Accessible Requires Authentication Published online by De Gruyter September 20, 2021

EGFR binding Fc domain-drug conjugates: stable and highly potent cytotoxic molecules mediate selective cell killing

Sebastian Jäger, Stephan Dickgiesser, Jason Tonillo, Stefan Hecht, Harald Kolmar and Christian Schröter
From the journal Biological Chemistry

Abstract

The exposition of cancer cells to cytotoxic doses of payload is fundamental for the therapeutic efficacy of antibody drug conjugates (ADCs) in solid cancers. To maximize payload exposure, tissue penetration can be increased by utilizing smaller-sized drug conjugates which distribute deeper into the tumor. Our group recently explored small human epidermal growth factor receptor 2 (HER2) targeting Fc antigen binding fragments (Fcabs) for ADC applications in a feasibility study. Here, we expand this concept using epidermal growth factor receptor (EGFR) targeting Fcabs for the generation of site-specific auristatin-based drug conjugates. In contrast to HER2-targeting Fcabs, we identified novel conjugation sites in the EGFR-targeting Fcab scaffold that allowed for higher DAR enzymatic conjugation. We demonstrate feasibility of resultant EGFR-targeting Fcab-drug conjugates that retain binding to half-life prolonging neonatal Fc receptor (FcRn) and EGFR and show high serum stability as well as target receptor mediated cell killing at sub-nanomolar concentrations. Our results emphasize the applicability of the Fcab format for the generation of drug conjugates designed for increased penetration of solid tumors and potential FcRn-driven antibody-like pharmacokinetics.


Corresponding authors: Sebastian Jäger, ADCs & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Str. 250, D-64293Darmstadt, Germany; and Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 4, D-64287Darmstadt, Germany, E-mail: ; and Christian Schröter, ADCs & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Str. 250, D-64293 Darmstadt, Germany, E-mail:

Acknowledgements

The authors thank L. Basset for bioconjugation and analytics; S. Keller, A. Müller, C. Brunori and D. Müller-Pompalla for advice and laboratory support in protein purification; J. Schanz and R. Kellner for LC-MS measurements; J. Roßkopf for reference constructs; the manuscript anonymous reviewers for comments and suggestions.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Aubrey, N., Allard-Vannier, E., Martin, C., Bryden, F., Letast, S., Colas, C., Lakhrif, Z., Collinet, N., Dimier-Poisson, I., Chourpa, I., et al.. (2018). Site-specific conjugation of auristatins onto engineered scFv using second generation maleimide to target HER2-positive breast cancer in vitro. Bioconjugate Chem. 29: 3516–3521, https://doi.org/10.1021/acs.bioconjchem.8b00668. Search in Google Scholar

Baudino, L., Shinohara, Y., Nimmerjahn, F., Furukawa, J., Nakata, M., Martínez-Soria, E., Petry, F., Ravetch, J.V., Nishimura, S., and Izui, S. (2008). Crucial role of aspartic acid at position 265 in the CH2 domain for murine IgG2a and IgG2b Fc-associated effector functions. J. Immunol. 181: 6664–6669, https://doi.org/10.4049/jimmunol.181.9.6664. Search in Google Scholar

Boni, V., Sharma, M.R., and Patnaik, A. (2020). The resurgence of antibody drug conjugates in cancer therapeutics: novel targets and payloads. Am. Soc. Clin. Oncol. Educ. Book 40: e58–e74, https://doi.org/10.1200/edbk_281107. Search in Google Scholar

Cao, L., Li, Q., Tong, Z., Xing, Y., Xu, K., Yijia Wang, J., Li, W., Zhao, J., Zhao, L., and Hong, Z. (2020). HER2-specific immunotoxins constructed based on single-domain antibodies and the improved toxin PE24X7. Int. J. Pharm. 574: 118939, https://doi.org/10.1016/j.ijpharm.2019.118939. Search in Google Scholar

Chen, I., Dorr, B.M., and Liu, D.R. (2011). A general strategy for the evolution of bond-forming enzymes using yeast display. Proc. Natl. Acad. Sci. U. S. A. 108: 11399–11404, https://doi.org/10.1073/pnas.1101046108. Search in Google Scholar

Deonarain, M.P. (2018). Miniaturised ‘antibody’-drug conjugates for solid tumours? Drug Discov. Today Technol. 30: 47–53, https://doi.org/10.1016/j.ddtec.2018.09.006. Search in Google Scholar

