Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 24, 2022

A parametric approach to relaxing the independence assumption in relative survival analysis

  • Reuben Adatorwovor ORCID logo EMAIL logo , Aurelien Latouche and Jason P. Fine

Abstract

With known cause of death (CoD), competing risk survival methods are applicable in estimating disease-specific survival. Relative survival analysis may be used to estimate disease-specific survival when cause of death is either unknown or subject to misspecification and not reliable for practical usage. This method is popular for population-based cancer survival studies using registry data and does not require CoD information. The standard estimator is the ratio of all-cause survival in the cancer cohort group to the known expected survival from a general reference population. Disease-specific death competes with other causes of mortality, potentially creating dependence among the CoD. The standard ratio estimate is only valid when death from disease and death from other causes are independent. To relax the independence assumption, we formulate dependence using a copula-based model. Likelihood-based parametric method is used to fit the distribution of disease-specific death without CoD information, where the copula is assumed known and the distribution of other cause of mortality is derived from the reference population. We propose a sensitivity analysis, where the analysis is conducted across a range of assumed dependence structures. We demonstrate the utility of our method through simulation studies and an application to French breast cancer data.


Corresponding author: Reuben Adatorwovor, University of Kentucky, Lexington, USA, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix A

Table 5:

Gumbel model: estimated parameters of the Weibull model for T 1 across samples sizes (N), dependence levels (τ ken) and levels of censoring (C) treating T 2 as a competing event and vice versa.

τ ken C 0.10 0.50
N η ̂ Mean Biasa ModBa EMPa CP Mean Biasa ModBa EMPa CP
0.00 1000 λ 1 ̂ 0.182 −0.080 0.090 0.090 0.940 0.182 −0.290 0.150 0.170 0.928
α 1 ̂ 1.610 0.790 1.420 1.560 0.938 1.611 1.980 2.620 2.720 0.950
5000 λ 1 ̂ 0.182 −0.050 0.020 0.020 0.948 0.182 0.050 0.030 0.030 0.958
α 1 ̂ 1.610 0.520 0.280 0.280 0.954 1.610 0.290 0.520 0.530 0.956
1000 λ 2 ̂ 0.748 5.980 9.940 10.270 0.936 0.746 3.650 14.410 15.320 0.922
α 2 ̂ 0.694 0.840 6.790 7.020 0.944 0.697 4.070 8.490 0.010 0.948
5000 λ 2 ̂ 0.743 0.630 1.870 1.640 0.962 0.743 1.000 2.700 2.460 0.968
α 2 ̂ 0.693 0.100 1.340 1.210 0.962 0.693 0.280 1.680 1.530 0.958
0.25 1000 λ 1 ̂ 0.182 −0.480 0.080 0.080 0.948 0.182 −0.450 0.140 0.130 0.954
α 1 ̂ 1.610 1.490 1.310 1.340 0.952 1.613 3.960 2.480 2.840 0.934
5000 λ 1 ̂ 0.182 −0.050 0.020 0.020 0.956 0.182 −0.130 0.030 0.030 0.940
α 1 ̂ 1.609 −0.250 0.260 0.240 0.956 1.610 0.590 0.500 0.460 0.950
1000 λ 2 ̂ 0.753 10.920 14.700 14.430 0.938 0.760 18.430 20.460 20.810 0.946
α 2 ̂ 0.690 −3.170 8.240 7.930 0.954 0.687 −5.930 10.080 9.900 0.944
5000 λ 2 ̂ 0.741 −0.950 2.690 2.530 0.950 0.742 0.260 3.620 3.580 0.964
α 2 ̂ 0.695 1.940 1.610 1.480 0.958 0.695 2.260 1.960 1.940 0.948
0.50 1000 λ 1 ̂ 0.182 −0.030 0.070 0.070 0.956 0.182 −0.260 0.120 0.120 0.954
α 1 ̂ 1.611 2.270 1.270 1.300 0.948 1.613 3.840 2.380 2.710 0.928
5000 λ 1 ̂ 0.182 0.010 0.010 0.020 0.946 1.824 0.040 0.020 0.030 0.956
α 1 ̂ 1.609 −0.340 0.250 0.240 0.954 1.610 0.450 0.480 0.510 0.932
1000 λ 2 ̂ 0.759 17.440 19.080 20.140 0.932 0.767 25.540 25.050 25.330 0.932
α 2 ̂ 0.688 −5.180 9.440 9.910 0.944 0.684 −9.170 11.210 11.510 0.940
5000 λ 2 ̂ 0.740 −1.580 3.360 3.380 0.944 0.744 1.620 4.340 4.660 0.946
α 2 ̂ 0.695 1.720 1.820 1.870 0.936 0.692 −0.750 2.150 2.270 0.944
0.75 1000 λ 1 ̂ 0.182 −0.200 0.060 0.070 0.956 0.182 −0.260 0.100 0.100 0.948
α 1 ̂ 1.610 0.490 1.060 1.520 0.936 1.612 2.660 2.090 2.370 0.942
5000 λ 1 ̂ 0.182 0.050 0.010 0.010 0.948 0.182 −0.020 0.020 0.020 0.952
α 1 ̂ 1.609 −0.010 0.210 0.210 0.944 1.609 −0.120 0.420 0.450 0.948
1000 λ 2 ̂ 0.760 17.780 20.190 20.360 0.938 0.766 24.200 26.040 25.790 0.952
α 2 ̂ 0.689 −4.600 9.870 10.440 0.946 0.685 −7.510 11.580 11.590 0.956
5000 λ 2 ̂ 0.742 −0.190 3.540 3.770 0.946 0.743 0.830 4.440 4.540 0.950
α 2 ̂ 0.694 0.550 1.900 1.990 0.930 0.693 0.350 2.210 2.280 0.944
  1. η ̂ : estimated parameters, ModB: model-based variance, EMP: empirical variance, CP: 95% coverage probability. a: ×10−3.

