Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 25, 2018

Formylglycine-generating enzymes for site-specific bioconjugation

  • Tobias Krüger , Thomas Dierks EMAIL logo and Norbert Sewald EMAIL logo
From the journal Biological Chemistry


Site-specific bioconjugation strategies offer many possibilities for directed protein modifications. Among the various enzyme-based conjugation protocols, formylglycine-generating enzymes allow to posttranslationally introduce the amino acid Cα-formylglycine (FGly) into recombinant proteins, starting from cysteine or serine residues within distinct consensus motifs. The aldehyde-bearing FGly-residue displays orthogonal reactivity to all other natural amino acids and can, therefore, be used for site-specific labeling reactions on protein scaffolds. In this review, the state of research on catalytic mechanisms and consensus motifs of different formylglycine-generating enzymes, as well as labeling strategies and applications of FGly-based bioconjugations are presented.

Award Identifier / Grant number: DI 575/9-1

Award Identifier / Grant number: SE 609/15-1

Funding statement: This work was supported by Deutsche Forschungsgemeinschaft as part of the priority program SPP 1623 (Funder Id: 10.13039/501100001659, DI 575/9-1, SE 609/15-1).


Agarwal, P., Kudirka, R., Albers, A.E., Barfield, R.M., de Hart, G.W., Drake, P.M., Jones, L.C., and Rabuka, D. (2013a). Hydrazino-Pictet-Spengler ligation as a biocompatible method for the generation of stable protein conjugates. Bioconjugate Chem. 24, 846–851.10.1021/bc400042aSearch in Google Scholar PubMed

Agarwal, P., van der Weijden, J., Sletten, E.M., Rabuka, D., and Bertozzi, C.R. (2013b). A Pictet-Spengler Ligation for protein chemical modification. Proc. Natl. Acad. Sci. USA 110, 46–51.10.1073/pnas.1213186110Search in Google Scholar PubMed PubMed Central

Appel, M.J. and Bertozzi, C.R. (2015). Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications. ACS Chem. Biol. 10, 72–84.10.1021/cb500897wSearch in Google Scholar PubMed PubMed Central

Benjdia, A., Dehò, G., Rabot, S., and Berteau, O. (2007). First evidences for a third sulfatase maturation system in prokaryotes from E. coli aslB and ydeM deletion mutants. FEBS Lett. 581, 1009–1014.10.1016/j.febslet.2007.01.076Search in Google Scholar PubMed

Berteau, O., Guillot, A., Benjdia, A., and Rabot, S. (2006). A new type of bacterial sulfatase reveals a novel maturation pathway in prokaryotes. J. Biol. Chem. 281, 22464–22470.10.1074/jbc.M602504200Search in Google Scholar PubMed

Brabham, R.L., Spears, R.J., Walton, J., Tyagi, S., Lemke, E.A., and Fascione, M.A. (2018). Palladium-unleashed proteins: gentle aldehyde decaging for site-selective protein modification. Chem. Commun. 54, 1501–1504.10.1039/C7CC07740HSearch in Google Scholar

Carlson, B.L., Ballister, E.R., Skordalakes, E., King, D.S., Breidenbach, M.A., Gilmore, S.A., Berger, J.M., and Bertozzi, C.R. (2008). Function and structure of a prokaryotic formylglycine-generating enzyme. J. Biol. Chem. 283, 20117–20125.10.1074/jbc.M800217200Search in Google Scholar PubMed PubMed Central

Carrico, I.S., Carlson, B.L., and Bertozzi, C.R. (2007). Introducing genetically encoded aldehydes into proteins. Nat. Chem. Biol. 3, 321–322.10.1038/nchembio878Search in Google Scholar PubMed

Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M.A., and von Figura, K. (1998). Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J. Biol. Chem. 273, 25560–25564.10.1074/jbc.273.40.25560Search in Google Scholar PubMed

Dierks, T., Lecca, M.R., Schlotterhose, P., Schmidt, B., and von Figura, K. (1999). Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases. EMBO J. 18, 2084–2091.10.1093/emboj/18.8.2084Search in Google Scholar PubMed PubMed Central

Dierks, T., Schmidt, B., Borissenko, L.V., Peng, J., Preusser, A., Mariappan, M., and von Figura, K. (2003). Multiple sulfatase deficiency is caused by mutations in the gene encoding the human Cα-formylglycine generating enzyme. Cell 113, 435–444.10.1016/S0092-8674(03)00347-7Search in Google Scholar PubMed

Drake, P.M., Albers, A.E., Baker, J., Banas, S., Barfield, R.M., Bhat, A.S., de Hart, G.W., Garofalo, A.W., Holder, P., Jones, L.C., et al. (2014). Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconjug Chem. 25, 1331–1341.10.1021/bc500189zSearch in Google Scholar PubMed PubMed Central

Fang, Q., Peng, J., and Dierks, T. (2004). Post-translational formylglycine modification of bacterial sulfatases by the radical S-adenosylmethionine protein AtsB. J. Biol. Chem. 279, 14570–14578.10.1074/jbc.M313855200Search in Google Scholar PubMed

