Abstract
Deoxyribozymes (DNAzymes) are single-stranded DNA molecules that catalyze a broad range of chemical reactions. The 10–23 DNAzyme catalyzes the cleavage of RNA strands and can be designed to cleave essentially any target RNA, which makes it particularly interesting for therapeutic and biosensing applications. The activity of this DNAzyme in vitro is considerably higher than in cells, which was suggested to be a result of the low intracellular concentration of bioavailable divalent cations. While the interaction of the 10–23 DNAzyme with divalent metal ions was studied extensively, the influence of monovalent metal ions on its activity remains poorly understood. Here, we characterize the influence of monovalent and divalent cations on the 10–23 DNAzyme utilizing functional and biophysical techniques. Our results show that Na+ and K+ affect the binding of divalent metal ions to the DNAzyme:RNA complex and considerably modulate the reaction rates of RNA cleavage. We observe an opposite effect of high levels of Na+ and K+ concentrations on Mg2+- and Mn2+-induced reactions, revealing a different interplay of these metals in catalysis. Based on these findings, we propose a model for the interaction of metal ions with the DNAzyme:RNA complex.
Funding source: Chemical Industry Fund
Award Identifier / Grant number: 196/05
Award Identifier / Grant number: 700080
Funding source: German Academic Scholarship Foundation
Funding source: German Research Foundation
Award Identifier / Grant number: 103/2
Award Identifier / Grant number: 103/4
Acknowledgments
We gratefully thank D. Riesner for fruitful discussions and Matthias R. Steger for help with python programming.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This work was supported by the Chemical Industry Fund (Li 196/05 to I.S. and Hoe 700080 to H.R.); the German Academic Scholarship Foundation (to H.R.); and the German Research Foundation (ET 103/2, ET 103/4 to M.E.).
Conflict of interest statement: The authors declare that they have no conflict of interest regarding the contents of this article.
References
Bobbin, M.L. and Rossi, J.J. (2016). RNA interference (RNAi)-based therapeutics: delivering on the promise? Annu. Rev. Pharmacol. Toxicol. 56: 103–122, https://doi.org/10.1146/annurev-pharmtox-010715-103633.10.1146/annurev-pharmtox-010715-103633Search in Google Scholar
Boots, J.L., Canny, M.D., Azimi, E., and Pardi, A. (2008). Metal ion specificities for folding and cleavage activity in the Schistosoma hammerhead ribozyme. RNA 14: 2212–2222, https://doi.org/10.1261/rna.1010808.10.1261/rna.1010808Search in Google Scholar
Breaker, R.R. and Joyce, G.F. (1994). A DNA enzyme that cleaves RNA. Chem. Biol. 1: 223–229, https://doi.org/10.1016/1074-5521(94)90014-0.10.1016/1074-5521(94)90014-0Search in Google Scholar
Brown, A.K., Li, J., Pavot, C.M.B., and Lu, Y. (2003). A lead-dependent DNAzyme with a two-step mechanism. Biochemistry 42: 7152–7161, https://doi.org/10.1021/bi027332w.10.1021/bi027332wSearch in Google Scholar
Carmi, N., Balkhi, S.R., and Breaker, R.R. (1998). Cleaving DNA with DNA. Proc. Natl. Acad. Sci. USA 95: 2233–2237, https://doi.org/10.1073/pnas.95.5.2233.10.1073/pnas.95.5.2233Search in Google Scholar
Cepeda-Plaza, M. and Peracchi, A. (2020). Insights into DNA catalysis from structural and functional studies of the 8–17 DNAzyme. Org. Biomol. Chem. 18: 1697–1709, https://doi.org/10.1039/c9ob02453k.10.1039/C9OB02453KSearch in Google Scholar
Chandra, M., Sachdeva, A., and Silverman, S.K. (2009). DNA-catalyzed sequence-specific hydrolysis of DNA. Nat. Chem. Biol. 5: 718–720, https://doi.org/10.1038/nchembio.201.10.1038/nchembio.201Search in Google Scholar
Cheng, X., Liu, X., Bing, T., Cao, Z., and Shangguan, D. (2009). General peroxidase activity of G-quadruplex–hemin complexes and its application in ligand screening. Biochemistry 48: 7817–7823, https://doi.org/10.1021/bi9006786.10.1021/bi9006786Search in Google Scholar
Chinnapen, D.J.F. and Sen, D. (2004). A deoxyribozyme that harnesses light to repair thymine dimers in DNA. Proc. Natl. Acad. Sci. USA 101: 65–69, https://doi.org/10.1073/pnas.0305943101.10.1073/pnas.0305943101Search in Google Scholar
Cho, E.A., Moloney, F.J., Cai, H., Au-Yeung, A., China, C., Scolyer, R.A., Yosufi, B., Raftery, M.J., Deng, J.Z., Morton, S.W., et al. (2013). Safety and tolerability of an intratumorally injected DNAzyme, Dz13, in patients with nodular basal-cell carcinoma: a phase 1 first-in-human trial (DISCOVER). Lancet 381: 1835–1843, https://doi.org/10.1016/s0140-6736(12)62166-7.10.1016/S0140-6736(12)62166-7Search in Google Scholar
Cuenoud, B. and Szostak, J.W. (1995). A DNA metalloenzyme with DNA ligase activity. Nature 375: 611–614, https://doi.org/10.1038/375611a0.10.1038/375611a0Search in Google Scholar
Dahm, S.A.C., Derrick, W.B., and Uhlenbeck, O.C. (1993). Evidence for the role of solvated metal hydroxide in the hammerhead cleavage mechanism. Biochemistry 32: 13040–13045, https://doi.org/10.1021/bi00211a013.10.1021/bi00211a013Search in Google Scholar
Eaton, G.R., Eaton, S.S., Barr, D.P., and Weber, R.T. (2010). Quantitative EPR: a practitioners guide. Vienna: Springer.10.1007/978-3-211-92948-3Search in Google Scholar
Flynn-Charlebois, A., Wang, Y., Prior, T.K., Rashid, I., Hoadley, K.A., Coppins, R.L., Wolf, A.C., and Silverman, S.K. (2003). Deoxyribozymes with 2′-5′ RNA ligase activity. J. Am. Chem. Soc. 125: 2444–2454, https://doi.org/10.1021/ja028774y.10.1021/ja028774ySearch in Google Scholar
Fokina, A.A., Stetsenko, D.A., and François, J.C. (2015). DNA enzymes as potential therapeutics: towards clinical application of 10–23 DNAzymes. Expet Opin. Biol. Ther. 15: 689–711, https://doi.org/10.1517/14712598.2015.1025048.10.1517/14712598.2015.1025048Search in Google Scholar
Freisinger, E. and Sigel, R.K.O. (2007). From nucleotides to ribozymes-A comparison of their metal ion binding properties. Coord. Chem. Rev. 251: 1834–1851, https://doi.org/10.1016/j.ccr.2007.03.008.10.1016/j.ccr.2007.03.008Search in Google Scholar
Graphics Layout Engine, URL http://glx.sourceforge.net/ (Accessed 5 8 20).Search in Google Scholar
Gu, H., Furukawa, K., Weinberg, Z., Berenson, D.F., and Breaker, R.R. (2013). Small, highly active DNAs that hydrolyze DNA. J. Am. Chem. Soc. 135: 9121–9129, https://doi.org/10.1021/ja403585e.10.1021/ja403585eSearch in Google Scholar
He, Q.C., Zhou, J.M., Zhou, D.M., Nakamatsu, Y., Baba, T., and Taira, K. (2002). Comparison of metal-ion-dependent cleavages of RNA by a DNA enzyme and a hammerhead ribozyme. Biomacromolecules 3: 69–83, https://doi.org/10.1021/bm010095c.10.1021/bm010095cSearch in Google Scholar
