Abstract
Platelets have attracted substantial attention in the current decade owing to their unexpected pleiotropic properties and conflicted functions. In fact, platelets participate in both health (hemostasis) and disease (thrombotic diseases). Much of the plasticity of platelets comes from the fact that platelets are the reservoir and the ‘natural factory’ of growth factors (GFs), with pivotal functions in wound repair and tissue regeneration. By combining the platelets’ plasticity and biotechnological processes, PlateInnove Biotechnology optimized the production of GFs in nanoparticle biointerfacing by platelet content, which opens an avenue of possibilities.
Funding source: São Paulo Research Foundation
Award Identifier / Grant number: 2016/14459-3
Award Identifier / Grant number: 2017/26317-1
Funding statement: The authors would like to thank the support of Hemocentro de Campinas/UNICAMP, Colsan (Associação Beneficente de Coleta de Sangue), Hemocentro de Ribeirão Preto/USP, and the São Paulo Research Foundation (FAPESP) under grant 2016/14459-3 and 2017/26317-1.
Conflict of interest statement: Sheila Siqueira Andrade is the founder and Executive Director of PlateInnove Biotechnology, São Paulo, Brazil.
References
Andrade, S.S., Sumikawa, J.T., Castro, E.D., Batista, F.P., Paredes-Gamero, E., Oliveira, L.C., Guerra, I.M., Peres, G.B., Cavalheiro, R.P., Juliano, L., et al. (2017). Interface between breast cancer cells and the tumor microenvironment using platelet-rich plasma to promote tumor angiogenesis – influence of platelets and fibrin bundles on the behavior of breast tumor cells. Oncotarget 8, 16851–16874.10.18632/oncotarget.15170Search in Google Scholar PubMed PubMed Central
Anitua, E., Sanchez, M., Nurden, A.T., Nurden, P., Orive, G., and Andia, I. (2006). New insights into and novel applications for platelet-rich fibrin therapies. Trends Biotechnol. 24, 227–234.10.1016/j.tibtech.2006.02.010Search in Google Scholar PubMed
Azuma, H., Hirayama, J., Akino, M., and Ikeda, H. (2011). Platelet additive solution – electrolytes. Transfusion Apher. Sci. 44, 277–281.10.1016/j.transci.2011.03.002Search in Google Scholar PubMed
Best, M.G., Wesseling, P., and Wurdinger, T. (2008). Tumor-educated platelets as a noninvasive biomarker source for cancer detection and progression monitoring. Cancer Res. 78, 3407–3412.10.1158/0008-5472.CAN-18-0887Search in Google Scholar PubMed
Bray, P.F., McKenzie, S.E., Edelstein, L.C., Nagalla, S., Delgrosso, K., Ertel, A., Kupper, J., Jing, Y., Londin, E., Loher, P., et al. (2013). The complex transcriptional landscape of the anucleate human platelet. BMC Genomics 14, 1.10.1186/1471-2164-14-1Search in Google Scholar PubMed PubMed Central
Brewer, D.B. (2006). Max Schultze (1865), G. Bizzozero (1882) and the discovery of the platelet. Br. J. Haematol. 133, 251e258.10.1111/j.1365-2141.2006.06036.xSearch in Google Scholar PubMed
Brogren, H., Karlsson, L., Andersson, M., Wang, L., Erlinge, D., and Jern, S. (2004). Platelets synthesize large amounts of active plasminogen activator inhibitor 1. Blood 104, 3943–3948.10.1182/blood-2004-04-1439Search in Google Scholar PubMed
Denis, M.M., Tolley, N.D., Bunting, M., Schwertz, H., Jiang, H., Lindemann, S., Yost, C.C., Rubner, F.J., Albertine, K.H., Swoboda, K.J., et al. (2005). Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 122, 379–391.10.1016/j.cell.2005.06.015Search in Google Scholar PubMed PubMed Central
Evangelista, V., Manarini, S., Di Santo, A., Capone, M.L., Ricciotti, E., Di Francesco, L., Tacconelli, S., Sacchetti, A., D’Angelo, S., Scilimati, A., et al. (2006). De novo synthesis of cyclooxygenase-1 counteracts the suppression of platelet thromboxane biosynthesis by aspirin. Circ. Res. 98, 593–595.10.1161/01.RES.0000214553.37930.3eSearch in Google Scholar PubMed
Lefrançais, E., Ortiz-Muñoz, G., Caudrillier, A., Mallavia, B., Liu, F., Sayah, D.M., Thornton, E.E., Headley, M.B., David, T., Coughlin, S.R., et al. (2017). The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 544, 105–109.10.1038/nature21706Search in Google Scholar PubMed PubMed Central
Li, J., van der Wal, D.E., Zhu, G., Xu, M., Yougbare, I., Ma, L., Vadasz, B., Carrim, N., Grozovsky, R., Ruan, M., et al. (2015). Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia. Nat. Commun. 6, 7737.10.1038/ncomms8737Search in Google Scholar PubMed PubMed Central
Nurden, A.T., Nurden, P., Sanchez, M., Andia, I., and Anitua, E. (2008). Platelets and wound healing. Front. Biosci. 13, 3525–3548.10.2741/2947Search in Google Scholar PubMed
Özsan, G.H., Pişkin, Ö., Demirkan, F., Ates, H., Özcan, M.A., and Ündar, B. (2001). Effect of sialic acid on platelet cryopreservation. Turk. J. Haematol. 18, 251–257.Search in Google Scholar
Panes, O., Matus, V., Sáez, C.G., Quiroga, T., Pereira, J., and Mezzano, D. (2007). Human platelets synthesize and express functional tissue factor. Blood 109, 5242–5250.10.1182/blood-2006-06-030619Search in Google Scholar PubMed
Provost, P. (2017). The clinical significance of platelet microparticle-associated microRNAs. Clin. Chem. Lab. Med. 55, 657–666.10.1515/cclm-2016-0895Search in Google Scholar PubMed
Shih, D.T. and Burnouf, T. (2015). Preparation, quality criteria, and properties of human blood platelet lysate supplements for ex vivo stem cell expansion. Nat. Biotechnol. 32, 199–211.10.1016/j.nbt.2014.06.001Search in Google Scholar PubMed PubMed Central
Spees, J.L., Gregory, C.A., Singh, H., Tucker, H.A., Peister, A., Lynch, P.J., Hsu, S.C., Smith, J., and Prockop, D.J. (2004). Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol. Ther. 9, 747–756.10.1016/j.ymthe.2004.02.012Search in Google Scholar PubMed
Thon, J.N. and Italiano, J.E. (2012). Platelets: production, morphology and ultrastructure. Handb. Exp. Pharmacol. 210, 3–22.10.1007/978-3-642-29423-5_1Search in Google Scholar PubMed
van der Meijden, P.E.J. and Heemskerk, J.W.M. (2019). Platelet biology and functions: new concepts and clinical perspectives. Nat. Rev. Cardiol. 16, 166–179.10.1038/s41569-018-0110-0Search in Google Scholar PubMed
van der Wal, D., Zhu, G., Li, J., Vadasz, B., Issaka, Y., Lang, S., Freedman, J., and Ni, H. (2012). Desialylation: a novel platelet clearance mechanism and a potential new therapeutic target in anti-GPIb antibody mediated thrombocytopenia. Blood 120, 265.10.1182/blood.V120.21.265.265Search in Google Scholar
von Hundelshausen, P., Koenen, R.R., Sack, M., Mause, S.F., Adriaens, W., Proudfoot, A.E., Hackeng, T.M., and Weber, C. (2005). Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood 105, 924–930.10.1182/blood-2004-06-2475Search in Google Scholar PubMed
Weyrich, A.S., Denis, M.M., Schwertz, H., Tolley, N.D., Foulks, J., Spencer, E., Kraiss, L.W., Albertine, K.H., McIntyre, T.M., and Zimmerman, G.A. (2007). mTOR-dependent synthesis of Bcl-3 controls the retraction of fibrin clots by activated human platelets. Blood 109, 1975–1983.10.1182/blood-2006-08-042192Search in Google Scholar
Weyrich, A.S., Schwertz, H., Kraiss, L.W., and Zimmerman, G.A. (2009). Protein synthesis by platelets: historical and new perspectives. J. Thromb. Haemost. 7, 241–246.10.1111/j.1538-7836.2008.03211.xSearch in Google Scholar
World Health Organization (2011). Blood Safety – key global fact and figures in 2011.Search in Google Scholar
Xu, X.R., Gallant, R.C., and Ni, H. (2016a). Platelets, immune-mediated thrombocytopenias, and fetal hemorrhage. Thromb. Res. 141(Suppl. 2), S76–S79.10.1016/S0049-3848(16)30372-3Search in Google Scholar
Xu, X.R., Zhang, D., Oswald, B.E., Carrim, N., Wang, X., Hou, Y., Zhang, Q., Lavalle, C., McKeown, T., Marshall, A.H., et al. (2016b). Platelets are versatile cells: new discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit. Rev. Clin. Lab. Sci. 6, 409–430.10.1080/10408363.2016.1200008Search in Google Scholar PubMed
Yang, H., Lang, S., Zhai, Z., Li, L., Kahr, W.H., Chen, P., Brkić, J., Spring, C.M., and Flick, M.J. (2009). Fibrinogen is required for maintenance of platelet intracellular and cell-surface P-selectin expression. Blood 114, 425–436.10.1182/blood-2008-03-145821Search in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2019-0342).
©2020 Walter de Gruyter GmbH, Berlin/Boston