Frese, M.-A. and Dierks, T. (2009). Formylglycine aldehyde tag- protein engineering through a novel post-translational modification. ChemBioChem. 10, 425–427.10.1002/cbic.200800801Search in Google Scholar PubMed

Geoghegan, K.F. and Stroh, J.G. (1992). Site-directed conjugation of nonpeptide groups to peptides and proteins via periodate oxidation of a 2-amino alcohol. Application to modification at N-terminal serine. Bioconjug Chem. 3, 138–146.10.1021/bc00014a008Search in Google Scholar PubMed

Goldman, P.J., Grove, T.L., Sites, L.A., McLaughlin, M.I., Booker, S.J., and Drennan, C.L. (2013). X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification. Proc. Natl. Acad. Sci. USA 110, 8519–8524.10.1073/pnas.1302417110Search in Google Scholar PubMed PubMed Central

Grove, T.L., Lee, K.-H., St. Clair, J., Krebs, C., and Booker, S.J. (2008). In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters. Biochemistry 47, 7523–7538.10.1021/bi8004297Search in Google Scholar PubMed PubMed Central

Grove, T.L., Ahlum, J.H., Qin, R.M., Lanz, N.D., Radle, M.I., Krebs, C., and Booker, S.J. (2013). Further characterization of Cys-type and Ser-type anaerobic sulfatase maturating enzymes suggests a commonality in the mechanism of catalysis. Biochemistry 52, 2874–2887.10.1021/bi400136uSearch in Google Scholar PubMed PubMed Central

Holder, P.G., Jones, L.C., Drake, P.M., Barfield, R.M., Banas, S., de Hart, G.W., Baker, J., and Rabuka, D. (2015). Reconstitution of formylglycine-generating enzyme with copper(II) for aldehyde tag conversion. J. Biol. Chem. 290, 15730–15745.10.1074/jbc.M115.652669Search in Google Scholar PubMed PubMed Central

Hudak, J.E., Yu, H.H., and Bertozzi, C.R. (2011). Protein glycoengineering enabled by the versatile synthesis of aminooxy glycans and the genetically encoded aldehyde tag. J. Am. Chem. Soc. 133, 16127–16135.10.1021/ja206023eSearch in Google Scholar PubMed PubMed Central

Hudak, J.E., Barfield, R.M., de Hart, G.W., Grob, P., Nogales, E., Bertozzi, C.R., and Rabuka, D. (2012). Synthesis of heterobifunctional protein fusions using copper-free click chemistry and the aldehyde tag. Angew. Chem. Int. Ed. 51, 4161–4165.10.1002/anie.201108130Search in Google Scholar PubMed PubMed Central

Hudak, J.E., Belardi, B., Appel, M.J., Solania, A., Robinson, P.V., and Bertozzi, C.R. (2016). Piperidine-based glycodendrons as protein N-glycan prosthetics. Bioorg. Med. Chem. 24, 4791–4800.10.1016/j.bmc.2016.05.050Search in Google Scholar PubMed PubMed Central

Jian, H., Wang, Y., Bai, Y., Li, R., and Gao, R. (2016). Site-specific, covalent immobilization of dehalogenase ST2570 catalyzed by formylglycine-generating enzymes and its application in batch and semi-continuous flow reactors. Molecules 21, 895.10.3390/molecules21070895Search in Google Scholar PubMed PubMed Central

Knop, M., Engi, P., Lemnaru, R., and Seebeck, F.P. (2015). In vitro reconstitution of formylglycine-generating enzymes requires copper(I). ChemBioChem. 16, 2147–2150.10.1002/cbic.201500322Search in Google Scholar PubMed

Knop, M., Dang, T.Q., Jeschke, G., and Seebeck, F.P. (2017). Copper is a cofactor of the formylglycine-generating enzyme. ChemBioChem. 18, 161–165.10.1002/cbic.201600359Search in Google Scholar PubMed PubMed Central

Krüger, T., Weiland, S., Falck, G., Gerlach, M., Boschanski, M., Alam, S., Müller, K.M., Dierks, T., and Sewald, N. (2018). Two-fold bioorthogonal derivatization by different formylglycine-generating enzymes. Angew. Chem. Int. Ed. 57, 7245–7249.10.1002/anie.201803183Search in Google Scholar PubMed

Kudirka, R., Barfield, R.M., McFarland, J., Albers, A.E., de Hart, G.W., Drake, P.M., Holder, P.G., Banas, S., Jones, L.C., Garofalo, A.W., et al. (2015). Generating site-specifically modified proteins via a versatile and stable nucleophilic carbon ligation. Chem. Biol. 22, 293–298.10.1016/j.chembiol.2014.11.019Search in Google Scholar PubMed

Kudirka, R.A., Barfield, R.M., McFarland, J.M., Drake, P.M., Carlson, A., Banas, S., Zmolek, W., Garofalo, A.W. and Rabuka, D. (2016). Site-specific tandem knoevenagel condensation-michael addition to generate antibody-drug conjugates. ACS Med. Chem. Lett. 7, 994–998.10.1021/acsmedchemlett.6b00253Search in Google Scholar PubMed PubMed Central

Landgrebe, J., Dierks, T., Schmidt, B., and von Figura, K. (2003). The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes. Gene 316, 47–56.10.1016/S0378-1119(03)00746-7Search in Google Scholar PubMed

Liang, S.I., McFarland, J.M., Rabuka, D., and Gartner, Z.J. (2014). A modular approach for assembling aldehyde-tagged proteins on DNA scaffolds. J. Am. Chem. Soc. 136, 10850–10853.10.1021/ja504711nSearch in Google Scholar PubMed PubMed Central

Liu, Y., Fang, Y., Zhou, Y., Zandi, E., Lee, C.-L., Joo, K.-I., and Wang, P. (2013). Site-specific modification of adeno-associated viruses via a genetically engineered aldehyde tag. Small 9, 421–429.10.1002/smll.201201661Search in Google Scholar PubMed

Liu, J., Hanne, J., Britton, B.M., Shoffner, M., Albers, A.E., Bennett, J., Zatezalo, R., Barfield, R., Rabuka, D., Lee, J.-B., et al. (2015). An efficient site-specific method for irreversible covalent labeling of proteins with a fluorophore. Sci. Rep. 5, 16883.10.1038/srep16883Search in Google Scholar PubMed PubMed Central

Meury, M., Knop, M., and Seebeck, F.P. (2017). Structural basis for copper – oxygen mediated C−H bond activation by the formylglycine-generating enzyme. Angew. Chem. Int. Ed. 56, 8115–8119.10.1002/anie.201702901Search in Google Scholar PubMed

Peng, J., Alam, S., Radhakrishnan, K., Mariappan, M., Rudolph, M.G., May, C., Dierks, T., von Figura, K., and Schmidt, B. (2015). Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction. FEBS J. 282, 3262–3274.10.1111/febs.13347Search in Google Scholar PubMed

Roeser, D., Preusser-Kunze, A., Schmidt, B., Gasow, K., Wittmann, J.G., Dierks, T., von Figura, K., Rudolph, M.G. (2006). A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. Proc. Natl. Acad. Sci. USA 103, 81–86.10.1073/pnas.0507592102Search in Google Scholar PubMed PubMed Central

Rush, J.S. and Bertozzi, C.R. (2008). New aldehyde tag sequences identified by screening formylglycine generating enzymes in vitro and in vivo. J. Am. Chem. Soc. 130, 12240–12241.10.1021/ja804530wSearch in Google Scholar PubMed PubMed Central

Saito, F., Noda, H., and Bode, J.W. (2015). Critical evaluation and rate constants of chemoselective ligation reactions for stoichiometric conjugations in water. ACS Chem. Biol. 10, 1026–1033.10.1021/cb5006728Search in Google Scholar PubMed

Sletten, E.M. and Bertozzi, C.R. (2009). Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998.10.1002/anie.200900942Search in Google Scholar PubMed PubMed Central

Smith, E.L., Giddens, J.P., Iavarone, A.T., Godula, K., Wang, L.-X., and Bertozzi, C.R. (2014). Chemoenzymatic Fc glycosylation via engineered aldehyde tags. Bioconjugate Chem. 25, 788–795.10.1021/bc500061sSearch in Google Scholar PubMed PubMed Central

Sungkeeree, P., Whangsuk, W., Sallabhan, R., Dubbs, J., Mongkolsuk, S., and Loprasert, S. (2017). Efficient removal of toxic phthalate by immobilized serine-type aldehyde-tagged esterase G. Process Biochem. 63, 60–65.10.1016/j.procbio.2017.09.009Search in Google Scholar

Szameit, C., Miech, C., Balleininger, M., Schmidt, B., von Figura, K., and Dierks, T. (1999). The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella Sulfatase. J. Biol. Chem. 274, 15375–15381.10.1074/jbc.274.22.15375Search in Google Scholar PubMed

Walder, R., LeBlanc, M.-A., Van Patten, W.J., Edwards, D.T., Greenberg, J.A., Adhikari, A., Okoniewski, S.R., Sullan, R.M.A., Rabuka, D., Sousa, M.C., et al. (2017). Rapid characterization of a mechanically labile α-helical protein enabled by efficient site-specific bioconjugation. J. Am. Chem. Soc. 139, 9867–9875.10.1021/jacs.7b02958Search in Google Scholar PubMed PubMed Central

Wu, P., Shui, W., Carlson, B.L., Hu, N., Rabuka, D., Lee, J., and Bertozzi, C.R. (2009). Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc. Natl. Acad. Sci. USA 106, 3000–3005.10.1073/pnas.0807820106Search in Google Scholar PubMed PubMed Central

York, D., Baker, J., Holder, P.G., Jones, L.C., Drake, P.M., Barfield, R.M., Bleck, G.T., and Rabuka, D. (2016). Generating aldehyde-tagged antibodies with high titers and high formylglycine yields by supplementing culture media with copper(II). BMC Biotechnol. 16, 23.10.1186/s12896-016-0254-0Search in Google Scholar PubMed PubMed Central

Received: 2018-08-24
Accepted: 2018-09-28
Published Online: 2018-10-25
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.2.2024 from
Scroll to top button