Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 20, 2019

19F NMR as a versatile tool to study membrane protein structure and dynamics

  • Dania Rose-Sperling , Mai Anh Tran , Luca M. Lauth , Benedikt Goretzki and Ute A. Hellmich ORCID logo EMAIL logo
From the journal Biological Chemistry


To elucidate the structures and dynamics of membrane proteins, highly advanced biophysical methods have been developed that often require significant resources, both for sample preparation and experimental analyses. For very complex systems, such as membrane transporters, ion channels or G-protein coupled receptors (GPCRs), the incorporation of a single reporter at a select site can significantly simplify the observables and the measurement/analysis requirements. Here we present examples using 19F nuclear magnetic resonance (NMR) spectroscopy as a powerful, yet relatively straightforward tool to study (membrane) protein structure, dynamics and ligand interactions. We summarize methods to incorporate 19F labels into proteins and discuss the type of information that can be readily obtained for membrane proteins already from relatively simple NMR spectra with a focus on GPCRs as the membrane protein family most extensively studied by this technique. In the future, these approaches may be of particular interest also for many proteins that undergo complex functional dynamics and/or contain unstructured regions and thus are not amenable to X-ray crystallography or cryo electron microscopy (cryoEM) studies.


We apologize to all authors whose work was not cited due to length restrictions. D.R.-S. acknowledges a PhD fellowship from the Hans-Böckler-Foundation and B.G. a PhD fellowship from the Max Planck Graduate Centre (MPGC) at the Johannes Gutenberg-University Mainz. This work was supported by the Carl-Zeiss foundation, the Fulbright-Cottrell Award funded by the German-American Fulbright Foundation, the Research Corporation for Science Advancement (RCSA) and the Bundesministerium für Forschung und Bildung (BMBF), the Center of Biomolecular Magnetic Resonance (BMRZ) at the Goethe University Frankfurt funded by the state of Hesse and the LOEWE Main Research Focus DynaMem, funded by the state of Hesse within the framework of the Hessian Initiative for Scientific and Economic Excellence (LOEWE).


Arntson, K.E. and Pomerantz, W.C.K. (2016). Protein-observed fluorine NMR. A bioorthogonal approach for small molecule discovery. J. Med. Chem. 59, 5158–5171.10.1021/acs.jmedchem.5b01447Search in Google Scholar PubMed

Cellitti, S.E., Jones, D.H., Lagpacan, L., Hao, X., Zhang, Q., Hu, H., Brittain, S.M., Brinker, A., Caldwell, J., Bursulaya, B., et al. (2008). In vivo incorporation of unnatural amino acids to probe structure, dynamics, and ligand binding in a large protein by nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 130, 9268–9281.10.1021/ja801602qSearch in Google Scholar PubMed PubMed Central

Cheng, Y. (2018). Membrane protein structural biology in the era of single particle cryo-EM. Curr. Opin. Struct. Biol. 52, 58–63.10.1016/ in Google Scholar PubMed PubMed Central

Cournia, Z., Allen, T.W., Andricioaei, I., Antonny, B., Baum, D., Brannigan, G., Buchete, N.-V., Deckman, J.T., Delemotte, L., Del Val, C., et al. (2015). Membrane protein structure, function, and dynamics: a perspective from experiments and theory. J. Membr. Biol. 248, 611–640.10.1007/s00232-015-9802-0Search in Google Scholar PubMed PubMed Central

Crowley, P.B., Kyne, C., and Monteith, W.B. (2012). Simple and inexpensive incorporation of 19F-tryptophan for protein NMR spectroscopy. Chem. Commun. 48, 10681–10683.10.1039/c2cc35347dSearch in Google Scholar PubMed

Czogalla, A., Pieciul, A., Jezierski, A., and Sikorski, A.F. (2007). Attaching a spin to a protein – site-directed spin labeling in structural biology. Acta Biochim. Pol. 54, 235–244.10.18388/abp.2007_3243Search in Google Scholar

Dahanayake, J.N., Kasireddy, C., Ellis, J.M., Hildebrandt, D., Hull, O.A., Karnes, J.P., Morlan, D., and Mitchell-Koch, K.R. (2017). Evaluating electronic structure methods for accurate calculation of 19 F chemical shifts in fluorinated amino acids. J. Comput. Chem. 38, 2605–2617.10.1002/jcc.24919Search in Google Scholar PubMed PubMed Central

Dalvit, C., Ko, S.Y., and Vulpetti, A. (2013). Application of the rule of shielding in the design of novel fluorinated structural motifs and peptidomimetics. J. Fluorine Chem. 152, 129–135.10.1016/j.jfluchem.2013.01.017Search in Google Scholar

Danielson, M.A. and Falke, J.J. (1996). Use of 19F NMR to probe protein structure and conformational changes. Annu. Rev. Biophys. Biomol. Struct. 25, 163–195.10.1146/ in Google Scholar PubMed PubMed Central

Didenko, T., Liu, J.J., Horst, R., Stevens, R.C., and Wüthrich, K. (2013). Fluorine-19 NMR of integral membrane proteins illustrated with studies of GPCRs. Curr. Opin. Struct. Biol. 23, 740–747.10.1016/ in Google Scholar PubMed PubMed Central

de Dios, A.C., Pearson, J.G., and Oldfield, E. (1993). Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. Science 260, 1491–1496.10.1126/science.8502992Search in Google Scholar

Drögemüller, J., Strauß, M., Schweimer, K., Jurk, M., Rösch, P., and Knauer, S.H. (2015). Determination of RNA polymerase binding surfaces of transcription factors by NMR spectroscopy. Sci. Rep. 5, 16428.10.1038/srep16428Search in Google Scholar

Elkins, M.R., Williams, J.K., Gelenter, M.D., Dai, P., Kwon, B., Sergeyev, I.V., Pentelute, B.L., and Hong, M. (2017). Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR. Proc. Natl. Acad. Sci. USA 114, 12946–12951.10.1073/pnas.1715127114Search in Google Scholar

Fielding, L. (2003). NMR methods for the determination of protein-ligand dissociation constants. Curr. Top. Med. Chem. 3, 39–53.10.2174/1568026033392705Search in Google Scholar

Goretzki, B., Glogowski, N.A., Diehl, E., Duchardt-Ferner, E., Hacker, C., Gaudet, R., and Hellmich, U.A. (2018). Structural basis of TRPV4 N-terminus interaction with Syndapin/PACSIN1-3 and PIP2. Structure 26, 1583–1593.e5.10.1016/j.str.2018.08.002Search in Google Scholar

Heintz, D., Kany, H., and Kalbitzer, H.R. (1996). Mobility of the N-terminal segment of rabbit skeletal muscle F-actin detected by 1H and 19F nuclear magnetic resonance spectroscopy. Biochemistry 35, 12686–12693.10.1021/bi961159kSearch in Google Scholar

Hellmich, U.A. and Gaudet, R. (2014). Structural biology of TRP channels. Handb. Exp. Pharmacol. 223, 963–990.10.1007/978-3-319-05161-1_10Search in Google Scholar

Hellmich, U.A. and Glaubitz, C. (2009). NMR and EPR studies of membrane transporters. Biol. Chem. 390, 815–834.10.1515/BC.2009.084Search in Google Scholar

Hellmich, U.A., Pfleger, N., and Glaubitz, C. (2009). F-MAS NMR on proteorhodopsin: enhanced protocol for site-specific labeling for general application to membrane proteins. Photochem. Photobiol. 85, 535–539.10.1111/j.1751-1097.2008.00498.xSearch in Google Scholar

Higashijima, T., Graziano, M.P., Suga, H., Kainosho, M., and Gilman, A.G. (1991). 19F and 31P NMR spectroscopy of G protein alpha subunits. Mechanism of activation by Al3+ and F-. J. Biochem. 266, 3396–3401.10.1016/S0021-9258(19)67806-3Search in Google Scholar

Ho, C., Pratt, E.A., and Rule, G.S. (1989). Membrane-bound d-lactate dehydrogenase of Escherichia coli: a model for protein interactions in membranes. Biochim. Biophys. Acta 988, 173–184.10.1016/0304-4157(89)90018-XSearch in Google Scholar

Hong, M., Zhang, Y., and Hu, F. (2012). Membrane protein structure and dynamics from NMR spectroscopy. Annu. Rev. Phys. Chem. 63, 1–24.10.1146/annurev-physchem-032511-143731Search in Google Scholar PubMed PubMed Central

Hopkins, A.L. and Groom, C.R. (2002). The druggable genome. Nat. Rev. Drug. Discov. 1, 727–730.10.1038/nrd892Search in Google Scholar PubMed

Horst, R., Liu, J.J., Stevens, R.C., and Wüthrich, K. (2013). β₂-adrenergic receptor activation by agonists studied with 1⁹F NMR spectroscopy. Angew. Chem. Int. Ed. 52, 10762–10765.10.1002/anie.201305286Search in Google Scholar PubMed PubMed Central

Husada, F., Bountra, K., Tassis, K., de Boer, M., Romano, M., Rebuffat, S., Beis, K., and Cordes, T. (2018). Conformational dynamics of the ABC transporter McjD seen by single-molecule FRET. EMBO J. 37.10.15252/embj.2018100056Search in Google Scholar PubMed PubMed Central

Imiołek, M., Karunanithy, G., Ng, W.-L., Baldwin, A.J., Gouverneur, V., and Davis, B.G. (2018). Selective radical trifluoromethylation of native residues in proteins. J. Am. Chem. Soc. 140, 1568–1571.10.1021/jacs.7b10230Search in Google Scholar PubMed PubMed Central

Isley, W.C., Urick, A.K., Pomerantz, W.C.K., and Cramer, C.J. (2016). Prediction of 19F NMR chemical shifts in labeled proteins: computational protocol and case study. Mol. Pharm. 13, 2376–2386.10.1021/acs.molpharmaceut.6b00137Search in Google Scholar PubMed

Jackson, J.C., Hammill, J.T., and Mehl, R.A. (2007). Site-specific incorporation of a (19)F-amino acid into proteins as an NMR probe for characterizing protein structure and reactivity. J. Am. Chem. Soc. 129, 1160–1166.10.1021/ja064661tSearch in Google Scholar PubMed

Kalbitzer, H.R., Rohr, G., Nowak, E., Goody, R.S., Kuhn, W., and Zimmermann, H. (1992). A new high sensitivity 19F probe for labeling cysteine groups of proteins. NMR Biomed. 5, 347–350.10.1002/nbm.1940050605Search in Google Scholar PubMed

Kim, T.H., Chung, K.Y., Manglik, A., Hansen, A.L., Dror, R.O., Mildorf, T.J., Shaw, D.E., Kobilka, B.K., and Prosser, R.S. (2013). The role of ligands on the equilibria between functional states of a G protein-coupled receptor. J. Am. Chem. Soc. 135, 9465–9474.10.1021/ja404305kSearch in Google Scholar PubMed PubMed Central

Kimber, B.J., Feeney, J., Roberts, G.C., Birdsall, B., Griffiths, D.V., Burgen, A.S., and Sykes, B.D. (1978). Proximity of two tryptophan residues in dihydrofolate reductase determined by 19f NMR. Nature 271, 184–185.10.1038/271184a0Search in Google Scholar PubMed

Kinde, M.N., Bondarenko, V., Granata, D., Bu, W., Grasty, K.C., Loll, P.J., Carnevale, V., Klein, M.L., Eckenhoff, R.G., Tang, P., et al. (2016). Fluorine-19 NMR and computational quantification of isoflurane binding to the voltage-gated sodium channel NaChBac. Proc. Natl. Acad. Sci. USA 113, 13762–13767.10.1073/pnas.1609939113Search in Google Scholar PubMed PubMed Central

Kitevski-LeBlanc, J.L. and Prosser, R.S. (2012). Current applications of 19F NMR to studies of protein structure and dynamics. Prog. Nucl. Magn. Reson. Spectrosc. 62, 1–33.10.1016/j.pnmrs.2011.06.003Search in Google Scholar PubMed

Klein-Seetharaman, J., Getmanova, E.V., Loewen, M.C., Reeves, P.J., and Khorana, H.G. (1999). NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution 19F NMR. Proc. Natl. Acad. Sci. USA 96, 13744–13749.10.1073/pnas.96.24.13744Search in Google Scholar PubMed PubMed Central

Kühlbrandt, W. (2014). Biochemistry. The resolution revolution. Science 343, 1443–1444.10.1126/science.1251652Search in Google Scholar PubMed

Li, C., Wang, G.-F., Wang, Y., Creager-Allen, R., Lutz, E.A., Scronce, H., Slade, K.M., Ruf, R.A.S., Mehl, R.A., and Pielak, G.J. (2010). Protein 19F NMR in Escherichia coli. J. Am. Chem. Soc. 132, 321–327.10.1021/ja907966nSearch in Google Scholar PubMed PubMed Central

Lian, C., Le, H., Montez, B., Patterson, J., Harrell, S., Laws, D., Matsumura, I., Pearson, J., and Oldfield, E. (1994). Fluorine-19 nuclear magnetic resonance spectroscopic study of fluorophenylalanine- and fluorotryptophan-labeled avian egg white lysozymes. Biochemistry 33, 5238–5245.10.1021/bi00183a029Search in Google Scholar PubMed

Liu, J.J., Horst, R., Katritch, V., Stevens, R.C., and Wüthrich, K. (2012). Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335, 1106–1110.10.1142/9789811235795_0022Search in Google Scholar

Loewen, M.C., Klein-Seetharaman, J., Getmanova, E.V., Reeves, P.J., Schwalbe, H., and Khorana, H.G. (2001). Solution 19F nuclear Overhauser effects in structural studies of the cytoplasmic domain of mammalian rhodopsin. Proc. Natl. Acad. Sci. USA 98, 4888–4892.10.1073/pnas.051633098Search in Google Scholar PubMed PubMed Central

Luchette, P.A., Prosser, R.S., and Sanders, C.R. (2002). Oxygen as a paramagnetic probe of membrane protein structure by cysteine mutagenesis and 19F NMR spectroscopy. J. Am. Chem. Soc. 124, 1778–1781.10.1021/ja016748eSearch in Google Scholar PubMed

Manglik, A., Kim, T.H., Masureel, M., Altenbach, C., Yang, Z., Hilger, D., Lerch, M.T., Kobilka, T.S., Thian, F.S., Hubbell, W.L., et al. (2015). Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161, 1101–1111.10.1016/j.cell.2015.08.045Search in Google Scholar

Meiboom, S. and Gill, D. (1958). Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691.10.1063/1.1716296Search in Google Scholar

Minnihan, E.C., Young, D.D., Schultz, P.G., and Stubbe, J. (2011). Incorporation of fluorotyrosines into ribonucleotide reductase using an evolved, polyspecific aminoacyl-tRNA synthetase. J. Am. Chem. Soc. 133, 15942–15945.10.1021/ja207719fSearch in Google Scholar PubMed PubMed Central

Mörs, K., Hellmich, U.A., Basting, D., Marchand, P., Wurm, J.P., Haase, W., and Glaubitz, C. (2013). A lipid-dependent link between activity and oligomerization state of the M. tuberculosis SMR protein TBsmr. Biochim. Biophys. Acta 1828, 561–567.10.1016/j.bbamem.2012.10.020Search in Google Scholar PubMed