Dickgiesser, S., Rieker, M., Mueller-Pompalla, D., Schröter, C., Tonillo, J., Warszawski, S., Raab-Westphal, S., Kühn, S., Knehans, T., Könning, D., et al.. (2020). Site-specific conjugation of native antibodies using engineered microbial transglutaminases. Bioconjugate Chem. 31: 1070–1076, https://doi.org/10.1021/acs.bioconjchem.0c00061. Search in Google Scholar

Dorywalska, M., Dushin, R., Moine, L., Farias, S.E., Zhou, D., Navaratnam, T., Lui, V., Hasa-Moreno, A., Casas, M.G., Tran, T.-T., et al.. (2016). Molecular basis of valine-citrulline-PABC linker instability in site-specific ADCs and its mitigation by linker design. Mol. Canc. Therapeut. 15: 958–970, https://doi.org/10.1158/1535-7163.mct-15-1004. Search in Google Scholar

Dorywalska, M., Strop, P., Melton-Witt, J.A., Hasa-Moreno, A., Farias, S.E., Galindo Casas, M., Delaria, K., Lui, V., Poulsen, K., Loo, C., et al.. (2015). Effect of attachment site on stability of cleavable antibody drug conjugates. Bioconjugate Chem. 26: 650–659, https://doi.org/10.1021/bc5005747. Search in Google Scholar

Gébleux, R., Briendl, M., Grawunder, U., and Beerli, R.R. (2019). Sortase A enzyme-mediated generation of site-specifically conjugated antibody–drug conjugates. In: Nuijens, T. and Schmidt, M. (Eds.), Enzyme-mediated ligation methods. Methods in molecular biology. Humana, New York, pp. 1–13. Search in Google Scholar

Glassman, P.M., Walsh, L.R., Villa, C.H., Marcos-Contreras, O.A., Hood, E.D., Muzykantov, V.R., and Greineder, C.F. (2020). Molecularly engineered nanobodies for tunable pharmacokinetics and drug delivery. Bioconjugate Chem. 31: 1144–1155, https://doi.org/10.1021/acs.bioconjchem.0c00003. Search in Google Scholar

Higgins, J.P., Sarkar, A., Williams, E.T., Iberg, A., Waltzman, R., and Willert, E.K. (2020). Abstract P1-18-35: MT-5111, a novel HER2 targeting engineered toxin body, under clinical development to overcome mechanisms of resistance to existing HER2 targeted therapies. Poster Sess. Abstr. Canc. Res. 80: P1-18–35, https://doi.org/10.1158/1538-7445.SABCS19-P1-18-35. Search in Google Scholar

Jäger, S., Wagner, T.R., Rasche, N., Kolmar, H., Hecht, S., and Schröter, C. (2021). Generation and biological evaluation of Fc antigen binding fragment-drug conjugates as a novel antibody-based format for targeted drug delivery. Bioconjugate Chem. 32: 1699–1710, https://doi.org/10.1021/acs.bioconjchem.1c00240. Search in Google Scholar

Khongorzul, P., Ling, C.J., Khan, F.U., Ihsan, A.U., and Zhang, J. (2020). Antibody-drug conjugates: a comprehensive review. Mol. Canc. Res. 18: 3–19, https://doi.org/10.1158/1541-7786.mcr-19-0582. Search in Google Scholar

Leung, K.M., Batey, S., Rowlands, R., Isaac, S.J., Jones, P., Drewett, V., Carvalho, J., Gaspar, M., Weller, S., Medcalf, M., et al.. (2015). A HER2-specific modified Fc fragment (Fcab) induces antitumor effects through degradation of HER2 and apoptosis. Mol. Ther. 23: 1722–1733, https://doi.org/10.1038/mt.2015.127. Search in Google Scholar

Li, Q., Barrett, A., Vijayakrishnan, B., Tiberghien, A., Beard, R., Rickert, K.W., Allen, K.L., Christie, R.J., Marelli, M., Harper, J., et al.. (2019). Improved inhibition of tumor growth by diabody-drug conjugates via half-life extension. Bioconjugate Chem. 30: 1232–1243, https://doi.org/10.1021/acs.bioconjchem.9b00170. Search in Google Scholar

Li, Z., Li, Y., Chang, H.P., Chang, H.Y., Guo, L., and Shah, D.K. (2019). Effect of size on solid tumor disposition of protein therapeutics. Drug Metab. Dispos. 47: 1136–1145, https://doi.org/10.1124/dmd.119.087809. Search in Google Scholar

Liu, W., Zhao, W., Bai, X., Jin, S., Li, Y., Qiu, C., Pan, L., Ding, D., Xu, Y., Zhou, Z., et al.. (2019). High antitumor activity of Sortase A-generated anti-CD20 antibody fragment drug conjugates. Eur. J. Pharmaceut. Sci. 134: 81–92, https://doi.org/10.1016/j.ejps.2019.04.015. Search in Google Scholar

Lobner, E., Traxlmayr, M.W., Obinger, C., and Hasenhindl, C. (2016). Engineered IgG1-Fc – one fragment to bind them all. Immunol. Rev. 270: 113–131, https://doi.org/10.1111/imr.12385. Search in Google Scholar

Mahalingaiah, P.K., Ciurlionis, R., Durbin, K.R., Yeager, R.L., Philip, B.K., Bawa, B., Mantena, S.R., Enright, B.P., Liguori, M.J., and Van Vleet, T.R. (2019). Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol. Ther. 200: 110–125, https://doi.org/10.1016/j.pharmthera.2019.04.008. Search in Google Scholar

Mullard, A. (2020). FDA approves first BCMA-targeted therapeutic. Nat. Rev. Drug Discov. 19: 659, https://doi.org/10.1038/d41573-020-00157-2. Search in Google Scholar

Mullard, A. (2021). FDA approves ADC therapeutics’ loncastuximab tesirine, ushering in a new cytotoxic payload. Nat. Rev. Drug Discov. 20: 414, https://doi.org/10.1038/d41573-021-00082-y. Search in Google Scholar

Nath, N., Godat, B., Zimprich, C., Dwight, S.J., Corona, C., McDougall, M., and Urh, M. (2016). Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye. J. Immunol. Methods 431: 11–21, https://doi.org/10.1016/j.jim.2016.02.001. Search in Google Scholar

Nessler, I., Khera, E., Vance, S., Kopp, A., Qiu, Q., Keating, T.A., Abu-Yousif, A.O., Sandal, T., Legg, J., Thompson, L., et al.. (2020). Increased tumor penetration of single-domain antibody-drug conjugates improves in vivo efficacy in prostate cancer models. Canc. Res. 80: 1268–1278, https://doi.org/10.1158/0008-5472.can-19-2295. Search in Google Scholar

Ruddle, B.T., Fleming, R., Wu, H., Gao, C., and Dimasi, N. (2019). Characterization of disulfide bond rebridged Fab–drug conjugates prepared using a dual maleimide pyrrolobenzodiazepine cytotoxic payload. ChemMedChem 14: 1185–1195, https://doi.org/10.1002/cmdc.201900077. Search in Google Scholar

Shen, B., Xu, K., Liu, L., Raab, H., Bhakta, S., Kenrick, M., Parsons-Reponte, K.L., Tien, J., Yu, S., Mai, E., et al.. (2012). Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotechnol. 30: 184–189, https://doi.org/10.1038/nbt.2108. Search in Google Scholar

Shields, R.L., Namenuk, A.K., Hong, K., Meng, Y.G., Rae, J., Briggs, J., Xie, D., Lai, J., Stadlen, A., Li, B., et al.. (2001). High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J. Biol. Chem. 276: 6591–6604, https://doi.org/10.1074/jbc.m009483200. Search in Google Scholar

Strop, P., Liu, S., Dorywalska, M., Delaria, K., Dushin, R.G., Tran, T., Ho, W., Farias, S., Casas, M.G., Abdiche, Y., et al.. (2013). Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem. Biol. 20: 161–167, https://doi.org/10.1016/j.chembiol.2013.01.010. Search in Google Scholar

Syed, Y.Y. (2020). Sacituzumab govitecan: first approval. Drugs 80: 1019–1025, https://doi.org/10.1007/s40265-020-01337-5. Search in Google Scholar

Thurber, G.M., Schmidt, M.M., and Wittrup, K.D. (2008). Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv. Drug Deliv. Rev. 60: 1421–1434, https://doi.org/10.1016/j.addr.2008.04.012. Search in Google Scholar

Tuna, M., Leung, K.-M., Sun, H., Medcalf, M., and Isaac, S. (2018). EGFR binding molecules. CA3030505A1. Search in Google Scholar

Wozniak-Knopp, G., Bartl, S., Bauer, A., Mostageer, M., Woisetschläger, M., Antes, B., Ettl, K., Kainer, M., Weberhofer, G., Wiederkum, S., et al.. (2010). Introducing antigen-binding sites in structural loops of immunoglobulin constant domains: Fc fragments with engineered HER2/neu-binding sites and antibody properties. Protein Eng. Des. Sel. 23: 289–297, https://doi.org/10.1093/protein/gzq005. Search in Google Scholar

Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2021-0321).

Received: 2021-07-13
Accepted: 2021-09-07
Published Online: 2021-09-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston