Abstract
Stainless steels are commonly used for high precision components, which often are exposed to corrosive media. However, their inferior tribological behaviour restrict the use of these materials in many technical applications. Thermochemical surface hardening is one way to overcome these weaknesses. Solution nitriding in the austenitic range above 1000 °C is mainly used for hardening martensitic and ferritic stainless grades. In austenitic and duplex stainless grades, however, the hardening effect is limited. Additionally, the high process temperatures combined with a necessary rapid cooling may lead to non-desired dimensional changes. Low temperature surface hardening processing below 500 °C here offers interesting alternatives for increasing the wear properties, while maintaining the corrosion resistance.
This paper demonstrates the influence of high and low process temperatures of thermochemical surface hardening treatments on the tight dimensional tolerances of a rotationally symmetrical precision component made from cold worked AISI 304. Based on these results, current and new industrial applications, which benefit from low temperature surface hardening, will be discussed.
Kurzfassung
Korrosionsbeständige Stähle werden häufig für Hochpräzisionsbauteile verwendet, die korrosiven Medien ausgesetzt sind. Ihr jedoch vergleichsweise geringes tribologisches Verhalten schränkt den Einsatz dieser Werkstoffklasse in vielen technischen Anwendungen ein. Thermochemisches Oberflächenhärten ist eine Möglichkeit, diese Einschränkung zu überwinden. Lösungsnitrieren im austenitischen Bereich über 1000 °C wird hauptsächlich zur Härtung von korrosionsbeständigen martensitischen und ferritischen Legierungen eingesetzt. Bei austenitischen und Duplex-Stählen ist der Härtungseffekt jedoch limitiert. Darüber hinaus können die hohen Prozesstemperaturen in Verbindung mit der nötigen schnellen Abkühlung zu unerwünschten maßlichen Änderungen führen. Niedertemperatur-Oberflächenhärten unter 500 °C bietet hier eine interessante Alternative zur Verbesserung der Verschleißbeständigkeit unter Beibehaltung der Korrosionsbeständigkeit.
In diesem Artikel wird der Einfluss von hohen und niedrigen Prozesstemperaturen der thermochemischen Oberflächenhärtung auf enge Maßtoleranzen eines rotationssymmetrischen Präzisionsbauteils aus kaltverformtem AISI 304 aufgezeigt. Basierend auf diesen Ergebnissen, werden aktuelle und neue industrielle Anwendungen, welche von der Niedertemperatur-Oberflächenhärtung profitieren, diskutiert.
References
1 Punov, P.: Research the Fuel Injection Characteristics of a Common-Rail Solenoid Injector. BulTrans Conference, 16.-18.09.15, Sozopol, Bulgaria, Gigov, B. (ed.), Izdatelstvo na Techničeskija universitet, Sofia, Bulgaria, 2015Search in Google Scholar
2 N. D. Institute: A Designers’ Handbook Series No 9014. Design Guidelines for the Selection and Use of Stainless Steel. American Iron and Steel Institute, Washington, USA, 2002, pp. 1–54Search in Google Scholar
3 Bell, T.; Li, C. X.: Stainless Steel – Low Temperature Nitriding and Carburizing. Adv. Mater. & Processes 160 (2002) 6, pp. 49–51Search in Google Scholar
4 Buhagiar, J.: 25 years of S-Phase. Surf. Eng. 26 (2010) 4, pp. 229–232, DOI:10.1179/026708410X1268735694875110.1179/026708410X12687356948751Search in Google Scholar
5 Mittermeijer, E. J.; Somers, M. A. J.: Thermochemical Surface Engineering of Steels. Woodhead Publishing, Kidlington, UK, 2015, pp. 581–614. – ISBN: 978-085709-592-3Search in Google Scholar
6 Zaugg, R.; Edenhofer, B.; Gräfen, W.; Bouwmann, J. W.; Berns, Hans: Fortschritte beim N-Einsatzhärten von nichtrostenden Stählen nach dem SolNit-Verfahren. HTM Z. Werkst. Wärmebeh. Fertigung 60 (2005) 1, pp. 6–11, DOI:10.3139/ 105.10031810.3139/105.100318Search in Google Scholar
7 Berns, H.; Zaugg, R.: Anwendung des Randaufstickens für nichtrostende Bauteile. HTM Z. Werkst. Wärmebeh. Fertigung 57 (2002) 6, pp. 377–382Search in Google Scholar
8 Christiansen, T. L.; Villa, M.; Tibollo, C.; Dahl, K. V.; Somers, M. A. J.: High Temperature Solution Nitriding of Stainless Steels; Current Status and Future Trends. HTM J. Heat Treatm. Mat. 75 (2020) 2, pp. 69–82, DOI:10.3139/105.11040610.3139/105.110406Search in Google Scholar
9 Ipsen: Heat Treatment of Stainless Steels Using the SolNit Process. https://www.ipsenusa.com/resources/articles-and-white-papers/heat-treating-stainless-steels,accessed 03.02.2021Search in Google Scholar
10 MacKenzie, S.: Metallurgical Aspects of Distortion and Residual Stresses in Heat Treated Parts. Conference: 23rd IFHTSE Congress on Heat Treatment and Surface Engineering. 18.-21.04.16, Savannah, GA, USA, Curran Associates, Red Hook, NY, USA, 2016, pp. 372–382. – ISBN: 9781510823709Search in Google Scholar
11 Berns, H.; Pyzalla, A.: Microstructure and residual stresses of stainless steels case hardened with nitrogen. Surf. Eng. 20 (2004) 6, pp. 459–463, DOI:10.1179/174329404X710810.1179/174329404X7108Search in Google Scholar
12 Miki, Y.; Nishimoto, A.; Tamiya, T.: X-Ray Residual Stress in the S-Phase of Stainless Steel Nitrided by a Plasma Nitriding Method and Residual Stress Measurement of a DLC Film Deposited on the S-Phase. J. Soc. of Mater. Sci. 65 (2016) 7, pp. 517–524, DOI:10.2472/jsms.65.51710.2472/jsms.65.517Search in Google Scholar
13 Jacquot, P.; Rey, O.: Kolsterising: Hardening of austenitic stainless steel. Surf. Eng. 18 (2002) 6, pp. 412–414, DOI:10.1179/sur.2002.18.6.41210.1179/sur.2002.18.6.412Search in Google Scholar
14 Vici & C S.p.A: MTL Optical Measuring Machines. Brochure ViviVision, Italy, 2020, http://klontech.com/wp-content/uploads/2020/06/vicivision_MTL-1.pdfSearch in Google Scholar
15 Deutsches Institut für Normung e.V.: DIN EN ISO 643:2020-06: Steels – Micrographic determination of the apparent grain size. Beuth, Berlin, DOI:10.31030/314169510.31030/3141695Search in Google Scholar
16 Padilha, A. F.; Plaut, R. L.; Rios, P. R.: Annealing of Cold-Worked Austenitic Stainless Steels. ISI Int. 43 (2003) 2, pp. 135–143, DOI:10.2355/isijinternational.43.13510.2355/isijinternational.43.135Search in Google Scholar
17 Cummins Filtration: Diesel Exhaust Fluid (DEF) Q & A, MB10033-Rev10, USA, 200910.1016/S1365-6937(09)70106-6Search in Google Scholar
18 Williams, M.; Minjares, R.: A technical summary of Euro 6/VI vehicle emission standards. The International Council on clean transportation (icct), 2016, open accessSearch in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany