Abstract
Pulmonary infections of cystic fibrosis (CF) patients with Staphylococcus aureus (S. aureus) occur very early in the disease. The molecular details that cause infection-susceptibility of CF patients to and mediate infection with S. aureus are poorly characterized. Therefore, we aimed to identify the role of α-toxin, a major S. aureus toxin, for pulmonary infection of CF mice. Infection with S. aureus JE2 resulted in severe pneumonia in CF mice, while wildtype mice were almost unaffected. Deficiency of α-toxin in JE2-Δhla reduced the pathogenicity of S. aureus in CF mice. However, CF mice were still more susceptible to the mutant S. aureus strain than wildtype mice. The S. aureus JE2 induced a marked increase of ceramide and a downregulation of sphingosine and acid ceramidase expression in bronchi of CF mice. Deletion of α-toxin reduced these changes after infection of CF mice. Similar changes were observed in wildtype mice, but at much lower levels. Our data indicate that expression of α-toxin is a major factor causing S. aureus infections in CF mice. Wildtype S. aureus induces a marked increase of ceramide and a reduction of sphingosine and acid ceramidase expression in bronchial epithelial cells of wildtype and CF mice, changes that determine infection susceptibility.
Acknowledgments
We thank the Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) Program supported under NIAID/NIH Contract n° HHSN272200700055C for bacterial strains. The study was supported by the GRK 2098 to K.A.B. and E.G. and DFG grants GU 335/33-1 and GU 335/35-1 to E.G. (Funder Id: 10.13039/501100001659). This article is written in the memory of our dear colleague and friend Joachim Riethmüller, who passed away in the summer of 2017.
References
Adams, C., Icheva, V., Deppisch, C., Lauer, J., Herrmann, G., Graepler-Mainka, U., Heyder, S., Gulbins, E., and Riethmueller, J. (2016). Long-term pulmonal therapy of cystic fibrosis-patients with amitriptyline. Cell. Physiol. Biochem. 39, 565–572.10.1159/000445648Search in Google Scholar PubMed
Becker, K.A., Riethmüller, J., Lüth, A., Döring, G., Kleuser, B., and Gulbins, E. (2010). Acid sphingomyelinase inhibitors normalize pulmonary ceramide and inflammation in cystic fibrosis. Am. J. Respir. Cell. Mol. Biol. 42, 716–724.10.1165/rcmb.2009-0174OCSearch in Google Scholar PubMed
Becker, K.A., Henry, B., Ziobro, R., Tümmler, B., Gulbins, E., and Grassmé, H. (2012). Role of CD95 in pulmonary inflammation and infection in cystic fibrosis. J. Mol. Med. (Berl.) 90, 1011–1023.10.1007/s00109-012-0867-2Search in Google Scholar PubMed
Bibel, D.J., Aly, R., and Shinefield, H.R. (1992). Antimicrobial activity of sphingosines. J. Invest. Dermatol. 98, 269–273.10.1111/1523-1747.ep12497842Search in Google Scholar PubMed
Bodas, M., Min, T., Mazur, S., and Vij, N. (2011). Critical modifier role of membrane-cystic fibrosis transmembrane conductance regulator-dependent ceramide signaling in lung injury and emphysema. J. Immunol. 186, 602–613.10.4049/jimmunol.1002850Search in Google Scholar PubMed PubMed Central
Bonfield, T.L., Konstan, M.W., Burfeind, P., Panuska, J.R., Hilliard, J.B., and Berger, M. (1995). Normal bronchial epithelial cells constitutively produce the anti-inflammatory cytokine interleukin-10, which is downregulated in cystic fibrosis. Am. J. Respir. Cell. Mol. Biol. 13, 257–261.10.1165/ajrcmb.13.3.7544594Search in Google Scholar PubMed
