Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 17, 2020

A progesterone receptor membrane component 1 antagonist induces large vesicles independent of progesterone receptor membrane component 1 expression

  • Lihua Wang-Eckhardt and Matthias Eckhardt ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

Treatment of different cell lines with progesterone receptor membrane component 1 (PGRMC1) antagonist AG-205 rapidly induces the formation of large vesicular structures that likely represent endosomes. Crispr/Cas9 was used to target the PGRMC1 and progesterone receptor membrane component 2 (PGRMC2) genes in CHO-K1 and HeLa. Unexpectedly, deficiency in one of these or both genes did not inhibit the formation of enlarged vesicles by AG-205, demonstrating additional molecular target(s) of this compound besides PGRMC1. Thus, AG-205 cannot be regarded as a PGRMC1-specific antagonist. However, provided that its currently unknown target(s) will be identified, AG-205 may serve as a new reagent to study endosomal trafficking.

Acknowledgements

We thank Ivonne Becker for expert technical assistance and Simone Diestel for kindly providing several plasmids used in this study. This study was supported by grants from the Deutsche Forschungsgemeinschaft to M. E.

  1. Funding: Deutsche Forschungsgemeinschaft, Funder Id: http://dx.doi.org/10.13039/501100001659, Grant Number: Sonderforschungsbereich SFB645 Project B5.

References

Ahmed, I.S., Rohe, H.J., Twist, K.E., and Craven, R.J. (2010a). Pgrmc1 (progesterone receptor membrane component 1) associates with epidermal growth factor receptor and regulates erlotinib sensitivity. J. Biol. Chem. 285, 24775–24782.10.1074/jbc.M110.134585Search in Google Scholar PubMed PubMed Central

Ahmed, I.S., Rohe, H.J., Twist, K.E., Mattingly, M.N., and Craven, R.J. (2010b). Progesterone receptor membrane component 1 (Pgrmc1): a heme-1 domain protein that promotes tumorigenesis and is inhibited by a small molecule. J. Pharmacol. Exp. Ther. 333, 564–573.10.1124/jpet.109.164210Search in Google Scholar PubMed

Bruce, A. and Rybak, A.P. (2014). CYB5D2 requires heme-binding to regulate HeLa cell growth and confer survival from chemotherapeutic agents. PLoS One 22, e86435.10.1371/journal.pone.0086435Search in Google Scholar PubMed PubMed Central

Cahill, M.A. (2017). The evolutionary appearance of signaling motifs in PGRMC1. Biosci. Trends 11, 179–192.10.5582/bst.2017.01009Search in Google Scholar PubMed

Cahill, M.A. and Medlock, A.E. (2017). Thoughts on interactions between PGRMC1 and diverse attested and potential hydrophobic ligands. J. Steroid Biochem. Mol. Biol. 171, 11–33.10.1016/j.jsbmb.2016.12.020Search in Google Scholar PubMed

Chambard, J.C. and Pognonec, P. (1998). A reliable way of obtaining stable inducible clones. Nucleic Acids Res. 26, 3443–3444.10.1093/nar/26.14.3443Search in Google Scholar PubMed PubMed Central

Galmozzi, A., Kok, B.P., Kim, A.S., Montenegro-Burke, J.R., Lee, J.Y., Spreafico, R., Mosure, S., Albert, V., Cintron-Colon, R., Godio, C., et al. (2019). PGRMC2 is an intracellular haem chaperone critical for adipocyte function. Nature 576, 138–142.10.1038/s41586-019-1774-2Search in Google Scholar PubMed PubMed Central

Hampton, K.K., Anderson, K., Frazier, H., Thibault, O., and Craven, R.J. (2018). Insulin receptor plasma membrane levels increased by the progesterone receptor membrane component 1. Mol. Pharmacol. 94, 665–673.10.1124/mol.117.110510Search in Google Scholar PubMed PubMed Central

Hardt, R., Winter, D., Gieselmann, V., and Eckhardt, M. (2018). Identification of progesterone receptor membrane component-1 as an interaction partner and possible regulator of fatty acid 2-hydroxylase. Biochem. J. 475, 853–871.10.1042/BCJ20170963Search in Google Scholar PubMed

Heigwer, F., Kerr, G., and Boutros, M. (2014). E-CRISP: fast CRISPR target site identification. Nat. Methods 11, 122–123.10.1038/nmeth.2812Search in Google Scholar PubMed

Hug, N., Longman, D., and Cáceres, J.F. (2016). Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res. 44, 1483–1495.10.1093/nar/gkw010Search in Google Scholar

Hughes, A.L., Powell, D.W., Bard, M., Eckstein, J., Barbuch, R., Link, A.J., and Espenshade, P.J. (2007). Dap1/PGRMC1 binds and regulates cytochrome P450 enzymes. Cell Metab. 5, 143–149.10.1016/j.cmet.2006.12.009Search in Google Scholar

