/11, INST 39/900-1, and SFB850-Project Z1), the Excellence Initiative of the German Federal and State Governments (EXC 294, BIOSS), the European Research Council (PoC 780730, ProteaseNter), and the German-Israeli Foundation for Scientific Research and Development (Funder Id: 10.13039/501100001736, grant no. 1444).


Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. (2000). The Protein Data Bank. Nucleic Acids Res. 28, 235–242. Search in Google Scholar

Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Gallo Cassarino, T., Bertoni, M., Bordoli, L., et al. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–W258. Search in Google Scholar

Biniossek, M.L., Niemer, M., Maksimchuk, K., Mayer, B., Fuchs, J., Huesgen, P.F., McCafferty, D.G., Turk, B., Fritz, G., Mayer, J., et al. (2016). Identification of protease specificity by combining proteome-derived peptide libraries and quantitative proteomics. Mol. Cell. Proteomics 15, 2515–2524. Search in Google Scholar

Bläckberg, M., Berling, R., and Ohlsson, K. (1999). Tissue kallikrein in severe acute pancreatitis in patients treated with high-dose intraperitoneal aprotinin. Pancreas 19, 325–334. Search in Google Scholar

Colaert, N., Helsens, K., Martens, L., Vandekerckhove, J., and Gevaert, K. (2009). Improved visualization of protein consensus sequences by iceLogo. Nat. Methods 6, 786–787. Search in Google Scholar

Debela, M., Magdolen, V., Bode, W., Brandstetter, H., and Goettig, P. (2016). Structural basis for the Zn2+ inhibition of the zymogen-like kallikrein-related peptidase 10. Biol. Chem. 397, 1251–1264. Search in Google Scholar

Figarella, C., Clemente, F., and Guy, O. (1969). On zymogens of human pancreatic juice. FEBS Lett. 3, 351–353. Search in Google Scholar

Fuhrman-Luck, R.A., Loessner, D., and Clements, J.A. (2014). Kallikrein-related peptidases in prostate cancer: from molecular function to clinical application. EJIFCC 25, 269–281. Search in Google Scholar

Goyal, J., Smith, K.M., Cowan, J.M., Wazer, D.E., Lee, S.W., and Band, V. (1998). The role for NES1 serine protease as a novel tumor suppressor. Cancer Res. 58, 4782–4786. Search in Google Scholar

Hansson, L., Strömqvist, M., Bäckman, A., Wallbrandt, P., Carlstein, A., and Egelrud, T. (1994). Cloning, expression, and characterization of stratum corneum chymotryptic enzyme. A skin-specific human serine proteinase. J. Biol. Chem. 269, 19420–19426. Search in Google Scholar

Harris, J.L., Backes, B.J., Leonetti, F., Mahrus, S., Ellman, J.A., and Craik, C.S. (2000). Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc. Natl. Acad. Sci. USA 97, 7754–7759. Search in Google Scholar

Hegyi, E. and Sahin-Tóth, M. (2017). Genetic risk in chronic pancreatitis: the trypsin-dependent pathway. Dig. Dis. Sci. 62, 1692–1701. Search in Google Scholar

Hirota, M., Ohmuraya, M., and Baba, H. (2006). The role of trypsin, trypsin inhibitor, and trypsin receptor in the onset and aggravation of pancreatitis. J. Gastroenterol. 41, 832–836. Search in Google Scholar

Hockla, A., Radisky, D.C., and Radisky, E.S. (2010). Mesotrypsin promotes malignant growth of breast cancer cells through shedding of CD109. Breast Cancer Res. Treat. 124, 27–38. Search in Google Scholar

Hockla, A., Miller, E., Salameh, M.A., Copland, J.A., Radisky, D.C., and Radisky, E.S. (2012). PRSS3/mesotrypsin is a therapeutic target for metastatic prostate cancer. Mol. Cancer Res. 10, 1555–1566. Search in Google Scholar

Hu, J., Lei, H., Fei, X., Liang, S., Xu, H., Qin, D., Wang, Y., Wu, Y., and Li, B. (2015). NES1/KLK10 gene represses proliferation, enhances apoptosis and down-regulates glucose metabolism of PC3 prostate cancer cells. Sci. Rep. 5, 17426. Search in Google Scholar

Jiang, G., Cao, F., Ren, G., Gao, D., Bhakta, V., Zhang, Y., Cao, H., Dong, Z., Zang, W., Zhang, S., et al. (2010). PRSS3 promotes tumour growth and metastasis of human pancreatic cancer. Gut 59, 1535–1544. Search in Google Scholar

Katona, G., Berglund, G.I., Hajdu, J., Graf, L., and Szilagyi, L. (2002). Crystal structure reveals basis for the inhibitor resistance of human brain trypsin. J. Mol. Biol. 315, 1209–1218. Search in Google Scholar

Knecht, W., Cottrell, G.S., Amadesi, S., Mohlin, J., Skaregarde, A., Gedda, K., Peterson, A., Chapman, K., Hollenberg, M.D., Vergnolle, N., et al. (2007). Trypsin IV or mesotrypsin and p23 cleave protease-activated receptors 1 and 2 to induce inflammation and hyperalgesia. J. Biol. Chem. 282, 26089–26100. Search in Google Scholar

Koistinen, H. and Stenman, U.-H. (2012). PSA (Prostate-Specific Antigen) and other Kallikrein-Related Peptidases in Prostate Cancer. In: Kallikrein-Related Peptidases Vol. 2 – Novel Cancer Related Biomarkers, V. Magdolen, C.P. Sommerhoff, H. Fritz and M. Schmitt, eds. (Berlin, Germany: De Gruyter), pp. 61–81. Search in Google Scholar

Koistinen, H., Koistinen, R., Zhang, W.-M., Valmu, L., and Stenman, U.-H. (2009). Nexin-1 inhibits the activity of human brain trypsin. Neuroscience 160, 97–102. Search in Google Scholar

Koivunen, E., Huhtala, M.L., and Stenman, U.H. (1989). Human ovarian tumor-associated trypsin. Its purification and characterization from mucinous cyst fluid and identification as an activator of pro-urokinase. J. Biol. Chem. 264, 14095–14099. Search in Google Scholar

Koumandou, V.L. and Scorilas, A. (2013). Evolution of the plasma and tissue kallikreins, and their alternative splicing isoforms. PLoS One 8, e68074. Search in Google Scholar

Kryza, T., Silva, M.L., Loessner, D., Heuzé-Vourc’h, N., and Clements, J.A. (2016). The kallikrein-related peptidase family: dysregulation and functions during cancer progression. Biochimie 122, 283–299. Search in Google Scholar

Liu, Y., Kati, W., Chen, C.M., Tripathi, R., Molla, A., and Kohlbrenner, W. (1999). Use of a fluorescence plate reader for measuring kinetic parameters with inner filter effect correction. Anal. Biochem. 267, 331–335. Search in Google Scholar

Lopez-Otin, C. and Bond, J.S. (2008). Proteases: multifunctional enzymes in life and disease. J. Biol. Chem. 283, 30433–30437. Search in Google Scholar

Miyai, M., Matsumoto, Y., Yamanishi, H., Yamamoto-Tanaka, M., Tsuboi, R., and Hibino, T. (2014). Keratinocyte-specific mesotrypsin contributes to the desquamation process via kallikrein activation and LEKTI degradation. J. Invest. Dermatol. 134, 1665–1674. Search in Google Scholar

Nyberg, P., Ylipalosaari, M., Sorsa, T., and Salo, T. (2006). Trypsins and their role in carcinoma growth. Exp. Cell. Res. 312, 1219–1228. Search in Google Scholar

Oiva, J., Itkonen, O., Koistinen, R., Hotakainen, K., Zhang, W.M., Kemppainen, E., Puolakkainen, P., Kylänpää, L., Stenman, U.H., and Koistinen, H. (2011). Specific immunoassay reveals increased serum trypsinogen 3 in acute pancreatitis. Clin. Chem. 57, 1506–1513. Search in Google Scholar

Paju, A. and Stenman, U.H. (2006). Biochemistry and clinical role of trypsinogens and pancreatic secretory trypsin inhibitor. Crit. Rev. Clin. Lab. Sci. 43, 103–142. Search in Google Scholar

Quesada, V., Ordóñez, G.R., Sánchez, L.M., Puente, X.S., and López-Otín, C. (2009). The Degradome database: mammalian proteases and diseases of proteolysis. Nucleic Acids Res. 37 (Database issue), D239–D243. Search in Google Scholar

Ramachandran, R., Altier, C., Oikonomopoulou, K., and Hollenberg, M.D. (2016). Proteinases, their extracellular targets, and inflammatory signaling. Pharmacol. Rev. 68, 1110–1142. Search in Google Scholar

Rawlings, N.D., Barrett, A.J., and Bateman, A. (2012). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 40, D343–D350. Search in Google Scholar

Rinderknecht, H., Renner, I.G., Abramson, S.B., and Carmack, C. (1984). Mesotrypsin: a new inhibitor-resistant protease from a zymogen in human pancreatic tissue and fluid. Gastroenterology 86, 681–692. Search in Google Scholar

Sahin-Toth, M. (2005). Human mesotrypsin defies natural trypsin inhibitors: from passive resistance to active destruction. Protein Pept. Lett. 12, 457–464. Search in Google Scholar

Salameh, M.A. and Radisky, E.S. (2013). Biochemical and structural insights into mesotrypsin: an unusual human trypsin. Int. J. Biochem. Mol. Biol. 4, 129–139. Search in Google Scholar

Salameh, M.A., Soares, A.S., Hockla, A., Radisky, D.C., and Radisky, E.S. (2011). The P(2)′ residue is a key determinant of mesotrypsin specificity: engineering a high-affinity inhibitor with anticancer activity. Biochem. J. 440, 95–105. Search in Google Scholar

Salameh, M.A., Soares, A.S., Alloy, A., and Radisky, E.S. (2012). Presence versus absence of hydrogen bond donor Tyr-39 influences interactions of cationic trypsin and mesotrypsin with protein protease inhibitors. Protein Sci. 21, 1103–1112. Search in Google Scholar