Brodlie, M., McKean, M.C., Johnson, G.E., Gray, J., Fisher, A.J., Corris, P.A., Lordan, J.L., and Ward, C. (2010). Ceramide is increased in the lower airway epithelium of people with advanced cystic fibrosis lung disease. Am. J. Respir. Crit. Care Med. 182, 369–375.10.1164/rccm.200905-0799OCSearch in Google Scholar PubMed
Bubeck Wardenburg, J., Patel, R.J., and Schneewind, O. (2007). Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infect. Immun. 75, 1040–1044.10.1128/IAI.01313-06Search in Google Scholar PubMed PubMed Central
Caretti, A., Bragonzi, A., Facchini, M., De Fino, I., Riva, C., Gasco, P., Musicanti, C., Casas, J., Fabriàs, G., Ghidoni, R., et al. (2014). Anti-inflammatory action of lipid nanocarrier-delivered myriocin: therapeutic potential in cystic fibrosis. Biochim. Biophys. Acta 1840, 586–594.10.1016/j.bbagen.2013.10.018Search in Google Scholar PubMed PubMed Central
Caretti, A., Vasso, M., Bonezzi, F.T., Gallina, A., Trinchera, M., Rossi, A., Adami, R., Casas, J., Falleni, M., Tosi, D., et al. (2017). Myriocin treatment of CF lung infection and inflammation: complex analyses for enigmatic lipids. Naunyn-Schmiedeberg‘s Arch. Pharmacol. 390, 775–790.10.1007/s00210-017-1373-4Search in Google Scholar PubMed
Charizopoulou, N., Jansen, S., Dorsch, M., Stanke, F., Dorin, J.R., Hedrich, H.J., and Tümmler, B. (2004). Instability of the insertional mutation in CftrTgH(neoim)Hgu cystic fibrosis mouse model. BMC Genet. 5, 6.10.1186/1471-2156-5-6Search in Google Scholar PubMed PubMed Central
Charizopoulou, N., Wilke, M., Dorsch, M., Bot, A., Jorna, H., Jansen, S., Stanke, F., Hedrich, H.J., de Jonge, H.R., and Tümmler, B. (2006). Spontaneous rescue from cystic fibrosis in a mouse model. BMC Genet. 7, 18.10.1186/1471-2156-7-18Search in Google Scholar PubMed PubMed Central
Di, A., Brown, M.E., Deriy, L.V., Li, C., Szeto, F.L., Chen, Y., Huang, P., Tong, J., Naren, A.P., Bindokas, V., et al. (2006). Cftr regulates phagosome acidification in macrophages and alters bactericidal activity. Nat. Cell Biol. 8, 933–944.10.1038/ncb1456Search in Google Scholar PubMed
Elborn, J.S. (2016). Cystic fibrosis. Lancet 388, 2519–2531.10.1201/b13421-39Search in Google Scholar
Esen, M., Schreiner, B., Jendrossek, V., Lang, F., Fassbender, K., Grassmé, H., and Gulbins, E. (2001). Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6, 431–439.10.1023/A:1012445925628Search in Google Scholar
Fey, P.D., Endres, J.L., Yajjala, V.K., Widhelm, T.J., Boissy, R.J., Bose, J.L., and Bayles, K.W. (2013). A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio 4, e00537–e00512.10.1128/mBio.00537-12Search in Google Scholar PubMed PubMed Central
Fischer, C.L., Drake, D.R., Dawson, D.V., Blanchette, D.R., Brogden, K.A., and Wertz, P.W. (2012). Antibacterial activity of sphingoid bases and fatty acids against gram-positive and gram-negative bacteria. Antimicrob. Agents Chemother. 56, 1157–1161.10.1128/AAC.05151-11Search in Google Scholar PubMed PubMed Central
Forbes, A.R. and Horrigan, R.W. (1977). Mucociliary flow in the trachea during anesthesia with enflurane, ether, nitrous oxide, and morphine. Anesthesiology 146, 319–321.10.1097/00000542-197705000-00002Search in Google Scholar PubMed
Garić, D., De Sanctis, J.B., Wojewodka, G., Houle, D., Cupri, S., Abu-Arish, A., Hanrahan, J.W., Hajduch, M., Matouk, E., and Radzioch, D. (2017). Fenretinide differentially modulates the levels of long- and very long-chain ceramidesby downregulating Cers5 enzyme: evidence from bench to bedside. J. Mol. Med. (Berl). 95, 1053–1064.10.1007/s00109-017-1564-ySearch in Google Scholar PubMed
Grassmé, H., Kirschnek, S., Riethmueller, J., Riehle, A., von Kürthy, G., Lang, F., Weller, M., and Gulbins, E. (2000). CD95/CD95 ligand interactions on epithelial cells in host defense to Pseudomonas aeruginosa. Science 290, 527–530.10.1126/science.290.5491.527Search in Google Scholar PubMed
Grassmé, H., Jekle, A., Riehle, A., Schwarz, H., Berger, J., Sandhoff, K., Kolesnick, R., and Gulbins, E. (2001). CD95 signaling via ceramide-rich membrane rafts. J. Biol. Chem. 276, 20589–20596.10.1074/jbc.M101207200Search in Google Scholar PubMed
Grassmé, H., Jendrossek, V., Riehle, A., von Kurthy, G., Berger, J., Schwarz, H., Weller, M., Kolesnick, R., and Gulbins, E. (2003). Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat. Med. 9, 322–330.10.1038/nm823Search in Google Scholar PubMed
Grassmé, H., Henry, B., Ziobro, R., Becker, K.A., Riethmüller, J., Gardner, A., Seitz, A.P., Steinmann, J., Lang, S., Ward, C., et al. (2017). β1-Integrin accumulates in cystic fibrosis luminal airway epithelial membranes and decreases sphingosine, promoting bacterial infections. Cell. Host. Microbe 21, 707–718.10.1016/j.chom.2017.05.001Search in Google Scholar PubMed PubMed Central
Gulbins, E., Palmada, M., Reichel, M., Lüth, A., Böhmer, C., Amato, D., Müller, C.P., Tischbirek, C.H., Groemer, T.W., Tabatabai, G., et al. (2013). Acid sphingomyelinase/ceramide system mediates effects of antidepressant drugs. Nat. Med. 19, 934–938.10.1038/nm.3214Search in Google Scholar PubMed
Hurwitz, R., Ferlinz, K., and Sandhoff, K. (1994). The tricyclic anti-depressant desipramine causes proteolytic degradation of lysosomal sphingo-myelinase in human fibroblasts. Biol. Chem. Hoppe-Seyler 375, 447–450.10.1515/bchm3.1994.375.7.447Search in Google Scholar PubMed
Inoshima, I., Inoshima, N., Wilke, G.A., Powers, M.E., Frank, K.M., Wang, Y., and Bubeck Wardenburg, J. (2011). A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat. Med. 17, 1310–1314.10.1038/nm.2451Search in Google Scholar PubMed PubMed Central
Inoshima, N., Wang, Y., and Bubeck Wardenburg, J. (2012). Genetic requirement for ADAM10 in severe Staphylococcus aureus skin infection. J. Invest. Dermatol. 132, 1513–1516.10.1038/jid.2011.462Search in Google Scholar PubMed PubMed Central
Inoue, H., Massion, P.P., Ueki, I.F., Grattan, K.M., Hara, M., Dohrman, A.F., Chan, B., Lausier, J.A., Golden, J.A., and Nadel, J.A. (1994). Pseudomonas stimulates interleukin-8 mRNA expression selectively in airway epithelium, in gland ducts, and in recruited neutrophils. Am. J. Respir. Cell. Mol. Biol. 11, 651–663.10.1165/ajrcmb.11.6.7946394Search in Google Scholar PubMed
Kerem, B., Rommens, J.M., Buchanan, J.A., Markiewicz, D., Cox, T.K., Chakravarti, A., Buchwald, M., and Tsui, L.C. (1989). Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080.10.1126/science.2570460Search in Google Scholar PubMed
Khan, T.Z., Wagener, J.S., Bost, T., Martinez, J., Accurso, F.J., and Riches, D.W. (1995). Early pulmonary inflammation in infants with cystic fibrosis. Am. J. Respir. Crit. Care Med. 151, 1075–1082.Search in Google Scholar
Kornhuber, J., Tripal, P., Reichel, M., Terfloth, L., Bleich, S., Wiltfang, J., and Gulbins, E. (2008). Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model. J. Med. Chem. 51, 219–237.10.1021/jm070524aSearch in Google Scholar PubMed
Kornhuber, J., Tripal, P., Reichel, M., Mühle, C., Rhein, C., Mühlbacher, M., Groemer, T.W., and Gulbins, E. (2010). Functional inhibitors of acid sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cell. Physiol. Biochem. 26, 9–20.10.1159/000315101Search in Google Scholar
