Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag July 12, 2015

Modeling Interruption and Resumption in a Smartphone Task: An ACT-R Approach

Maria Wirzberger and Nele Russwinkel
From the journal i-com

Abstract

This research aims to inspect human cognition when being interrupted while performing a smartphone task with varying levels of mental demand. Due to its benefits especially in the early stages of interface development, a cognitive modeling approach is used. It applies the cognitive architecture ACT-R to shed light on task-related cognitive processing. The inspected task setting involves a shopping scenario, manipulating interruption via product advertisements and mental demands by the respective number of people shopping is done for. Model predictions are validated through a corresponding experimental setting with 62 human participants. Comparing model and human data in a defined set of performance-related parameters displays mixed results that indicate an acceptable fit – at least in some cases. Potential explanations for the observed differences are discussed at the end.

Altmann, E.M and J.G. Trafton. 2002. Memory for goals: an activation-based model, Cogn. Sci. 26: 39–83.Search in Google Scholar

Anderson, J.R. 2007. How can the human mind occur in the physical universe? Oxford University Press, New York.Search in Google Scholar

Anderson, J.R. and C. Lebiere. (1998). The atomic components of thought. Erlbaum, Mahwah, NJ.Search in Google Scholar

Anderson, J.R., L.M. Reder and C. Lebiere. 1996. Working memory: activation limitations on retrieval, Cogn. Psychol. 30: 221–256.Search in Google Scholar

Borst, J.P. and J.R. Anderson. 2015. Using the ACT-R cognitive architecture in combination with fMRI data. In: (B.U. Forstmann and E.-J. Wagenmakers, eds) An Introduction to model-based cognitive neuroscience. Springer Science + Business Media, New York, pp. 339–352Search in Google Scholar

Borst, J.P., N.A. Taatgen and H. van Rijn. 2015. What makes interruptions disruptive? A process-model account of the effects of the problem state bottleneck on task interruption and resumption. In: Proceedings of the CHI 2015, April 18–23 2015. ACM Press, Seoul, Republic of Korea.Search in Google Scholar

Brixey, J.J., D.J. Robinson, C.W. Johnson, T.R. Johnson, J.P. Turley and J. Zhang. 2007. A concept analysis of the phenomenon interruption. Adv. Nurs. Sci. 30(1): E26–E42.Search in Google Scholar

Cowan, N. 2010. The magical mystery four: how is working memory capacity limited, and why? Curr. Dir. Psychol. Sci. 19(1): 51–57.Search in Google Scholar

Cowan, N., C.C. Morey and Z. Chen, (in press). The legend of the magical number seven. In: (S. Della Sala, ed) Tall tales about the brain: things we think we know about the mind, but ain’t so. Oxford University Press.Search in Google Scholar

Gillie, T. and D.E. Broadbent. 1989. What makes interruptions disruptive? A study of length, similarity, and complexity, Psychol. Res. 50: 243–406.Search in Google Scholar

Gray, W.D., R.M. Young and S.S. Kirschenbaum. 1997. Introduction to this special issue on cognitive architectures and human-computer interaction. Hum.-Comput. Int. 12: 301–309.Search in Google Scholar

Marewski, J.N. and K. Mehlhorn. 2011. Using the ACT-R architecture to specify 39 quantitative process models of decision making. Judgm. Decis. Mak. 6: 439–519.Search in Google Scholar

McFarlane, D.C. and K.A. Latorella. 2002. The scope and importance of human interruption in human–computer interaction design. Hum.-Comput. Int. 17: 1–61.Search in Google Scholar

Miller, G.A. 1956. The magical number seven plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63: 81–97.Search in Google Scholar

Prezenski, S. and N. Russwinkel. 2014. Combining cognitive ACT-R models with usability testing reveals users mental model while shopping with a smartphone application. International Journal on Advances in Intelligent Systems, 7(3–4): 700–715.Search in Google Scholar

Salvucci, D.D. and N.A. Taatgen. 2010. The multitasking mind. Oxford University Press, New York.Search in Google Scholar

Schunn, C.D. and D. Wallach. 2005. Evaluating goodness-of-fit in comparison of models to data. In: (W. Tack, ed) Psychologie der Kognition: Reden und Vortraege anlaesslich der Emeritierung von Werner Tack. University of Saarland Press, Saarbruecken, pp. 115–154Search in Google Scholar

Statista. 2015a. Anzahl der Smartphone-Nutzer in Deutschland in den Jahren 2009 bis 2015 (in Millionen) [Amount of smartphone users in Germany from 2009 to 2015 in millions]. Retrieved from http://de.statista.com/statistik/daten/studie/198959/umfrage/anzahl-der-smartphonenutzer-in-deutschland-seit-2010/ [17 June 2015].Search in Google Scholar

Statista 2015b. Prognose zur Anzahl der Smartphone-Nutzer weltweit von 2012 bis 2018 (in Milliarden) [Predicted amount of smartphone users worldwide from 2012 to 2018 in billions]. Retrieved from http://de.statista.com/statistik/daten/studie/309656/umfrage/prognose-zur-anzahl-der-smartphone-nutzer-weltweit/ [17 June 2015].Search in Google Scholar

Trafton, J.G., E.M. Altmann, D.P. Brock and F.E. Mintz. 2003. Preparing to resume an interrupted task: effects of prospective goal encoding and retrospective rehearsal. Int. J. Hum.-Comput. St. 58: 583–603.Search in Google Scholar

Wickens, C.D., J.G. Hollands, S. Banbury and R Parasuraman. 2013. Engineering psychology and human performance. 4th edition. Pearson Education, Upper Saddle River, New Jersey.Search in Google Scholar

Published Online: 2015-07-12
Published in Print: 2015-08-01

© 2015 Walter de Gruyter GmbH, Berlin/Boston