Schilling, O. and Overall, C.M. (2008). Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nat. Biotechnol. 26, 685–694. Search in Google Scholar

Schmidt, A.E., Sun, M.F., Ogawa, T., Bajaj, S.P., and Gailani, D. (2008). Functional role of residue 193 (chymotrypsin numbering) in serine proteases: influence of side chain length and β-branching on the catalytic activity of blood coagulation factor XIa. Biochemistry 47, 1326–1335. Search in Google Scholar

Shaw, J.L. and Diamandis, E.P. (2007). Distribution of 15 human kallikreins in tissues and biological fluids. Clin. Chem. 53, 1423–1432. Search in Google Scholar

Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Systems Biol. 7, 539. Search in Google Scholar

Szabó, A., Salameh, M.A., Ludwig, M., Radisky, E.S., and Sahin-Tóth, M. (2014). Tyrosine sulfation of human trypsin steers S2′ subsite selectivity towards basic amino acids. PLoS One 9, e102063. Search in Google Scholar

Szepessy, E. and Sahin-Tóth, M. (2006). Human mesotrypsin exhibits restricted S1′ subsite specificity with a strong preference for small polar side chains. FEBS J. 273, 2942–2954. Search in Google Scholar

Szmola, R., Kukor, Z., and Sahin-Tóth, M. (2003). Human mesotrypsin is a unique digestive protease specialized for the degradation of trypsin inhibitors. J. Biol. Chem. 278, 48580–48589. Search in Google Scholar

Takahashi, S., Irie, A., Katayama, Y., Ito, K., and Miyake, Y. (1987). Activation mechanism of human urinary prokallikrein using trypsin as a model activator. Biochem. Int. 14, 467–474. Search in Google Scholar

Takayama, T.K., Fujikawa, K., and Davie, E.W. (1997). Characterization of the precursor of prostate-specific antigen. Activation by trypsin and by human glandular kallikrein. J. Biol. Chem. 272, 21582–21588. Search in Google Scholar

Uehara, S., Honjyo, K., Furukawa, S., Hirayama, A., and Sakamoto, W. (1989). Role of the kallikrein-kinin system in human pancreatitis. Adv. Exp. Med. Biol. 247B, 643–648. Search in Google Scholar

Valiev, M., Bylaska, E.J., Govind, N., Kowalski, K., Straatsma, T.P., Van Dam, H.J.J., Wang, D., Nieplocha, J., Apra, E., Windus, T.L., et al. (2010). NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun 181, 1477–1489. Search in Google Scholar

Vilen, S.T., Suojanen, J., Salas, F., Risteli, J., Ylipalosaari, M., Itkonen, O., Koistinen, H., Baumann, M., Stenman, U.H., Sorsa, T., et al. (2012). Trypsin-2 enhances carcinoma invasion by processing tight junctions and activating ProMT1-MMP. Cancer Invest. 30, 583–592. Search in Google Scholar

Wang, Y., Luo, W., and Reiser, G. (2008). Trypsin and trypsin-like proteases in the brain: proteolysis and cellular functions. Cell. Mol. Life Sci. 65, 237–252. Search in Google Scholar

Wu, P., Weisell, J., Pakkala, M., Peräkylä, M., Zhu, L., Koistinen, R., Koivunen, E., Stenman, U.-H., Närvänen, A., and Koistinen, H. (2010). Identification of novel peptide inhibitors for human trypsins. Biol. Chem. 391, 283–293. Search in Google Scholar

Yamamoto-Tanaka, M., Motoyama, A., Miyai, M., Matsunaga, Y., Matsuda, J., Tsuboi, R., and Hibino, T. (2014). Mesotrypsin and caspase-14 participate in prosaposin processing: potential relevance to epidermal permeability barrier formation. J. Biol. Chem. 289, 20026–20038. Search in Google Scholar

Yoon, H., Laxmikanthan, G., Lee, J., Blaber, S.I., Rodriguez, A., Kogot, J.M., Scarisbrick, I.A., and Blaber, M. (2007). Activation profiles and regulatory cascades of the human kallikrein-related peptidases. J. Biol. Chem. 282, 31852–31864. Search in Google Scholar

Yoon, H., Blaber, S.I., Evans, D.M., Trim, J., Juliano, M.A., Scarisbrick, I.A., and Blaber, M. (2008). Activation profiles of human kallikrein-related peptidases by proteases of the thrombostasis. Protein Sci. 17, 1998–2007. Search in Google Scholar

Yoon, H., Blaber, S.I., Debela, M., Goettig, P., Scarisbrick, I.A., and Blaber, M. (2009). A completed KLK activome profile: investigation of activation profiles of KLK9, 10, and 15. Biol. Chem. 390, 373–377. Search in Google Scholar

Yousef, G.M. and Diamandis, E.P. (2001). The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr. Rev. 22, 184–204. Search in Google Scholar

Received: 2018-01-05
Accepted: 2018-04-05
Published Online: 2018-06-08
Published in Print: 2018-09-25

©2018 Walter de Gruyter GmbH, Berlin/Boston