Kabe, Y., Nakane, T., Koike, I., Yamamoto, T., Sugiura, Y., Harada, E., Sugase, K., Shimamura, T., Ohmura, M., Muraoka, K., et al. (2016). Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat. Commun. 7, 11030.10.1038/ncomms11030Search in Google Scholar

Kaluka, D., Batabyal, D., Chiang, B.Y., Poulos, T.L., and Yeh, S.R. (2015). Spectroscopic and mutagenesis studies of human PGRMC1. Biochemistry 54, 1638–1647.10.1021/bi501177eSearch in Google Scholar

Kimura, I., Yoshioka, M., Konishi, M., Miyake, A., and Itoh, N. (2005). Neudesin, a novel secreted protein with a unique primary structure and neurotrophic activity. J. Neurosci. Res. 79, 287–294.10.1002/jnr.20356Search in Google Scholar

Kimura, I., Nakayama, Y., Konishi, M., Kobayashi, T., Mori, M., Ito, M., Hirasawa, A., Tsujimoto, G., Ohta, M., Itoh, N., et al. (2010). Neuferricin, a novel extracellular heme-binding protein, promotes neurogenesis. J. Neurochem. 112, 1156–1167.10.1111/j.1471-4159.2009.06522.xSearch in Google Scholar

Krebs, C.J., Jarvis, E.D., Chan, J., Lydon, J.P., Ogawa, S., and Pfaff, D.W. (2000). A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesterone in brain regions involved in female reproductive behaviors. Proc. Natl. Acad. Sci. U.S.A. 97, 12816–12821.10.1073/pnas.97.23.12816Search in Google Scholar

Nölte, I., Jeckel, D., Wieland, F.T., and Sohn, K. (2000). Localization and topology of ratp28, a member of a novel family of putative steroid-binding proteins. Biochim. Biophys. Acta 1543, 123–130.10.1016/S0167-4838(00)00188-6Search in Google Scholar

Petersen, S.L., Intlekofer, K.A., Moura-Conlon, P.J., Brewer, D.N., del Pino Sans, J., and Lopez, J.A. (2013). Nonclassical progesterone signalling molecules in the nervous system. J. Neuroendocrinol. 25, 991–1001.10.1111/jne.12060Search in Google Scholar PubMed

Piel, R.B., Shiferaw, M.T., Vashisht, A.A., Marcero, J.R., Praissman, J.L., Phillips, J.D., Wohlschlegel, J.A., and Medlock, A.E. (2016). A novel role for progesterone receptor membrane component 1 (PGRMC1): a partner and regulator of ferrochelatase. Biochemistry 55, 5204–5217.10.1021/acs.biochem.6b00756Search in Google Scholar PubMed PubMed Central

Raiborg, C., Wenzel, E.M., and Stenmark, H. (2015). ER-endosome contact sites: molecular compositions and functions. EMBO J. 34, 1848–1858.10.15252/embj.201591481Search in Google Scholar PubMed PubMed Central

Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., and Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308.10.1038/nprot.2013.143Search in Google Scholar PubMed PubMed Central

Ryu, C.S., Klein, K., and Zanger, U.M. (2017). Membrane associated progesterone receptors: promiscuous proteins with pleiotropic functions - focus on interactions with cytochromes P450. Front. Pharmacol. 8, 159.10.3389/fphar.2017.00159Search in Google Scholar PubMed PubMed Central

Suchanek, M., Radzikowska, A., and Thiele, C. (2005). Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells. Nat. Methods 2, 261–267.10.1038/nmeth752Search in Google Scholar PubMed

Will, E.A., Liu, X., and Peluso, J.J. (2017). AG 205, a progesterone receptor membrane component 1 antagonist, ablates progesterone’s ability to block oxidative stress-induced apoptosis of human granulosa/luteal cells. Biol. Reprod. 96, 843–854.10.1093/biolre/iox013Search in Google Scholar PubMed

Yoshitani, N., Satou, K., Saito, K., Suzuki, S., Hatanaka, H., Seki, M., Shinozaki, K., Hirota, H., and Yokoyama, S. (2005). A structure-based strategy for discovery of small ligands binding to functionally unknown proteins: combination of in silico screening and surface plasmon resonance measurements. Proteomics 5, 1472–1480.10.1002/pmic.200401032Search in Google Scholar PubMed

Zhang, M., Robitaille, M., Showalter, A.D., Huang, X., Liu, Y., Bhattacharjee, A., Willard, F.S., Han, J., Froese, S., Wei, L., et al. (2014). Progesterone receptor membrane component 1 is a functional part of the glucagon-like peptide-1 (GLP-1) receptor complex in pancreatic β cells. Mol. Cell. Proteomics 13, 3049–3062.10.1074/mcp.M114.040196Search in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2019-0417).


Received: 2019-11-15
Accepted: 2020-03-09
Published Online: 2020-04-17
Published in Print: 2020-08-27

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2019-0417/html
Scroll to top button