Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 12, 2020

Genomic insights into cyanobacterial protein translocation systems

David A. Russo ORCID logo and Julie A. Z. Zedler ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

Cyanobacteria are ubiquitous oxygenic photosynthetic bacteria with a versatile metabolism that is highly dependent on effective protein targeting. Protein sorting in diderm bacteria is not trivial and, in cyanobacteria, even less so due to the presence of a complex membrane system: the outer membrane, the plasma membrane and the thylakoid membrane. In cyanobacteria, protein import into the thylakoids is essential for photosynthesis, export to the periplasm fulfills a multifunctional role in maintaining cell homeostasis, and secretion mediates motility, DNA uptake and environmental interactions. Intriguingly, only one set of genes for the general secretory and the twin-arginine translocation pathways seem to be present. However, these systems have to operate in both plasma and thylakoid membranes. This raises the question of how substrates are recognized and targeted to their correct, final destination. Additional complexities arise when a protein has to be secreted across the outer membrane, where very little is known regarding the mechanisms involved. Given their ecological importance and biotechnological interest, a better understanding of protein targeting in cyanobacteria is of great value. This review will provide insights into the known knowns of protein targeting, propose hypotheses based on available genomic sequences and discuss future directions.


Corresponding author: Julie A. Z. Zedler, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Dornburgerstr. 159, D-07743 Jena, Germany, E-mail:

Acknowledgments

We would like to thank Michael A. Russo for assistance with database generation, Dr. Sophie S. Abby for assistance with MacSyFinder and Prof. Conrad W. Mullineaux for interesting discussions on protein targeting.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abby, S.S., Cury, J., Guglielmini, J., Néron, B., Touchon, M., and Rocha, E.P.C. (2016). Identification of protein secretion systems in bacterial genomes. Sci. Rep. 6: 23080, https://doi.org/10.1038/srep23080.Search in Google Scholar PubMed PubMed Central

Abby, S.S., Néron, B., Ménager, H., Touchon, M., and Rocha, E.P.C. (2014). MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PloS One 9: e110726, https://doi.org/10.1371/journal.pone.0110726.Search in Google Scholar PubMed PubMed Central

Agarwal, R., Zakharov, S., Hasan, S.S., Ryan, C.M., Whitelegge, J.P., and Cramer, W.A. (2014). Structure-function of cyanobacterial outer-membrane protein, Slr1270: homolog of Escherichia coli drug export/colicin import protein. TolC. FEBS Lett. 588: 3793–3801, https://doi.org/10.1016/j.febslet.2014.08.028.Search in Google Scholar PubMed PubMed Central

Akimaru, J., Matsuyama, S., Tokuda, H., and Mizushima, S. (1991). Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 88: 6545–6549, https://doi.org/10.1073/pnas.88.15.6545.Search in Google Scholar PubMed PubMed Central

Akoh, C.C., Lee, G.-C., Liaw, Y.-C., Huang, T.-H., and Shaw, J.-F. (2004). GDSL family of serine esterases/lipases. Prog. Lipid Res. 43: 534–552, https://doi.org/10.1016/j.plipres.2004.09.002.Search in Google Scholar PubMed

Albiniak, A.M., Baglieri, J., and Robinson, C. (2012). Targeting of lumenal proteins across the thylakoid membrane. J. Exp. Bot. 63: 1689–1698, https://doi.org/10.1093/jxb/err444.Search in Google Scholar PubMed

Aldridge, C., Cain, P., and Robinson, C. (2009). Protein transport in organelles: protein transport into and across the thylakoid membrane: protein transport across thylakoid membranes. FEBS J. 276: 1177–1186, https://doi.org/10.1111/j.1742-4658.2009.06875.x.Search in Google Scholar PubMed

Aldridge, C., Spence, E., Kirkilionis Markus, A., Frigerio, L., and Robinson, C. (2008). Tat‐dependent targeting of Rieske iron‐sulphur proteins to both the plasma and thylakoid membranes in the cyanobacterium Synechocystis PCC6803. Mol. Microbiol. 70: 140–150, https://doi.org/10.1111/j.1365-2958.2008.06401.x.Search in Google Scholar PubMed

Allen, R., Rittmann, B.E., and Curtiss, R. (2019). Axenic biofilm formation and aggregation by Synechocystis sp. strain PCC 6803 are induced by changes in nutrient concentration and require cell surface structures. Appl. Environ. Microbiol. 85: e02192–18, https://doi.org/10.1128/aem.02192-18.Search in Google Scholar PubMed PubMed Central

Arnold, T., Zeth, K., and Linke, D. (2010). Omp85 from the thermophilic cyanobacterium Thermosynechococcus elongatus differs from proteobacterial Omp85 in structure and domain composition. J. Biol. Chem. 285: 18003–18015, https://doi.org/10.1074/jbc.m110.112516.Search in Google Scholar PubMed PubMed Central

Auclair, S.M., Bhanu, M.K., and Kendall, D.A. (2012). Signal peptidase I: cleaving the way to mature proteins. Protein Sci. Publ. Protein Soc. 21: 13–25, https://doi.org/10.1002/pro.757.Search in Google Scholar PubMed PubMed Central

Avrani, S. and Lindell, D. (2015). Convergent evolution toward an improved growth rate and a reduced resistance range in Prochlorococcus strains resistant to phage. Proc. Natl. Acad. Sci. U.S.A. 112: E2191–E2200, https://doi.org/10.1073/pnas.1420347112.Search in Google Scholar PubMed PubMed Central

Baers, L.L., Breckels, L.M., Mills, L.A., Gatto, L., Deery, M.J., Stevens, T.J., Howe, C.J., Lilley, K.S., and Lea-Smith, D.J. (2019). Proteome mapping of a cyanobacterium reveals distinct compartment organization and cell-dispersed metabolism. Plant Physiol. 181: 1721–1738, https://doi.org/10.1104/pp.19.00897.Search in Google Scholar PubMed PubMed Central

Baglieri, J., Beck, D., Vasisht, N., Smith, C.J., and Robinson, C. (2012). Structure of TatA paralog, TatE, suggests a structurally homogeneous form of Tat protein translocase that transports folded proteins of differing diameter. J. Biol. Chem. 287: 7335–7344, https://doi.org/10.1074/jbc.m111.326355.Search in Google Scholar

Barnett, J.P., Eijlander, R.T., Kuipers, O.P., and Robinson, C. (2008). A minimal Tat system from a gram-positive organism: a bifunctional TatA subunit participates in discrete TatAC and TatA complexes. J. Biol. Chem. 283: 2534–2542, https://doi.org/10.1074/jbc.m708134200.Search in Google Scholar

Barnett, J. P., Robinson, C., Scanlan, D.J., and Blindauer, C.A. (2011). The Tat protein export pathway and its role in cyanobacterial metalloprotein biosynthesis. FEMS Microbiol. Lett. 325: 1–9, https://doi.org/10.1111/j.1574-6968.2011.02391.x.Search in Google Scholar PubMed

Bhaya, D., Watanabe, N., Ogawa, T., and Grossman, A.R. (1999). The role of an alternative sigma factor in motility and pilus formation in the cyanobacterium Synechocystis sp. strain PCC6803. Proc. Natl. Acad. Sci. U.S.A. 96: 3188–3193, https://doi.org/10.1073/pnas.96.6.3188.Search in Google Scholar PubMed PubMed Central

Bolhuis, A., Broekhuizen, C.P., Sorokin, A., van Roosmalen, M.L., Venema, G., Bron, S., Quax, W.J., and van Dijl, J.M. (1998). SecDF of Bacillus subtilis, a molecular Siamese twin required for the efficient secretion of proteins. J. Biol. Chem. 273: 21217–21224, https://doi.org/10.1074/jbc.273.33.21217.Search in Google Scholar PubMed

Bryan, S.J., Burroughs, N.J., Shevela, D., Yu, J., Rupprecht, E., Liu, L.-N., Mastroianni, G., Xue, Q., Llorente-Garcia, I., Leake, M.C., et al. (2014). Localisation and interactions of the Vipp1 protein in cyanobacteria. Mol. Microbiol. 94: 1179–1195, https://doi.org/10.1111/mmi.12826.Search in Google Scholar PubMed PubMed Central

Burdette, L.A., Leach, S.A., Wong, H.T., and Tullman-Ercek, D. (2018). Developing Gram-negative bacteria for the secretion of heterologous proteins. Microb. Cell Factories 17: 176, https://doi.org/10.1186/s12934-018-1041-5.Search in Google Scholar PubMed PubMed Central

Cao, T.B. and Saier, M.H. (2003). The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochim. Biophys. Acta 1609: 115–125, https://doi.org/10.1016/s0005-2736(02)00662-4.Search in Google Scholar

Carrie, C., Weißenberger, S., and Soll, J. (2016). Plant mitochondria contain the protein translocase subunits TatB and TatC. J. Cell Sci. 129: 3935–3947, https://doi.org/10.1242/jcs.190975.Search in Google Scholar

Cengic, I., Uhlén, M., and Hudson, E. P. (2018). Surface display of small affinity proteins on Synechocystis sp. strain PCC 6803 mediated by fusion to the major type IV pilin PilA1. J. Bacteriol. 200: e00270–18, https://doi.org/10.1128/jb.00270-18.Search in Google Scholar

Chen, P.-H., Liu, H.-L., Chen, Y.-J., Cheng, Y.-H., Lin, W.-L., Yeh, C.-H., and Chang, H. (2012). Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria. Energy Environ. Sci. 5: 8318–8327, https://doi.org/10.1039/c2ee21124f.Search in Google Scholar

Chen, Z., Li, X., Tan, X., Zhang, Y., and Wang, B. (2020). Recent advances in biological functions of thick pili in the cyanobacterium Synechocystis sp. PCC 6803. Front. Plant Sci. 11: 241, https://doi.org/10.3389/fpls.2020.00241.Search in Google Scholar

Christie, P.J. (2019). The rich tapestry of bacterial protein translocation systems. Protein J. 38: 389–408, https://doi.org/10.1007/s10930-019-09862-3.Search in Google Scholar

Cline, K., Ettinger, W.F., and Theg, S.M. (1992). Protein-specific energy requirements for protein transport across or into thylakoid membranes. Two lumenal proteins are transported in the absence of ATP. J. Biol. Chem. 267: 2688–2696.10.1016/S0021-9258(18)45935-2Search in Google Scholar

Conradi, F.D., Zhou, R.-Q., Oeser, S., Schuergers, N., Wilde, A., and Mullineaux, C.W. (2019). Factors controlling floc formation and structure in the cyanobacterium Synechocystis sp. PCC 6803. J. Bacteriol. 201: e00344–19, https://doi.org/10.1128/jb.00344-19.Search in Google Scholar PubMed PubMed Central

de Vries, J. and Archibald, J.M. (2017). Endosymbiosis: did plastids evolve from a freshwater cyanobacterium?. Curr. Biol. 27: R103–R105, https://doi.org/10.1016/j.cub.2016.12.006.Search in Google Scholar PubMed

Delepelaire, P. (2004). Type I secretion in Gram-negative bacteria. Biochim. Biophys. Acta 1694: 149–161, https://doi.org/10.1016/j.bbamcr.2004.05.001.Search in Google Scholar PubMed

DeLisa, M.P., Tullman, D., and Georgiou, G. (2003). Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc. Natl. Acad. Sci. U.S.A. 100: 6115–6120, https://doi.org/10.1073/pnas.0937838100.Search in Google Scholar PubMed PubMed Central

Denise, R., Abby, S.S., and Rocha, E.P.C. (2019). Diversification of the type IV filament superfamily into machines for adhesion, protein secretion, DNA uptake, and motility. PLoS Biol. 17: e3000390, https://doi.org/10.1371/journal.pbio.3000390.Search in Google Scholar PubMed PubMed Central

Desvaux, M., Hébraud, M., Talon, R., and Henderson, I.R. (2009). Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol. 17: 139–145, https://doi.org/10.1016/j.tim.2009.01.004.Search in Google Scholar PubMed

Dexter, J., Dziga, D., Lv, J., Zhu, J., Strzalka, W., Maksylewicz, A., Maroszek, M., Marek, S., and Fu, P. (2018). Heterologous expression of mlrA in a photoautotrophic host – engineering cyanobacteria to degrade microcystins. Environ. Pollut. 237: 926–935, https://doi.org/10.1016/j.envpol.2018.01.071.Search in Google Scholar PubMed

Dilks, K., Rose, R.W., Hartmann, E., and Pohlschröder, M. (2003). Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J. Bacteriol. 185: 1478–1483, https://doi.org/10.1128/jb.185.4.1478-1483.2003.Search in Google Scholar PubMed PubMed Central

Douzi, B., Filloux, A., and Voulhoux, R. (2012). On the path to uncover the bacterial type II secretion system. Philos. Trans. R. Soc. B Biol. Sci. 367: 1059–1072, https://doi.org/10.1098/rstb.2011.0204.Search in Google Scholar PubMed PubMed Central

Driessen, A.J.M., and Nouwen, N. (2008). Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77: 643–667, https://doi.org/10.1146/annurev.biochem.77.061606.160747.Search in Google Scholar PubMed

Eimer, E., Fröbel, J., Blümmel, A.-S., and Müller, M. (2015). TatE as a regular constituent of bacterial twin-arginine protein translocases. J. Biol. Chem. 290: 29281–29289, https://doi.org/10.1074/jbc.m115.696005.Search in Google Scholar

Encinas, D., Garcillan-Barcia, M.P., Santos-Merino, M., Delaye, L., Moya, A., and de la Cruz, F. (2014). Plasmid conjugation from proteobacteria as evidence for the origin of xenologous genes in cyanobacteria. J. Bacteriol. 196: 1551–1559, https://doi.org/10.1128/jb.01464-13.Search in Google Scholar PubMed PubMed Central

Ferri, S., Nakamura, M., Ito, A., Nakajima, M., Abe, K., Kojima, K., et al. (2015). Efficient surface-display of autotransporter proteins in cyanobacteria. Algal Res 12: 337–340, https://doi.org/10.1016/j.algal.2015.09.013.Search in Google Scholar

Flower, A.M., Hines, L.L., and Pfennig, P.L. (2000). SecG is an auxiliary component of the protein export apparatus of Escherichia coli. Mol. Gen. Genet. 63: 131–136, https://doi.org/10.1007/s004380050039.Search in Google Scholar PubMed

Frain, K.M., Gangl, D., Jones, A., Zedler, J.A.Z., and Robinson, C. (2016). Protein translocation and thylakoid biogenesis in cyanobacteria. Biochim. Biophys. Acta 1857: 266–273, https://doi.org/10.1016/j.bbabio.2015.08.010.Search in Google Scholar PubMed

Frain, K. M., Robinson, C., and van Dijl, J. M. (2019). Transport of folded proteins by the Tat system. Protein J. 38: 377–388, https://doi.org/10.1007/s10930-019-09859-y.Search in Google Scholar PubMed PubMed Central

Freudl, R. (2018). Signal peptides for recombinant protein secretion in bacterial expression systems. Microb. Cell Factories 17: 52, https://doi.org/10.1186/s12934-018-0901-3.Search in Google Scholar PubMed PubMed Central

Fujisawa, T., Narikawa, R., Okamoto, S., Ehira, S., Yoshimura, H., Suzuki, I., Masuda, T., Mochimaru, M., Takaichi, S., Awai, K., et al. (2010). Genomic structure of an economically important cyanobacterium, Arthrospira (Spirulina) platensis NIES-39. DNA Res. 17: 85–103, https://doi.org/10.1093/dnares/dsq004.Search in Google Scholar PubMed PubMed Central

Fulda, S., Huang, F., Nilsson, F., Hagemann, M., and Norling, B. (2000). Proteomics of Synechocystis sp. strain PCC 6803. Eur. J. Biochem. 267: 5900–5907, https://doi.org/10.1046/j.1432-1327.2000.01642.x.Search in Google Scholar PubMed

Garcia‐Pichel, F., Zehr, J.P., Bhattacharya, D., and Pakrasi, H.B. (2020). What’s in a name? the case of cyanobacteria. J. Phycol. 56: 1–5, https://doi.org/10.1111/jpy.12934.Search in Google Scholar PubMed PubMed Central

Giner-Lamia, J., Pereira, S.B., Bovea-Marco, M., Futschik, M.E., Tamagnini, P., and Oliveira, P. (2016). Extracellular proteins: novel key components of metal resistance in cyanobacteria?. Front. Microbiol. 7: 878, https://doi.org/10.3389/fmicb.2016.00878.Search in Google Scholar PubMed PubMed Central

Gonçalves, C.F., Lima, S., Tamagnini, P., and Oliveira, P. (2019). Chapter 18 - cyanobacterial secretion systems: understanding fundamental mechanisms toward technological applications. In: Mishra, A.K., Tiwari, D.N., and Rai, A.N. (Eds.), Cyanobacteria: Academic Press, pp. 359–381.10.1016/B978-0-12-814667-5.00018-0Search in Google Scholar

Gonçalves, C.F., Pacheco, C.C., Tamagnini, P., and Oliveira, P. (2018). Identification of inner membrane translocase components of TolC-mediated secretion in the cyanobacterium Synechocystis sp. PCC 6803. Environ. Microbiol. 20: 2354–2369, https://doi.org/10.1111/1462-2920.14095.Search in Google Scholar PubMed

Guérin, J., Bigot, S., Schneider, R., Buchanan, S.K., and Jacob-Dubuisson, F. (2017). Two-partner secretion: combining efficiency and simplicity in the secretion of large proteins for bacteria-host and bacteria-bacteria interactions. Front. Cell. Infect. Microbiol. 7: 148, https://doi.org/10.3389/fcimb.2017.00148.Search in Google Scholar PubMed PubMed Central

Guglielmini, J., Néron, B., Abby, S.S., Garcillán-Barcia, M.P., la Cruz, F.de, and Rocha, E.P.C. (2014). Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res. 42: 5715–5727, https://doi.org/10.1093/nar/gku194.Search in Google Scholar PubMed PubMed Central

Hager, A.J., Bolton, D.L., Pelletier, M.R., Brittnacher, M.J., Gallagher, L.A., Kaul, R., Skerrett, S.J., Miller, S.I., and Guina, T. (2006). Type IV pili-mediated secretion modulates Francisella virulence. Mol. Microbiol. 62: 227–237, https://doi.org/10.1111/j.1365-2958.2006.05365.x.Search in Google Scholar PubMed

Hahn, A., Stevanovic, M., Brouwer, E., Bublak, D., Tripp, J., Schorge, T., Karas, M., and Schleiff, E. (2015). Secretome analysis of Anabaena sp. PCC 7120 and the involvement of the TolC-homologue HgdD in protein secretion. Environ. Microbiol. 17: 767–780, https://doi.org/10.1111/1462-2920.12516.Search in Google Scholar PubMed

Hahn, A., Stevanovic, M., Mirus, O., and Schleiff, E. (2012). The TolC-like protein HgdD of the cyanobacterium Anabaena sp. PCC 7120 is involved in secondary metabolite export and antibiotic resistance. J. Biol. Chem. 287: 41126–41138, https://doi.org/10.1074/jbc.m112.396010.Search in Google Scholar

Han, X., Kennan, R.M., Parker, D., Davies, J.K., and Rood, J.I. (2007). Type IV fimbrial biogenesis is required for protease secretion and natural transformation in Dichelobacter nodosus. J. Bacteriol. 189: 5022–5033, https://doi.org/10.1128/jb.00138-07.Search in Google Scholar PubMed PubMed Central

Hennig, R., Heidrich, J., Saur, M., Schmüser, L., Roeters, S. J., Hellmann, N., Woutersen, S., Bonn, M., Weidner, T., Markl, J., et al. (2015). IM30 triggers membrane fusion in cyanobacteria and chloroplasts. Nat. Commun. 6: 7018, https://doi.org/10.1038/ncomms8018.Search in Google Scholar PubMed

Holland, I.B., Peherstorfer, S., Kanonenberg, K., Lenders, M., Reimann, S., and Schmitt, L. (2016). Type I protein secretion—deceptively simple yet with a wide range of mechanistic variability across the family. EcoSal Plus 7, https://doi.org/10.1128/ecosalplus.esp-0019-2015.Search in Google Scholar

Hönigschmid, P., Bykova, N., Schneider, R., Ivankov, D., and Frishman, D. (2018). Evolutionary interplay between symbiotic relationships and patterns of signal peptide gain and loss. Genome Biol. Evol. 10: 928–938, https://doi.org/10.1093/gbe/evy049.Search in Google Scholar PubMed PubMed Central

Howe, C.J., Barbrook, A.C., and Packer, J.C.L. (1996). Protein targeting and translocation in cyanobacterial membrane biogenesis. Biochem. Soc. Trans. 24: 750–753, https://doi.org/10.1042/bst0240750.Search in Google Scholar PubMed

Huang, F., Parmryd, I., Nilsson, F., Persson, A.L., Pakrasi, H.B., Andersson, B., and Norling, B. (2002). Proteomics of Synechocystis sp. strain PCC 6803: identification of plasma membrane proteins. Mol. Cell. Proteomics 1: 956–966, https://doi.org/10.1074/mcp.m200043-mcp200.Search in Google Scholar

Hurley, J.H. and Meyer, T. (2001). Subcellular targeting by membrane lipids. Curr. Opin. Cell Biol. 13: 146–152, https://doi.org/10.1016/s0955-0674(00)00191-5.Search in Google Scholar

Hynds, P.J., Robinson, D., and Robinson, C. (1998). The Sec-independent twin-arginine translocation system can transport both tightly folded and malfolded proteins across the thylakoid membrane. J. Biol. Chem. 273: 34868–34874, https://doi.org/10.1074/jbc.273.52.34868.Search in Google Scholar PubMed

Jacob-Dubuisson, F., Fernandez, R., and Coutte, L. (2004). Protein secretion through autotransporter and two-partner pathways. Biochim. Biophys. Acta 1694: 235–257, https://doi.org/10.1016/j.bbamcr.2004.03.008.Search in Google Scholar PubMed

Jacob-Dubuisson, F., Guérin, J., Baelen, S., and Clantin, B. (2013). Two-partner secretion: as simple as it sounds?. Res. Microbiol. 164: 583–595, https://doi.org/10.1016/j.resmic.2013.03.009.Search in Google Scholar PubMed

Jongbloed, J.D.H., Grieger, U., Antelmann, H., Hecker, M., Nijland, R., Bron, S., and van Dijl, J.M. (2004). Two minimal Tat translocases in Bacillus. Mol. Microbiol. 54: 1319–1325, https://doi.org/10.1111/j.1365-2958.2004.04341.x.Search in Google Scholar PubMed

Kanonenberg, K., Schwarz, C.K.W., and Schmitt, L. (2013). Type I secretion systems – a story of appendices. Res. Microbiol. 164: 596–604, https://doi.org/10.1016/j.resmic.2013.03.011.Search in Google Scholar PubMed

Kirn, T.J., Bose, N., and Taylor, R.K. (2003). Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. Mol. Microbiol. 49: 81–92, https://doi.org/10.1046/j.1365-2958.2003.03546.x.Search in Google Scholar PubMed

Korotkov, K.V. and Sandkvist, M. (2019). Architecture, function, and substrates of the type II secretion system. Protein Secret. Bact., EcoSal Plus 8: 227–244, https://doi.org/10.1128/ecosalplus.esp-0034-2018.Search in Google Scholar PubMed PubMed Central

Lamb, J.J., Hill, R.E., Eaton-Rye, J.J., and Hohmann-Marriott, M.F. (2014). Functional role of PilA in iron acquisition in the cyanobacterium Synechocystis sp. PCC 6803. PloS One 9: e105761, https://doi.org/10.1371/journal.pone.0105761.Search in Google Scholar PubMed PubMed Central

Lee, P.A., Tullman-Ercek, D., and Georgiou, G. (2006). The bacterial twin-arginine translocation pathway. Annu. Rev. Microbiol. 60: 373–395, https://doi.org/10.1146/annurev.micro.60.080805.142212.Search in Google Scholar PubMed PubMed Central

Leo, J.C., Grin, I., and Linke, D. (2012). Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Philos. Trans. R. Soc. B Biol. Sci. 367: 1088–1101, https://doi.org/10.1098/rstb.2011.0208.Search in Google Scholar PubMed PubMed Central

Liberton, M., Saha, R., Jacobs, J.M., Nguyen, A.Y., Gritsenko, M.A., Smith, R.D., Koppenaal, D.W., and Pakrasi, H.B. (2016). Global proteomic analysis reveals an exclusive role of thylakoid membranes in bioenergetics of a model cyanobacterium. Mol. Cell. Proteomics 15: 2021–2032, https://doi.org/10.1074/mcp.m115.057240.Search in Google Scholar

Lima, S., Oliveira, P., and Tamagnini, P. (2017). The secretion signal peptide of the cyanobacterial extracellular protein HesF is located at its C-terminus. FEMS Microbiol. Lett. 364: fnx160, https://doi.org/10.1093/femsle/fnx160.Search in Google Scholar PubMed

Linke, D., Riess, T., Autenrieth, I.B., Lupas, A., and Kempf, V.A.J. (2006). Trimeric autotransporter adhesins: variable structure, common function. Trends Microbiol. 14: 264–270, https://doi.org/10.1016/j.tim.2006.04.005.Search in Google Scholar PubMed

Mahbub, M., Hemm, L., Yang, Y., Kaur, R., Carmen, H., Engl, C., Huokko, T., Riediger, M., Watanabe, S., Liu, L.-N., et al. (2020). mRNA localisation, reaction centre biogenesis and thylakoid membrane targeting in cyanobacteria. Native Plants, in press.10.1038/s41477-020-00764-2Search in Google Scholar PubMed

Matos, C.F.R.O., Robinson, C. and Di Cola, A. (2008). The Tat system proofreads FeS protein substrates and directly initiates the disposal of rejected molecules. EMBO J. 27: 2055–2063, https://doi.org/10.1038/emboj.2008.132.Search in Google Scholar PubMed PubMed Central

Melville, S. and Craig, L. (2013). Type IV pili in Gram-positive bacteria. Microbiol. Mol. Biol. Rev. 77: 323–341, https://doi.org/10.1128/mmbr.00063-12.Search in Google Scholar PubMed PubMed Central

Moslavac, S., Bredemeier, R., Mirus, O., Granvogl, B., Eichacker, L.A., and Schleiff, E. (2005). Proteomic analysis of the outer membrane of Anabaena sp. strain PCC 7120. J. Proteome Res. 4: 1330–1338, https://doi.org/10.1021/pr050044c.Search in Google Scholar PubMed

Moslavac, S., Nicolaisen, K., Mirus, O., Dehni, F. A., Pernil, R., Flores, E., Maldener, I., and Schleiff, E. (2007). A TolC-like protein is required for heterocyst development in Anabaena sp. strain PCC 7120. J. Bacteriol. 189: 7887–7895, https://doi.org/10.1128/jb.00750-07.Search in Google Scholar

Mould, R.M. and Robinson, C. (1991). A proton gradient is required for the transport of two lumenal oxygen-evolving proteins across the thylakoid membrane. J. Biol. Chem. 266: 12189–12193.10.1016/S0021-9258(18)98879-4Search in Google Scholar

Muro-Pastor, A.M., Kuritz, T., Flores, E., Herrero, A., and Wolk, C.P. (1994). Transfer of a genetic marker from a megaplasmid of Anabaena sp. strain PCC 7120 to a megaplasmid of a different Anabaena strain. J. Bacteriol. 176: 1093–1098, https://doi.org/10.1128/jb.176.4.1093-1098.1994.Search in Google Scholar PubMed PubMed Central

Nakai, M., Nohara, T., Sugita, D., and Endo, T. (1994). Identification and characterization of the SecA protein homologue in the cyanobacterium Synechococcus PCC7942. Biochem. Biophys. Res. Commun. 200: 844–851, https://doi.org/10.1006/bbrc.1994.1528.Search in Google Scholar PubMed

Nevo, R., Charuvi, D., Shimoni, E., Schwarz, R., Kaplan, A., Ohad, I., and Reich, Z. (2007). Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. EMBO J. 26: 1467–1473, https://doi.org/10.1038/sj.emboj.7601594.Search in Google Scholar PubMed PubMed Central

Nicolaisen, K., Hahn, A., Valdebenito, M., Moslavac, S., Samborski, A., Maldener, I., Wilken, C., Valladares, A., Flores, E., Hantke, K., and Schleiff, E. (2010). The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Biochim. Biophys. Acta 1798: 2131–2140, https://doi.org/10.1016/j.bbamem.2010.07.008.Search in Google Scholar PubMed

Oliveira, P., Martins, N.M., Santos, M., Pinto, F., Büttel, Z., Couto, N.A.S., Wright, P.C., and Tamagnini, P. (2016). The versatile TolC-like Slr1270 in the cyanobacterium Synechocystis sp. PCC 6803. Environ. Microbiol. 18: 486–502, https://doi.org/10.1111/1462-2920.13172.Search in Google Scholar PubMed

Oliveira, P., Pinto, F., Pacheco, C. C., Mota, R., and Tamagnini, P. (2015). HesF, an exoprotein required for filament adhesion and aggregation in Anabaena sp. PCC 7120. Environ. Microbiol. 17: 1631–1648, https://doi.org/10.1111/1462-2920.12600.Search in Google Scholar PubMed

Osborne, A.R., Rapoport, T.A., and van den Berg, B. (2005). Protein translocation by the Sec61/Secy channel. Annu. Rev. Cell Dev. Biol. 21: 529–550, https://doi.org/10.1146/annurev.cellbio.21.012704.133214.Search in Google Scholar PubMed

Palmer, T. and Berks, B.C. (2012). The twin-arginine translocation (Tat) protein export pathway. Nat. Rev. Microbiol. 10: 483–496, https://doi.org/10.1038/nrmicro2814.Search in Google Scholar PubMed

Palmer, T., Sargent, F., and Berks, B.C. (2005). Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol. 13: 175–180, https://doi.org/10.1016/j.tim.2005.02.002.Search in Google Scholar PubMed

Palmer, T. and Stansfeld, P.J. (2020). Targeting of proteins to the twin-arginine translocation pathway. Mol. Microbiol. 113: 861–871, https://doi.org/10.1111/mmi.14461.Search in Google Scholar PubMed PubMed Central

Parnasa, R., Nagar, E., Sendersky, E., Reich, Z., Simkovsky, R., Golden, S., and Schwarz, R. (2016). Small secreted proteins enable biofilm development in the cyanobacterium Synechococcus elongatus. Sci. Rep. 6: 32209, https://doi.org/10.1038/srep32209.Search in Google Scholar PubMed PubMed Central

Pisareva, T., Kwon, J., Oh, J., Kim, S., Ge, C., Wieslander, Å., Choi, J.-S., and Norling, B. (2011). Model for membrane organization and protein sorting in the cyanobacterium Synechocystis sp. PCC 6803 inferred from proteomics and multivariate sequence analyses. J. Proteome Res. 10: 3617–3631, https://doi.org/10.1021/pr200268r.Search in Google Scholar PubMed

Pohlner, J., Halter, R., Beyreuther, K., and Meyer, T.F. (1987). Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325: 458–462, https://doi.org/10.1038/325458a0.Search in Google Scholar PubMed

Price, M.N. and Arkin, A.P. (2017). PaperBLAST: text mining papers for information about homologs. mSystems 2: e00039–17, https://doi.org/10.1128/msystems.00039-17.Search in Google Scholar

Rajalahti, T., Huang, F., Rosén Klement, M., Pisareva, T., Edman, M., Sjöström, M., Wieslander, Å., and Norling, B. (2007). Proteins in different Synechocystis compartments have distinguishing N-terminal features: a combined proteomics and multivariate sequence analysis. J. Proteome Res. 6: 2420–2434, https://doi.org/10.1021/pr0605973.Search in Google Scholar PubMed

Rast, A., Schaffer, M., Albert, S., Wan, W., Pfeffer, S., Beck, F., Plitzko, J. M., Nickelsen, J., and Engel, B.D. (2019). Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Native Plants 5: 436, https://doi.org/10.1038/s41477-019-0399-7.Search in Google Scholar PubMed

Rexroth, S., Mullineaux, C. W., Ellinger, D., Sendtko, E., Rögner, M., and Koenig, F. (2011). The plasma membrane of the cyanobacterium Gloeobacter violaceus contains segregated bioenergetic domains. Plant Cell 23: 2379–2390, https://doi.org/10.1105/tpc.111.085779.Search in Google Scholar PubMed PubMed Central

Rose, R.W., Brüser, T., Kissinger, J. C., and Pohlschröder, M. (2002). Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol. Microbiol. 45: 943–950, https://doi.org/10.1046/j.1365-2958.2002.03090.x.Search in Google Scholar PubMed

Russo, D.A., Zedler, J.A.Z., Wittmann, D.N., Möllers, B., Singh, R.K., Batth, T.S., van Oort, B., Olsen, J.V., Bjerrum, M.J., and Jensen, P.E. (2019). Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing cyanobacterium. Biotechnol. Biofuels 12: 74, https://doi.org/10.1186/s13068-019-1416-9.Search in Google Scholar PubMed PubMed Central

Schäfer, K., Künzler, P., Klingl, A., Eubel, H., and Carrie, C. (2020). The plant mitochondrial TAT pathway is essential for complex III biogenesis. Curr. Biol. 9: 840–853, E5, https://doi.org/10.1016/j.cub.2020.01.001.Search in Google Scholar

Schatz, D., Nagar, E., Sendersky, E., Parnasa, R., Zilberman, S., Carmeli, S., Mastai, Y., Shimoni, E., Klein, E., Yeger, O., et al. (2013). Self-suppression of biofilm formation in the cyanobacterium Synechococcus elongatus. Environ. Microbiol. 15: 1786–1794, https://doi.org/10.1111/1462-2920.12070.Search in Google Scholar

Schneider, D (2014). Protein targeting, transport and translocation in cyanobacteria. In: Flores, E., and Herrero, A. (Eds.), The cell biology of cyanobacteria. Seville: Caister Academic Press, pp. 121–147.Search in Google Scholar

Schneider, D., Berry, S., Volkmer, T., Seidler, A., and Rögner, M. (2004). PetC1 is the major Rieske iron-sulfur protein in the cytochrome b 6 f complex of Synechocystis sp. PCC 6803. J. Biol. Chem. 279: 39383–39388, https://doi.org/10.1074/jbc.m406288200.Search in Google Scholar

Schneider, D., Skrzypczak, S., Anemüller, S., Schmidt, C.L., Seidler, A., and Rögner, M. (2002). Heterogeneous Rieske proteins in the cytochrome b6f complex of Synechocystis PCC6803?. J. Biol. Chem. 277: 10949–10954, https://doi.org/10.1074/jbc.m104076200.Search in Google Scholar

Schuergers, N., Mullineaux, C.W., and Wilde, A. (2017). Cyanobacteria in motion. Curr. Opin. Plant Biol. 37: 109–115, https://doi.org/10.1016/j.pbi.2017.03.018.Search in Google Scholar

Schuergers, N. and Wilde, A. (2015). Appendages of the cyanobacterial cell. Life 5: 700–715, https://doi.org/10.3390/life5010700.Search in Google Scholar

Schultze, M., Forberich, B., Rexroth, S., Dyczmons, N.G., Roegner, M., and Appel, J. (2009). Localization of cytochrome b6f complexes implies an incomplete respiratory chain in cytoplasmic membranes of the cyanobacterium Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1787: 1479–1485, https://doi.org/10.1016/j.bbabio.2009.06.010.Search in Google Scholar

Sergeyenko, T.V. and Los, D.A. (2003). Cyanobacterial leader peptides for protein secretion. FEMS Microbiol. Lett. 218: 351–357, https://doi.org/10.1016/s0378-1097(02)01197-7.Search in Google Scholar

Shvarev, D. and Maldener, I. (2019). Roles of DevBCA-like ABC transporters in the physiology of anabaena sp. PCC 7120. Int. J. Med. Microbiol. 309: 325–330, https://doi.org/10.1016/j.ijmm.2019.04.005.Search in Google Scholar PubMed

Soo, R.M., Skennerton, C.T., Sekiguchi, Y., Imelfort, M., Paech, S.J., Dennis, P.G., Steen, J.A., Parks, D.H., Tyson, G.W., and Hugenholtz, P. (2014). An expanded genomic representation of the phylum cyanobacteria. Genome Biol. Evol. 6: 1031–1045, https://doi.org/10.1093/gbe/evu073.Search in Google Scholar PubMed PubMed Central

Spence, E., Sarcina, M., Ray, N., Moller, S.G., Mullineaux, C.W., and Robinson, C. (2003). Membrane-specific targeting of green fluorescent protein by the Tat pathway in the cyanobacterium Synechocystis PCC6803. Mol. Microbiol. 48: 1481–1489, https://doi.org/10.1046/j.1365-2958.2003.03519.x.Search in Google Scholar PubMed

Srivastava, R., Pisareva, T., and Norling, B. (2005). Proteomic studies of the thylakoid membrane of Synechocystis sp. PCC 6803. Proteomics 5: 4905–4916, https://doi.org/10.1002/pmic.200500111.Search in Google Scholar PubMed

Sure, S., Ackland, M.L., Gaur, A., Gupta, P., Adholeya, A., and Kochar, M. (2016). Probing Synechocystis-arsenic interactions through extracellular nanowires. Front. Microbiol. 7: 1134, https://doi.org/10.3389/fmicb.2016.01134.Search in Google Scholar PubMed PubMed Central

Trautmann, D., Voß, B., Wilde, A., Al-Babili, S., and Hess, W.R. (2012). Microevolution in cyanobacteria: re-sequencing a motile substrain of Synechocystis sp. PCC 6803. DNA Res. 19: 435–448, https://doi.org/10.1093/dnares/dss024.Search in Google Scholar PubMed PubMed Central

Tsirigotaki, A., Geyter, J.D., Šoštaric´, N., Economou, A., and Karamanou, S. (2017). Protein export through the bacterial Sec pathway. Nat. Rev. Microbiol. 15: 21–36, https://doi.org/10.1038/nrmicro.2016.161.Search in Google Scholar PubMed

Wexler, M., Sargent, F., Jack, R.L., Stanley, N.R., Bogsch, E.G., Robinson, C., Berks, B.C., and Palmer, T. (2000). TatD is a cytoplasmic protein with DNase activity. No requirement for TatD family proteins in Sec-independent protein export. J. Biol. Chem. 275: 16717–16722, https://doi.org/10.1074/jbc.m000800200.Search in Google Scholar

Wydau, S., van der Rest, G., Aubard, C., Plateau, P., and Blanquet, S. (2009). Widespread distribution of cell defense against d-aminoacyl-tRNAs. J. Biol. Chem. 284: 14096–14104, https://doi.org/10.1074/jbc.m808173200.Search in Google Scholar

Yoshihara, S., Geng, X., Okamoto, S., Yura, K., Murata, T., Go, M., Ohmori, M., and Ikeuchi, M. (2001). Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol. 42: 63–73, https://doi.org/10.1093/pcp/pce007.Search in Google Scholar PubMed

Yoshihara, S. and Ikeuchi, M. (2004). Phototactic motility in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Photochem. Photobiol. Sci. 3: 512, https://doi.org/10.1039/b402320j.Search in Google Scholar PubMed

Yuen, A.S.W., Kolappan, S., Ng, D., and Craig, L. (2013). Structure and secretion of CofJ, a putative colonization factor of enterotoxigenic Escherichia coli. Mol. Microbiol. 90: 898–918, https://doi.org/10.1111/mmi.12407.Search in Google Scholar PubMed

Zhbanko, M., Zinchenko, V., Gutensohn, M., Schierhorn, A., and Klösgen, R.B. (2005). Inactivation of a predicted leader peptidase prevents photoautotrophic growth of Synechocystis sp. strain PCC 6803. J. Bacteriol. 187: 3071–3078, https://doi.org/10.1128/jb.187.9.3071-3078.2005.Search in Google Scholar

Ziehe, D., Dünschede, B., and Schünemann, D. (2017). From bacteria to chloroplasts: evolution of the chloroplast SRP system. Biol. Chem. 398: 653–661, https://doi.org/10.1515/hsz-2016-0292.Search in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2020-0247).


Received: 2020-07-09
Accepted: 2020-09-25
Published Online: 2020-10-12
Published in Print: 2020-11-18

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/hsz-2020-0247/html
Scroll Up Arrow