Li, C., Wu, Y., Orian-Rousseau, V., Zhang, Y., Gulbins, E., and Grassmé, H. (2017a). Regulation of Staphylococcus aureus infection of macrophages by CD44, reactive oxygen species and acid sphingomyelinase. Antioxid. Redox Signal. doi: 10.1089/ars.2017.6994.10.1089/ars.2017.6994Search in Google Scholar
Li, C., Wu, Y., Riehle, A., Ma, J., Kamler, M., Gulbins, E., and Grassmé, H. (2017b). Staphylococcus survives in cystic fibrosis macrophages forming a reservoir for chronic pneumonia. Infect. Immun. 85, e00883–e00816.10.1128/IAI.00883-16Search in Google Scholar
Locke, L.W., Myerburg, M.M., Weiner, D.J., Markovetz, M.R., Parker, R.S., Muthukrishnan, A., Weber, L., Czachowski, M.R., Lacy, R.T., Pilewski, J.M., et al. (2016). Pseudomonas infection and mucociliary and absorptive clearance in the cystic fibrosis lung. Eur. Respir. J. 47, 1392–1401.10.1183/13993003.01880-2015Search in Google Scholar
Lyczak, J.B., Cannon, C.L., and Pier, G.B. (2001). Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev. 15, 194–222.10.1128/CMR.15.2.194-222.2002Search in Google Scholar
Matsui, H., Grubb, B.R., Tarran, R., Randell, S.H., Gatzy, J.T., Davis, C.W., and Boucher, R.C. (1998). Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95, 1005–1015.10.1016/S0092-8674(00)81724-9Search in Google Scholar
Matsui, H., Verghese, M.W., Kesimer, M., Schwab, U.E., Randell, S.H., Sheehan, J.K., Grubb, B.R., and Boucher, R.C. (2005). Reduced three-dimensional motility in dehydrated airway mucus prevents neutrophil capture and killing bacteria on airway epithelial surfaces. J. Immunol. 175, 1090–1099.10.4049/jimmunol.175.2.1090Search in Google Scholar PubMed
Nährlich, L., Mainz, A., Unger, K., Graepler-Mainka, U., Hector, A., Heyder, S., Stern, M., Döring, G., Gulbins, E., and Riethmüller, J. (2013). Therapy of CF-patients with amitriptyline and placebo – a randomised, double-blind, placebo-controlled phase IIb multicenter, cohort study. Cell. Physiol. Biochem. 31, 505–512.10.1159/000350071Search in Google Scholar PubMed
Oceandy, D., McMorran, B.J., Smith, S.N., Schreiber, R., Kunzelmann, K., Alton, E.W., Hume, D.A., and Wainwright, B.J. (2002). Gene complementation of airway epithelium in the cystic fibrosis mouse is necessary and sufficient to correct the pathogen clearance and inflammatory abnormalities. Hum. Mol. Genet. 11, 1059–1067.10.1093/hmg/11.9.1059Search in Google Scholar PubMed
Okino, N., He, X., Gatt, S., Sandhoff, K., Ito, M., and Schuchman, E.H. (2003). The reverse activity of human acid ceramidase. J. Biol. Chem. 278, 29948–29953.10.1074/jbc.M303310200Search in Google Scholar PubMed
Peng, H., Li, C., Kadow, S., Henry, B.D., Steinmann, J., Becker, K.A., Riehle, A., Beckmann, N., Wilker, B., Li, P.L., et al. (2015). Acid sphingomyelinase inhibition protects mice from lung edema and lethal Staphylococcus aureus sepsis. J. Mol. Med. (Berl). 93, 675–689.10.1007/s00109-014-1246-ySearch in Google Scholar PubMed PubMed Central
Pewzner-Jung, Y., Tavakoli Tabazavareh, S., Grassmé, H., Becker, K.A., Japtok, L., Steinmann, J., Joseph, T., Lang, S., Tuemmler, B., Schuchman, E.H., et al. (2014). Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa. EMBO Mol. Med. 6, 1205–1214.10.15252/emmm.201404075Search in Google Scholar PubMed PubMed Central
Powers, M.E., Kim, H.K., Wang, Y., and Bubeck Wardenburg, J. (2012). ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin. J. Infect. Dis. 206, 352–356.10.1093/infdis/jis192Search in Google Scholar PubMed PubMed Central