Horton, T.E., Clardy, D.R., and DeRose, V.J. (1998). Electron paramagnetic resonance spectroscopic measurement of Mn2+ binding affinities to the hammerhead ribozyme and correlation with cleavage activity. Biochemistry 37: 18094–18101, https://doi.org/10.1021/bi981425p.10.1021/bi981425pSearch in Google Scholar
Hunsicker, L.M. and DeRose, V.J. (2000). Activities and relative affinities of divalent metals in unmodified and phosphorothioate-substituted hammerhead ribozymes. J. Inorg. Biochem. 80: 271–281, https://doi.org/10.1016/s0162-0134(00)00079-9.10.1016/S0162-0134(00)00079-9Search in Google Scholar
Hunsicker-Wang, L., Vogt, M., and Derose, V.J. (2009). EPR methods to study specific metal-ion binding sites in RNA. Methods Enzymol. 468: 335–367, https://doi.org/10.1016/s0076-6879(09)68016-2.10.1016/S0076-6879(09)68016-2Search in Google Scholar
Kisseleva, N., Khvorova, A., Westhof, E., and Schiemann, O. (2005). Binding of manganese(II) to a tertiary stabilized hammerhead ribozyme as studied by electron paramagnetic resonance spectroscopy. RNA 11: 1–6, https://doi.org/10.1261/rna.7127105.10.1261/rna.7127105Search in Google Scholar
Krug, N., Hohlfeld, J.M., Kirsten, A.M., Kornmann, O., Beeh, K.M., Kappeler, D., Korn, S., Ignatenko, S., Timmer, W., Rogon, C., et al. (2015). Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. N. Engl. J. Med. 372: 1987–1995, https://doi.org/10.1056/nejmoa1411776.10.1056/NEJMoa1411776Search in Google Scholar
Ladbury, J.E. and Chowdhry, B.Z. (1996). Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem. Biol. 3: 791–801, https://doi.org/10.1016/s1074-5521(96)90063-0.10.1016/S1074-5521(96)90063-0Search in Google Scholar
Li, Y. and Breaker, R.R. (1999). Phosphorylating DNA with DNA. Proc. Natl. Acad. Sci. USA 96: 2746–2751, https://doi.org/10.1073/pnas.96.6.2746.10.1073/pnas.96.6.2746Search in Google Scholar
Li, Y. and Sen, D. (1996). A catalytic DNA for porphyrin metalation. Nat. Struct. Biol. 3: 743–747, https://doi.org/10.1038/nsb0996-743.10.1038/nsb0996-743Search in Google Scholar
Li, Y., Liu, Y., and Breaker, R.R. (2000). Capping DNA with DNA. Biochemistry 39: 3106–3114, https://doi.org/10.1021/bi992710r.10.1021/bi992710rSearch in Google Scholar
Liu, H., Yu, X., Chen, Y., Zhang, J., Wu, B., Zheng, L., Haruehanroengra, P., Wang, R., Li, S., Lin, J.,et al. (2017). Crystal structure of an RNA-cleaving DNAzyme. Nat. Commun. 8: 2006, https://doi.org/10.1038/s41467-017-02203-x.10.1038/s41467-017-02203-xSearch in Google Scholar
McGhee, C.E., Loh, K.Y., and Lu, Y. (2017). DNAzyme sensors for detection of metal ions in the environment and imaging them in living cells. Curr. Opin. Biotechnol. 45: 191–201, https://doi.org/10.1016/j.copbio.2017.03.002.10.1016/j.copbio.2017.03.002Search in Google Scholar
Murray, J.B., Seyhan, A.A., Walter, N.G., Burke, J.M., and Scott, W.G. (1998). The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem. Biol. 5: 587–595, https://doi.org/10.1016/s1074-5521(98)90116-8.10.1016/S1074-5521(98)90116-8Search in Google Scholar
Newville, M., Otten, R., Nelson, A., Ingargiola, A., Stensitzki, T., Allan, D., Fox, A., Carter, F., Michał Pustakhod, D., Ram, Y., Glenn Deil, C., Stuermer Beelen, A., Frost, O., Zobrist, N., Pasquevich, G., Hansen, A.L.R., Spillane, T., Caldwell, S., Polloreno, A., andrewhannum Zimmermann, J., Borreguero, J., Fraine, J., deep-42-thought Maier, B.F., Gamari, B., Almarza, A. (2019). https://lmfit/lmfit-py 1.0.0.Search in Google Scholar
Nowakowski, J., Shim, P.J., Prasad, G.S., Stout, C.D., and Joyce, G.F. (1999). Crystal structure of an 82-nucleotide RNA–DNA complex formed by the 10–23 DNA enzyme. Nat. Struct. Biol. 6: 151–156, https://doi.org/10.1038/5839.10.1038/5839Search in Google Scholar
Okumoto, Y. and Sugimoto, N. (2000). Effects of metal ions and catalytic loop sequences on the complex formation of a deoxyribozyme and its RNA substrate. J. Inorg. Biochem. 82: 189–195, https://doi.org/10.1016/s0162-0134(00)00159-8.10.1016/S0162-0134(00)00159-8Search in Google Scholar
Pechlaner, M. and Sigel, R.K.O. (2012). Characterization of metal ion–nucleic acid interactions insolution. In: Sigel, A., Sigel, H., and Sigel, R. K O. (Eds.), Interplay between metal ions and nucleic acids: metal ions in life science. Dordrecht: Springer, pp. 1–42.10.1007/978-94-007-2172-2_1Search in Google Scholar
Perrotta, A.T. and Been, M.D. (2006). HDV ribozyme activity in monovalent cations. Biochemistry 45: 11357–11365, https://doi.org/10.1021/bi061215+.10.1021/bi061215+Search in Google Scholar
Poland, D. (1978). Cooperative equilibria in physical biochemistry. Oxford: Clarendon Press. ISBN-10:019854622X; ISBN-13: 978-0198546221.Search in Google Scholar
Python Software Foundation, URL https://www.python.org/ (Accessed 5 August 20).Search in Google Scholar
Record, M.T., Lohman, T.M., and de Haseth, P. (1976). Ion effects on ligand–nucleic acid interactions. J. Mol. Biol. 107: 145–158, https://doi.org/10.1016/s0022-2836(76)80023-x.10.1016/S0022-2836(76)80023-XSearch in Google Scholar
Rosenbach, H., Victor, J., Etzkorn, M., Steger, G., Riesner, D., and Span, I. (2020). Molecular features and metal ions that influence 10–23 DNAzyme activity. Molecules 25: 3100, https://doi.org/10.3390/molecules25133100.10.3390/molecules25133100Search in Google Scholar
Santiago, F.S., Atkins, D.G., and Khachigian, L.M. (1999). Vascular smooth muscle cell proliferation and regrowth after mechanical injury in vitro are Egr-1/NGFI-A-dependent. Am. J. Pathol. 155: 897–905, https://doi.org/10.1016/s0002-9440(10)65189-9.10.1016/S0002-9440(10)65189-9Search in Google Scholar
Santoro, S.W. and Joyce, G.F. (1998). Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry 37: 13330–13342, https://doi.org/10.1021/bi9812221.10.1021/bi9812221Search in Google Scholar PubMed
Santoro, S.W. and Joyce, G.F. (1997). A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA 94: 4262–4266, https://doi.org/10.1073/pnas.94.9.4262.10.1073/pnas.94.9.4262Search in Google Scholar PubMed PubMed Central
Sawata, S., Shimayama, T., Komiyama, M., Kumar, P.K.R., Nishikawa, S., and Taira, K. (1993). Enhancement of the cleavage rates of DNA-armed hammerhead ribozymes by various divalent metal ions. Nucleic Acids Res. 21: 5656–5660, https://doi.org/10.1093/nar/21.24.5656.10.1093/nar/21.24.5656Search in Google Scholar PubMed PubMed Central
Schiemann, O., Fritscher, J., Kisseleva, N., Sigurdsson, S.T., and Prisner, T.F. (2003). Structural investigation of a high-affinity MnII binding site in the hammerhead ribozyme by EPR spectroscopy and DFT calculations. Effects of neomycin B on metal–ion binding. Chembiochem 4: 1057–1065, https://doi.org/10.1002/cbic.200300653.10.1002/cbic.200300653Search in Google Scholar