Murata, K. and Wolf, M. (2018). Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochim. Biophys. Acta 1862, 324–334.10.1016/j.bbagen.2017.07.020Search in Google Scholar PubMed

Nogales, E. and Scheres, S.H.W. (2015). Cryo-EM: a unique tool for the visualization of macromolecular complexity. Mol. Cell 58, 677–689.10.1016/j.molcel.2015.02.019Search in Google Scholar PubMed PubMed Central

O’Hagan, D. and Rzepa, H.S. (1997). Some influences of fluorine in bioorganic chemistry. Chem. Commun., 645–652.10.1039/a604140jSearch in Google Scholar

Peng, Y., Cao, S., Kiselar, J., Xiao, X., Du, Z., Hsien, A., Ko, S., Chen, Y., Agrawal, P., Zheng, W., et al. (2019). A metastable contact and structural disorder in the estrogen receptor transactivation domain. Structure 27, 229–240.10.1016/j.str.2018.10.026Search in Google Scholar PubMed PubMed Central

Pomerantz, W.C., Wang, N., Lipinski, A.K., Wang, R., Cierpicki, T., and Mapp, A.K. (2012). Profiling the dynamic interfaces of fluorinated transcription complexes for ligand discovery and characterization. ACS Chem. Biol. 7, 1345–1350.10.1021/cb3002733Search in Google Scholar PubMed PubMed Central

Prosser, R.S., Luchette, P.A., and Westerman, P.W. (2000). Using O2 to probe membrane immersion depth by 19F NMR. Proc. Natl. Acad. Sci. USA 97, 9967–9971.10.1073/pnas.170295297Search in Google Scholar PubMed PubMed Central

Religa, T.L., Ruschak, A.M., Rosenzweig, R., and Kay, L.E. (2011). Site-directed methyl group labeling as an NMR probe of structure and dynamics in supramolecular protein systems: applications to the proteasome and to the ClpP protease. J. Am. Chem. Soc. 133, 9063–9068.10.1021/ja202259aSearch in Google Scholar PubMed

Robertson, D.E., Kroon, P.A., and Ho, C. (1977). Nuclear magnetic resonance and fluorescence studies of substrate-induced conformational changes of histidine-binding protein J of Salmonella typhimurium. Biochemistry 16, 1443–1451.10.1021/bi00626a032Search in Google Scholar PubMed

Rosenau, C.P., Jelier, B.J., Gossert, A.D., and Togni, A. (2018). Exposing the Origins of Irreproducibility in Fluorine NMR Spectroscopy. Angew. Chem. Int. Ed. 57, 9528–9533.10.1002/anie.201802620Search in Google Scholar PubMed

Salgado, J., Grage, S.L., Kondejewski, L.H., Hodges, R.S., McElhaney, R.N., and Ulrich, A.S. (2001). Membrane-bound structure and alignment of the antimicrobial b-sheet peptide gramicidin S derived from angular and distance constraints by solid state 19F-NMR. J. Biomol. NMR 21, 191–208.10.1023/A:1012946026231Search in Google Scholar

Schirmeister, T., Kesselring, J., Jung, S., Schneider, T.H., Weickert, A., Becker, J., Lee, W., Bamberger, D., Wich, P.R., Distler, U., et al. (2016). Quantum chemical-based protocol for the rational design of covalent inhibitors. J. Am. Chem. Soc. 138, 8332–8335.10.1021/jacs.6b03052Search in Google Scholar PubMed

Seeger, M.A. (2018). Membrane transporter research in times of countless structures. Biochim. Biophys. Acta Biomembr. 1860, 804–808.10.1016/j.bbamem.2017.08.009Search in Google Scholar PubMed

Shi, P., Li, D., Chen, H., Xiong, Y., Wang, Y., and Tian, C. (2012). In situ 19F NMR studies of an E. coli membrane protein. Protein Sci. 21, 596–600.10.1002/pro.2040Search in Google Scholar PubMed PubMed Central

Slotboom, D.J., Duurkens, R.H., Olieman, K., and Erkens, G.B. (2008). Static light scattering to characterize membrane proteins in detergent solution. Methods 46, 73–82.10.1016/j.ymeth.2008.06.012Search in Google Scholar PubMed

Spotswood, T.M., Evans, J.M., and Richards, J.H. (1967). Enzyme-substrate interaction by nuclear magnetic resonance. J. Am. Chem. Soc. 89, 5052–5054.10.1021/ja00995a047Search in Google Scholar PubMed

Sprang, S.R. (2016). Invited review: Activation of G proteins by GTP and the mechanism of Gα-catalyzed GTP hydrolysis. Biopolymers 105, 449–462.10.1002/bip.22836Search in Google Scholar PubMed PubMed Central

Steinrücken, H.C. and Amrhein, N. (1980). The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 94, 1207–1212.10.1016/0006-291X(80)90547-1Search in Google Scholar

Sušac, L., O’Connor, C., Stevens, R.C., and Wüthrich, K. (2015). In-membrane chemical modification (IMCM) for site-specific chromophore labeling of GPCRs. Angew. Chem. Int. Ed. 54, 15246–15249.10.1002/anie.201508506Search in Google Scholar

Tugarinov, V. and Kay, L.E. (2003). Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J. Am. Chem. Soc. 125, 13868–13878.10.1021/ja030345sSearch in Google Scholar

Uversky, V.N. (2018). Intrinsic disorder, protein-protein interactions, and disease. Adv. Protein. Chem. Struct. Biol. 110, 85–121.10.1016/bs.apcsb.2017.06.005Search in Google Scholar

von Heijne, G. (2007). The membrane protein universe: what’s out there and why bother? J. Intern. Med. 261, 543–557.10.1111/j.1365-2796.2007.01792.xSearch in Google Scholar

Wagner, A., Le, T.A., Brennich, M., Klein, P., Bader, N., Diehl, E., Paszek, D., Weickhmann, A.K., Dirdjaja, N., Krauth-Siegel, R.L., et al. (2019). Inhibitor-induced dimerization of an essential oxidoreductase from African trypanosomes. Angew. Chem. Int. Ed. 58, 3640–3644.10.1002/anie.201810470Search in Google Scholar

Wang, L., Brock, A., Herberich, B., and Schultz, P.G. (2001). Expanding the genetic code of Escherichia coli. Science 292, 498–500.10.1126/science.1060077Search in Google Scholar

Williams, S.P., Haggie, P.M., and Brindle, K.M. (1997). 19F NMR measurements of the rotational mobility of proteins in vivo. Biophys. J. 72, 490–498.10.1016/S0006-3495(97)78690-9Search in Google Scholar

Ye, L., van Eps, N., Zimmer, M., Ernst, O.P., and Prosser, R.S. (2016). Activation of the A2A adenosine G-protein-coupled receptor by conformational selection. Nature 533, 265–268.10.1038/nature17668Search in Google Scholar PubMed

Ye, L., Neale, C., Sljoka, A., Lyda, B., Pichugin, D., Tsuchimura, N., Larda, S.T., Pomès, R., García, A.E., Ernst, O.P., et al. (2018). Mechanistic insights into allosteric regulation of the A2A adenosine G protein-coupled receptor by physiological cations. Nat. Comun. 9, 1372.10.1038/s41467-018-03314-9Search in Google Scholar PubMed PubMed Central

Yin, H. and Flynn, A.D. (2016). Drugging membrane protein interactions. Annu. Rev. Biomed. Eng. 18, 51–76.10.1146/annurev-bioeng-092115-025322Search in Google Scholar PubMed PubMed Central

Received: 2018-12-20
Accepted: 2019-04-17
Published Online: 2019-04-20
Published in Print: 2019-10-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2023 from
Scroll to top button