Quinn, R.A., Lim, Y.W., Mak, T.D., Whiteson, K., Furlan, M., Conrad, D., Rohwer, F., and Dorrestein, P. (2016). Metabolomics of pulmonary exacerbations reveals the personalized nature of cystic fibrosis disease. Peer J. 4, e2174.10.7717/peerj.2174Search in Google Scholar PubMed PubMed Central
Riethmüller, J., Anthonysamy, J., Serra, E., Schwab, M., Döring, G., and Gulbins, E. (2009). Therapeutic efficacy and safety of amitriptyline in patients with cystic fibrosis. Cell. Physiol. Biochem. 24, 65–72.10.1159/000227814Search in Google Scholar PubMed
Riordan, J.R., Rommens, J.M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J.L., et al. (1989). Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.10.1126/science.2475911Search in Google Scholar PubMed
Rommens, J.M., Iannuzzi, M.C., Kerem, B., Drumm, M.L., Melmer, G., Dean, M., Rozmahel, R., Cole, J.L., Kennedy, D., Hidaka, N., et al. (1989). Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245, 1059–1065.10.1097/00006254-199003000-00005Search in Google Scholar
Schultz, M.J., Rijneveld, A.W., Florquin, S., Edwards, C.K., Dinarello, C.A., and van der Poll, T. (2002). Role of interleukin-1 in the pulmonary immune response during Pseudomonas aeruginosa pneumonia. Am. J. Physiol. Lung. Cell. Mol. Physiol. 282, L285–L290.10.1152/ajplung.00461.2000Search in Google Scholar PubMed
Tabary, O., Escotte, S., Couetil, J.P., Hubert, D., Dusser, D., Puchelle, E., and Jacquot, J. (2001). Relationship between IκBα deficiency, NF-κB activity and interleukin-8 production in CF human airway epithelial cells. Pflüger’s Arch. 443, S40–S44.10.1007/s004240100642Search in Google Scholar PubMed
Tavakoli Tabazavareh, S., Seitz, A., Jernigan, P., Sehl, C., Keitsch, S., Lang, S., Kahl, B.C., Edwards, M., Grassmé, H., Gulbins, E., et al. (2016). Lack of sphingosine causes susceptibility to pulmonary Staphylococcus aureus infections in cystic fibrosis. Cell. Physiol. Biochem. 38, 2094–2102.10.1159/000445567Search in Google Scholar PubMed
Teichgräber, V., Ulrich, M., Endlich, N., Riethmüller, J., Wilker, B., De Oliveira-Munding, C.C., van Heeckeren, A.M., Barr, M.L., von Kürthy, G., Schmid, K.W., et al. (2008). Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat. Med. 14, 382–391.10.1038/nm1748Search in Google Scholar PubMed
Tirouvanziam, R., de Bentzmann, S., Hubeau, C., Hinnrasky, J., Jacquot, J., Peault, B., and Puchelle, E. (2000). Inflammation and infection in naive human cystic fibrosis airway grafts. Am. J. Respir. Cell. Mol. Biol. 23, 121–127.10.1165/ajrcmb.23.2.4214Search in Google Scholar PubMed
Ulrich, M., Worlitzsch, D., Viglio, S., Siegmann, N., Iadarola, P., Shute, J.K., Geiser, M., Pier, G.B., Friedel, G., Barr, M.L., et al. (2010). Alveolar inflammation in cystic fibrosis. J. Cyst. Fibros. 9, 217–227.10.1016/j.jcf.2010.03.001Search in Google Scholar PubMed PubMed Central
Verhaeghe, C., Delbecque, K., de Leval, L., Oury, C., and Bours, V. (2007). Early inflammation in the airways of a cystic fibrosis foetus. J. Cyst. Fibros. 6, 304–308.10.1016/j.jcf.2006.12.001Search in Google Scholar PubMed
Wilke, G.A. and Bubeck Wardenburg, J. (2010). Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin-mediated cellular injury. Proc. Natl. Acad. Sci. USA 107, 13473–13478.10.1073/pnas.1001815107Search in Google Scholar PubMed PubMed Central
Zhang, Y., Li, X., Grassmé, H., Döring, G., and Gulbins, E. (2009). Alterations in ceramide concentration and pH determine the release of reactive oxygen species by Cftr-deficient macrophages on infection. J. Immunol. 184, 5104–5111.10.4049/jimmunol.0902851Search in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston