Abstract
Pseudomonas putida rubredoxin-2 (Rxn2) is an essential member of the alkane hydroxylation pathway and transfers electrons from a reductase to the membrane-bound hydroxylase. The regioselective hydroxylation of linear alkanes is a challenging chemical transformation of great interest for the chemical industry. Herein, we report the preparation and spectroscopic characterization of cobalt-substituted P. putida Rxn2 and a truncated version of the protein consisting of the C-terminal domain of the protein. Our spectroscopic data on the Co-substituted C-terminal domain supports a high-spin Co(II) with a distorted tetrahedral coordination environment. Investigation of the two-domain protein Rxn2 provides insights into the metal-binding properties of the N-terminal domain, the role of which is not well understood so far. Circular dichroism, electron paramagnetic resonance and X-ray absorption spectroscopies support an alternative Co-binding site within the N-terminal domain, which appears to not be relevant in nature. We have shown that chemical reconstitution in the presence of Co leads to incorporation of Co(II) into the active site of the C-terminal domain, but not the N-terminal domain of Rxn2 indicating distinct roles for the two rubredoxin domains.
Acknowledgments
This work was supported by the Fonds der Chemischen Industrie, Liebig Fellowship to I.S. and a PhD fellowship to L.M.G. The authors also thank the Alexander von Humboldt Foundation (to G.E.C) and the Max-Planck-Gesellschaft (to S.D.). The European Synchrotron Radiation Facility is acknowledged for providing beamtime and for technical support from Lucia Amidani at beam line ID26. We gratefully acknowledge the performance of ICP-MS measurements by Ulrike Seeling and Astrid Küppers, ESI-MS measurements by Sabine Metzger at Leibniz Research Institute for Environmental Medicine, purification using HPLC by Nadine Rösener and Lothar Gremer, and IR spectroscopic measurements by Claudia Hoppen and Georg Groth. We are also grateful to Manuel Etzkorn and Peter Bayer for providing plasmids, and Dieter Willbold for the laboratory facilities. We acknowledge networking support to L.M.G. and I.S. from the COST action FeSBioNet (contract CA15133).
Conflict of interest statement: The authors declare that they have no conflict of interest regarding the contents of this article.
References
Anglin, J.R. and Davison, A. (1975). Iron(II) and cobalt(II) complexes of Boc-(Gly-L-Cys-Gly)4-NH2 as analogs for the active site of the iron-sulfur protein rubredoxin. Inorg. Chem. 14, 234–237.10.1021/ic50144a003Search in Google Scholar
Bencini, A., Bertini, I., Canti, G., Gatteschi, D., and Luchinat, C. (1981). The epr spectra of the inhibitor derivatives of cobalt carbonic anhydrase. J. Inorg. Biochem. 14, 81–93.10.1016/S0162-0134(00)80016-1Search in Google Scholar PubMed
Bordeaux, M., Galarneau, A., and Drone, J. (2012). Catalytic, mild, and selective oxyfunctionalization of linear alkanes: current challenges. Angew. Chem. Int. Ed. 51, 10712–10723.10.1002/anie.201203280Search in Google Scholar PubMed
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.10.1016/0003-2697(76)90527-3Search in Google Scholar
Castillo, R.G., Banerjee, R., Allpress, C.J., Rohde, G.T., Bill, E., Que, L., Lipscomb, J.D., and DeBeer, S. (2017). High-energy-resolution fluorescence-detected X-ray absorption of the Q intermediate of soluble methane monooxygenase. J. Am. Chem. Soc. 139, 18024–18033.10.1021/jacs.7b09560Search in Google Scholar PubMed PubMed Central
Curdel, A. and Iwatsubo, M. (1968). Biosynthetic incorporation of cobalt into yeast alcohol dehydrogenase. FEBS Lett. 1, 133–136.10.1016/0014-5793(68)80040-7Search in Google Scholar PubMed
Dauter, Z., Wilson, K.S., Siekert, L.C., Moulist, J.-M., and Meyer, J. (1996). Zinc-and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein. Biochemistry 93, 8836–8840.10.1073/pnas.93.17.8836Search in Google Scholar PubMed PubMed Central
Drum, D.E. and Vallee, B.L. (1970). Optical properties of catalytically active cobalt and cadmium liver alcohol dehydrogenases. Biochem. Biophys. Res. Commun. 41, 33–39.10.1016/0006-291X(70)90464-XSearch in Google Scholar
Edelhoch, H. (1967). Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954.10.1021/bi00859a010Search in Google Scholar PubMed
Fukui, K., Ohya-Nishiguchi, H., and Hirota, N. (1991). ESR and magnetic susceptibility studies on high-spin tetrahedral cobalt(II)–thiolate complexes: an approach to rubredoxin-type active sites. Bull. Chem. Soc. Jpn. 64, 1205–1212.10.1246/bcsj.64.1205Search in Google Scholar
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., and Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook, John M. Walker, ed. (Totowa, NJ, USA: Humana Press), pp. 571–607.10.1385/1-59259-890-0:571Search in Google Scholar
Gavel, O.Y., Bursakov, S.A., Calvete, J.J., George, G.N., Moura, J.J.G., and Moura, I. (1998). ATP sulfurylases from sulfate-reducing bacteria of the genus Desulfovibrio. A novel metalloprotein containing cobalt and zinc. Biochemistry 37, 16225–16232.10.1021/bi9816709Search in Google Scholar PubMed
Getz, E.B., Xiao, M., Chakrabarty, T., Cooke, R., and Selvin, P.R.A. (1999). A comparison between the sulfhydryl reductants tris(2-carboxyethyl)phosphine and dithiothreitol for use in protein biochemistry. Anal. Biochem. 273, 73–80.10.1006/abio.1999.4203Search in Google Scholar PubMed
Gill, S.C. and von Hippel, P.H. (1989). Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326.10.1016/0003-2697(89)90602-7Search in Google Scholar PubMed
Good, M. and Vasak, M. (1986). Spectroscopic properties of the cobalt(II)-substituted α-fragment of rabbit liver metallothionein. Biochemistry 25, 3328–3334.10.1021/bi00359a036Search in Google Scholar PubMed
Kok, M., Oldenhuis, M., van der Linden, M.P.G., Meulenberg, C.H.C., Kingma, J., and Withold, B. (1989). The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase. J. Biol. Chem. 264, 5442–5451.10.1016/S0021-9258(18)83565-7Search in Google Scholar
Lee, H.J., Lian, L.Y., and Scrutton, N.S. (1997). Recombinant two-iron rubredoxin of Pseudomonas oleovorans: overexpression, purification and characterization by optical, CD and 113Cd NMR spectroscopies. Biochem. J. 328, 131–136.10.1042/bj3280131Search in Google Scholar PubMed PubMed Central
Lode, E.T. and Coon, M.J. (1971). Enzymatic omega-oxidation. V. Forms of Pseudomonas oleovorans A containing one or two iron atoms: structure and function in omega-hydroxylation. J. Biol. Chem. 246, 791–802.10.1016/S0021-9258(18)62479-2Search in Google Scholar
Lovenberg, W. and Sobel, B.E. (1965). Rubredoxin: a new electron transfer protein from Clostridium pasteurianum. Proc. Natl. Acad. Sci. USA 54, 193–199.10.1073/pnas.54.1.193Search in Google Scholar PubMed PubMed Central
Maher, M., Cross, M., Wilce, M.C.J., Guss, J.M., and Wedd, A.G. (2004). Metal-substituted derivatives of the rubredoxin from Clostridium pasteurianum. Acta Crystallogr. D Biol. Crystallogr. 60, 298–303.10.1107/S090744490302794XSearch in Google Scholar PubMed
Majtan, T., Freeman, K.M., Smith, A.T., Burstyn, J.N., and Kraus, J.P. (2011). Purification and characterization of cystathionine β-synthase bearing a cobalt protoporphyrin. Arch. Biochem. Biophys. 508, 25–30.10.1016/j.abb.2011.01.012Search in Google Scholar PubMed PubMed Central
Makinen, M.W., Kuo, L.C., Yim, M.B., Wells, G.B., Fukuyama, J.M., and Kim, J.E. (1985). Ground term splitting of high-spin cobalt(2+) ion as a probe of coordination structure. 1. Dependence of the splitting on coordination geometry. J. Am. Chem. Soc. 107, 5245–5255.10.1021/ja00304a035Search in Google Scholar
Maret, W. and Vallee, B.L. (1993). Cobalt as probe and label of proteins. Methods Enzymol. 226, 52–71.10.1016/0076-6879(93)26005-TSearch in Google Scholar
May, S.W. and Kuo, J.Y. (1978). Preparation and properties of cobalt(II) rubredoxin. Biochemistry 17, 3333–3338.10.1021/bi00609a025Search in Google Scholar PubMed
McMillin, D.R., Holwerda, R.A., and Gray, H.B. (1974). Preparation and spectroscopic studies of cobalt(II)-stellacyanin. Proc. Natl. Acad. Sci. USA 71, 1339–1341.10.1073/pnas.71.4.1339Search in Google Scholar PubMed PubMed Central
Moura, I., Teixeira, M., Moura, J.J.G., and LeGall, J. (1991). Spectroscopic studies of cobalt and nickel substituted rubredoxin and desulforedoxin. J. Inorg. Biochem. 44, 127–139.10.1016/0162-0134(91)84025-5Search in Google Scholar PubMed
Perry, A., Lian, L.Y., and Scrutton, N.S. (2001). Two-iron rubredoxin of Pseudomonas oleovorans: production, stability and characterization of the individual iron-binding domains by optical, CD and NMR spectroscopies. Biochem. J. 354, 89–98.10.1042/bj3540089Search in Google Scholar
Perry, A., Tambyrajah, W., Grossmann, J.G., Lian, L.Y., and Scrutton, N.S. (2004). Solution structure of the two-iron rubredoxin of Pseudomonas oleovorans determined by NMR spectroscopy and solution X-ray scattering and interactions with rubredoxin reductase. Biochemistry 43, 3167–3182.10.1021/bi035817uSearch in Google Scholar PubMed
Ravel, B. and Newville, M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541.10.1107/S0909049505012719Search in Google Scholar PubMed
Shimizu, T., Mims, W.B., Davis, J.L., and Peisach, J. (1983). Studies of the coordination of rare earth and transition metal nucleotide complexes by an electron spin echo method. Biochim. Biophys. Acta 757, 29–39.10.1016/0304-4165(83)90149-6Search in Google Scholar
Stoll, S. and Schweiger, A. (2006). EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55.10.1016/j.jmr.2005.08.013Search in Google Scholar PubMed
Strug, I., Utzat, C., Cappione, A., Gutierrez, S., Amara, R., Lento, J., Capito, F., Skudas, R., Chernokalskaya, E., and Nadler, T. (2014). Development of a univariate membrane-based mid-infrared method for protein quantitation and total lipid content analysis of biological samples. J. Anal. Methods Chem. 2014, 1–12.10.1155/2014/657079Search in Google Scholar PubMed PubMed Central
Sugiura, Y. (1978). Electronic properties of sulfhydryl- and imidazole-containing peptide-cobalt(II) complexes: their relationship to cobalt(II)-substituted “blue” copper proteins. Bioinorg. Chem. 8, 453–460.10.1016/S0006-3061(00)80280-XSearch in Google Scholar
Thomas, J.M., Raja, R., Sankar, G., and Bell, R.G. (2001). Molecular sieve catalysts for the regioselective and shape-selective oxyfunctionalization of alkanes in air. Acc. Chem. Res. 34, 191–200.10.1021/ar970020eSearch in Google Scholar PubMed
Tsai, Y.-F., Luo, W.-I., Chang, J.-L., Chang, C.-W., Chuang, H.-C., Ramu, R., Wei, G.-T., Zen, J.-M., and Yu, S.S.-F. (2017). Electrochemical hydroxylation of C3–C12 n-alkanes by recombinant alkane hydroxylase (AlkB) and rubredoxin-2 (AlkG) from Pseudomonas putida GPo1. Sci. Rep. 7, 1–13.10.1038/s41598-017-08610-wSearch in Google Scholar PubMed PubMed Central
van Beilen, J.B., Neuenschwander, M., Smits, T.H.M., Roth, C., Balada, S.B., and Witholt B. (2002). Rubredoxins involved in alkane oxidation. J. Bacteriol. 184, 1722–1732.10.1128/JB.184.6.1722-1732.2002Search in Google Scholar PubMed PubMed Central
Westre, T.E., Kennepohl, P., DeWitt, J.G., Hedman, B., Hodgson, K.O., and Solomon, E.I. (1997). A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. J. Am. Chem. Soc. 119, 6297–6314.10.1021/ja964352aSearch in Google Scholar
Zielazinski, E.L., Cutsail, G.E., Hoffman, B.M., Stemmler, T.L., and Rosenzweig, A. (2012). Characterization of a cobalt-specific P1B-ATPase. Biochemistry 51, 7891–7900.10.1021/bi3006708Search in Google Scholar PubMed PubMed Central
Supplemental Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0142).
©2018 Walter de Gruyter GmbH, Berlin/Boston