Schnabl, J. and Sigel, R.K.O. (2010). Controlling ribozyme activity by metal ions. Curr. Opin. Chem. Biol. 14: 269–275, https://doi.org/10.1016/j.cbpa.2009.11.024.10.1016/j.cbpa.2009.11.024Search in Google Scholar
Silverman, S.K. (2015). Pursuing DNA catalysts for protein modification. Acc. Chem. Res. 48: 1369–1379, https://doi.org/10.1021/acs.accounts.5b00090.10.1021/acs.accounts.5b00090Search in Google Scholar
Silverman, S.K. (2016). Catalytic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends Biochem. Sci. 41: 595–609, https://doi.org/10.1016/j.tibs.2016.04.010.10.1016/j.tibs.2016.04.010Search in Google Scholar
Sugimoto, N., Okumoto, Y., and Ohmichi, T. (1999). Effect of metal ions and sequence of deoxyribozymes on their RNA cleavage activity. J. Chem. Soc. Perkin Trans. 2: 1381–1386, https://doi.org/10.1039/a901461f.10.1039/a901461fSearch in Google Scholar
Torabi, S.F., Wu, P., McGhee, C.E., Chen, L., Hwang, K., Zheng, N., Cheng, J., and Lu, Y. (2015). In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing. Proc. Natl. Acad. Sci. USA 112: 5903–5908, https://doi.org/10.1073/pnas.1420361112.10.1073/pnas.1420361112Search in Google Scholar
Travascio, P., Li, Y., and Sen, D. (1998). DNA-enhanced peroxidase activity of a DNA aptamer–hemin complex. Chem. Biol. 5: 505–517, https://doi.org/10.1016/s1074-5521(98)90006-0.10.1016/S1074-5521(98)90006-0Search in Google Scholar
Victor, J., Steger, G., and Riesner, D. (2017). Inability of DNAzymes to cleave RNA in vivo is due to limited Mg2+ concentration in cells. Eur. Biophys. J. 47: 1–11, https://doi.org/10.1007/s00249-017-1270-2.10.1007/s00249-017-1270-2Search in Google Scholar PubMed
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17: 261–272, https://doi.org/10.1038/s41592-019-0686-2.10.1038/s41592-019-0686-2Search in Google Scholar PubMed PubMed Central
Wang, Y., Liu, E., Lam, C.H., and Perrin, D.M. (2018). A densely modified M2+-independent DNAzyme that cleaves RNA efficiently with multiple catalytic turnover. Chem. Sci. 9: 1813–1821, https://doi.org/10.1039/c7sc04491g.10.1039/C7SC04491GSearch in Google Scholar PubMed PubMed Central
Wang, M., Zhang, H., Zhang, W., Zhao, Y., Yasmeen, A., Zhou, L., Yu, X., and Tang, Z. (2014). In vitro selection of DNA-cleaving deoxyribozyme with site-specific thymidine excision activity. Nucleic Acids Res. 42: 9262–9269, https://doi.org/10.1093/nar/gku592.10.1093/nar/gku592Search in Google Scholar PubMed PubMed Central
Wu, Y., Yu, L., McMahon, R., Rossi, J.J., Forman, S.J., and Snyder, D.S. (1999). Inhibition of bcr-abl oncogene expression by novel deoxyribozymes (DNAzymes). Hum. Gene Ther. 10: 2847–2857, https://doi.org/10.1089/10430349950016573.10.1089/10430349950016573Search in Google Scholar PubMed
Young, D.D., Lively, M.O., and Deiters, A. (2010). Activation and deactivation of DNAzyme and antisense function with light for the photochemical regulation of gene expression in mammalian cells. J. Am. Chem. Soc. 132: 6183–6193, https://doi.org/10.1021/ja100710j.10.1021/ja100710jSearch in Google Scholar PubMed PubMed Central
Supplementary Material
Supplementary Figures S1–S13 and Tables S1–4 are available online.
The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2020-0207).
© 2020 Walter de Gruyter GmbH, Berlin/Boston