A.1 Simulation results for Gumbel and Clayton Copula models

We simulated data to mimic the French breast cancer data set for sample sizes; 1000, and 5000 with 500 replications. The latent failure times for T j Weibull(α j , λ j ) with probability density function defined in Section 3. The parameters for the Weibull distribution for T 1 were λ 1 = 0.182 and α 1 = 1.609, while those for T 2 were λ 2 = 0.742 and α 2 = 0.693. In the estimation of λ 1, α 1 for T 1, λ 2, α 2 are assumed known for T 2, and vice versa for estimation of λ 2, α 2. Noninformative censoring times were generated from a uniform distribution (0, γ), where γ was chosen for 10, 30 and 50% censoring. We consider the Clayton copula with Kendall’s tau, τ k e n = θ θ + 2 = 0 , 0.25 , 0.50 , 0.75 . Initial parameter values were randomly chosen from uniform distributions, with multiple starting values as described in Section 3. The simulation results based on the Clayton copula are presented in Table 6 below.

Table 6:

Clayton Model: Estimated parameters of the Weibull model for T 1 across samples sizes (N), dependence levels (τ ken) and levels of censoring (C) treating T 2 as a competing event and vice versa.

τ ken C 0.10 0.50
N η ̂ Mean Biasa ModBa EMPa CP Mean Biasa ModBa EMPa CP
0.00 1000 λ 1 ̂ 0.182 0.000 0.080 0.090 0.948 0.182 −0.340 0.140 0.160 0.930
α 1 ̂ 1.610 0.710 1.390 1.520 0.942 1.611 1.820 2.490 2.540 0.948
5000 λ 1 ̂ 0.182 −0.020 0.020 0.020 0.942 0.182 0.060 0.030 0.030 0.946
α 1 ̂ 1.610 0.520 0.280 0.280 0.956 1.610 0.710 0.500 0.510 0.952
1000 λ 1 ̂ 0.747 5.910 9.750 9.910 0.940 0.746 3.570 14.010 14.150 0.922
α 1 ̂ 0.694 0.780 6.720 6.950 0.948 0.696 3.840 8.360 8.590 0.956
5000 λ 1 ̂ 0.742 0.690 1.840 1.610 0.962 0.742 0.880 2.640 2.380 0.964
α 1 ̂ 0.693 0.050 1.330 1.200 0.962 0.693 0.320 1.650 1.490 0.956
0.25 1000 λ 1 ̂ 0.182 −0.010 0.070 0.080 0.952 0.182 −0.670 0.130 0.110 0.964
α 1 ̂ 1.610 0.560 1.280 1.410 0.930 1.611 1.870 2.390 0.220 0.952
5000 λ 1 ̂ 0.182 −0.180 0.010 0.010 0.946 0.182 −0.120 0.020 0.020 0.940
α 1 ̂ 1.609 −0.310 0.230 0.230 0.950 1.609 −0.030 0.430 0.450 0.958
1000 λ 1 ̂ 0.751 9.200 16.630 17.220 0.924 0.749 7.170 21.000 1.610 0.914
α 2 ̂ 0.693 0.200 8.520 8.840 0.940 0.696 2.890 10.090 10.680 0.942
5000 λ 2 ̂ 0.742 0.460 2.980 2.690 0.952 0.744 2.080 3.840 3.690 0.940
α 2 ̂ 0.693 0.550 1.660 1.54 0.950 0.693 0.140 1.980 1.930 0.942
0.50 1000 λ 1 ̂ 0.182 −0.090 0.060 0.050 0.956 0.182 −0.440 0.100 0.100 0.964
α 1 ̂ 1.608 −0.980 1.030 1.090 0.952 1.612 2.580 2.020 2.060 0.968
5000 λ 1 ̂ 0.182 −0.180 0.010 0.010 0.936 0.182 −0.180 0.020 0.020 0.940
α 1 ̂ 1.609 −0.190 0.200 0.210 0.952 1.610 0.240 0.400 0.410 0.948
1000 λ 2 ̂ 0.750 9.020 17.470 18.370 0.924 0.748 6.530 21.500 22.090 0.912
α 2 ̂ 0.693 0.390 8.850 9.390 0.928 0.696 3.120 10.350 11.080 0.930
5000 λ 2 0.742 0.070 3.170 2.870 0.948 0.744 2.400 3.970 3.760 0.944
α 2 0.693 0.460 1.730 1.620 0.950 0.693 −0.080 2.040 1.960 0.948
0.75 1000 λ 1 ̂ 0.182 0.130 0.040 0.040 0.944 0.182 −0.050 0.080 0.080 0.937
α 1 ̂ 1.609 0.030 7e-04 0.860 0.924 1.610 1.120 1.410 1.450 0.947
5000 λ 1 ̂ 0.182 −0.120 0.010 0.010 0.940 0.182 −0.040 0.020 0.020 0.948
α 1 ̂ 1.609 0.040 0.140 0.160 0.936 1.610 0.780 0.270 0.320 0.926
1000 λ 1 ̂ 0.747 4.900 13.000 14.790 0.924 0.744 1.780 16.030 17.270 0.928
α 1 ̂ 0.694 1.460 8.370 9.630 0.924 0.697 4.230 9.660 10.980 0.932
5000 λ 1 ̂ 0.743 1.160 2.440 2.120 0.966 0.744 1.920 3.040 2.590 0.966
α 1 ̂ 0.693 −0.090 1.650 1.490 0.970 0.693 −0.470 1.910 1700 0.962
  1. η ̂ : estimated parameters, ModB: model-based variance, EMP: empirical variance, CP: 95% coverage probability. a: ×10−3.

References

1. Sturgeon, KM, Deng, L, Bluethmann, SM, Zhou, S, Trifiletti, DM, Jiang, C, et al.. A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur Heart J 2019;40:3889–97. https://doi.org/10.1093/eurheartj/ehz766.Search in Google Scholar PubMed PubMed Central

2. Brinkhof, MW, Spycher, BD, Yiannoutsos, C, Weigel, R, Wood, R, Messou, E, et al.. Adjusting mortality for loss to follow-up: analysis of five ART programmes in sub-Saharan Africa. PLoS One 2010;5:e14149. https://doi.org/10.1371/journal.pone.0014149.Search in Google Scholar PubMed PubMed Central

3. Gichangi, A, Vach, W. The analysis of competing risks data: a guided tour. Stat Med 2005;132:1–41.Search in Google Scholar

4. Mieno, MN, Tanaka, N, Arai, T, Kawahara, T, Kuchiba, A, Ishikawa, S, et al.. Accuracy of death certificates and assessment of factors for misclassification of underlying cause of death. J Epidemiol 2016;26:191–8. https://doi.org/10.2188/jea.je20150010.Search in Google Scholar PubMed PubMed Central

5. Percy, C, Stanek, E3rd, Gloeckler, L. Accuracy of cancer death certificates and its effect on cancer mortality statistics. Am J Publ Health 1981;71:242–50. https://doi.org/10.2105/ajph.71.3.242.Search in Google Scholar PubMed PubMed Central

6. Welch, HG, Black, WC. Are deaths within 1 month of cancer-directed surgery attributed to cancer? J Natl Cancer Inst 2002;94:1066–70. https://doi.org/10.1093/jnci/94.14.1066.Search in Google Scholar PubMed

7. World Health Organization. World Health Classification: Manual of the International Statistical Classification of Diseases, Injuries and Causes of Death, Ninth Revision. Geneva, Switzerland: World Health Organization; 1977.Search in Google Scholar

8. Kaplan, EL, Meier, P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958;53:457–81. https://doi.org/10.1080/01621459.1958.10501452.Search in Google Scholar

9. Bland, JM, Altman, DG. The logrank test. Br Med J 2004;328:1073. https://doi.org/10.1136/bmj.328.7447.1073.Search in Google Scholar PubMed PubMed Central

10. Cox, DR. Regression models and life tables (with discussion). J Roy Stat Soc B 1972;34:187–200. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x.Search in Google Scholar

11. Aalen, OO, Johansen, S. An empirical transition matrix for non-homogeneous Markov chains based on censored observations. Scand J Stat 1978:141–50.Search in Google Scholar

12. Gray, RJ. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat 1988;16:1141–54. https://doi.org/10.1214/aos/1176350951.Search in Google Scholar

13. Fine, JP, Gray, RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 1999;94:496–509. https://doi.org/10.1080/01621459.1999.10474144.Search in Google Scholar

14. Ederer, F. The relative survival rate: a statistical methodology. NCI Monograph 1961;6:101–21.Search in Google Scholar

15. Cronin, KA, Feuer, EJ. Cumulative cause-specific mortality for cancer patients in the presence of other causes: a crude analogue of relative survival. Stat Med 2000;19:1729–40. https://doi.org/10.1002/1097-0258(20000715)19:13<1729::aid-sim484>3.0.co;2-9.10.1002/1097-0258(20000715)19:13<1729::AID-SIM484>3.0.CO;2-9Search in Google Scholar

16. Suissa, S. Relative excess risk: an alternative measure of comparative risk. Am J Epidemiol 1999;150:279–82. https://doi.org/10.1093/oxfordjournals.aje.a009999.Search in Google Scholar

17. Berkson, J, Gage, RP. Calculation of survival rates for cancer. Proc Staff Meet Mayo Clin 1950;25:270.Search in Google Scholar

18. Hakulinen, T. Cancer survival corrected for heterogeneity in patient withdrawal. Biometrics 1982:933–42. https://doi.org/10.2307/2529873.Search in Google Scholar

19. Perme, MP, Stare, J, Estève, J. On estimation in relative survival. Biometrics 2012;68:113–20. https://doi.org/10.1111/j.1541-0420.2011.01640.x.Search in Google Scholar

20. Kodre, AR, Perme, MP. Informative censoring in relative survival. Stat Med 2013;32:4791–802. https://doi.org/10.1002/sim.5877.Search in Google Scholar

21. Nixon, AJ, Neuberg, D, Hayes, DF, Gelman, R, Connolly, JL, Schnitt, S, et al.. Relationship of patient age to pathologic features of the tumor and prognosis for patients with stage I or II breast cancer. J Clin Oncol 1994;12:888–94. https://doi.org/10.1200/jco.1994.12.5.888.Search in Google Scholar

22. Sasieni, P, Brentnall, AR. On standardized relative survival. Biometrics 2017;73:473–82. https://doi.org/10.1111/biom.12578.Search in Google Scholar

23. Hakulinen, T, Seppä, K, Lambert, PC. Choosing the relative survival method for cancer survival estimation. Eur J Cancer 2011;47:2202–10. https://doi.org/10.1016/j.ejca.2011.03.011.Search in Google Scholar

24. Bolard, P, Quantin, C, Abrahamowicz, M, Esteve, J, Giorgi, R, Chadha-Boreham, H, et al.. Assessing time-by-covariate interactions in relative survival models using restrictive cubic spline functions. J Cancer Epidemiol Prev 2002;7:113–22.Search in Google Scholar

25. Giorgi, R, Abrahamowicz, M, Quantin, C, Bolard, P, Esteve, J, Gouvernet, J, et al.. A relative survival regression model using B-spline functions to model non-proportional hazards. Stat Med 2003;22:2767–84. https://doi.org/10.1002/sim.1484.Search in Google Scholar

26. Mahboubi, A, Abrahamowicz, M, Giorgi, R, Binquet, C, Bonithon-Kopp, C, Quantin, C. Flexible modeling of the effects of continuous prognostic factors in relative survival. Stat Med 2011;30:1351–65. https://doi.org/10.1002/sim.4208.Search in Google Scholar

27. Nelson, CP, Lambert, PC, Squire, IB, Jones, DR. Flexible parametric models for relative survival, with application in coronary heart disease. Stat Med 2007;26:5486–98. https://doi.org/10.1002/sim.3064.Search in Google Scholar PubMed

28. Charvat, H, Remontet, L, Bossard, N, Roche, L, Dejardin, O, Rachet, B, et al.. A multilevel excess hazard model to estimate net survival on hierarchical data allowing for non-linear and non-proportional effects of covariates. Stat Med 2016;35:3066–84. https://doi.org/10.1002/sim.6881.Search in Google Scholar PubMed

29. Rubio, FJ, Remontet, L, Jewell, NP, Belot, A. On a general structure for hazard-based regression models: an application to population-based cancer research. Stat Methods Med Res 2019;28:2404–17. https://doi.org/10.1177/0962280218782293.Search in Google Scholar PubMed

30. Deheuvels, P. Caractérisation complète des lois extrêmes multivariées et de la convergence des types extrêmes. Publ. Inst. Statist. Univ. Paris 1978;23:1–36.Search in Google Scholar

31. Oakes, D. A model for association in bivariate survival data. J Roy Stat Soc B 1982;44:414–22. https://doi.org/10.1111/j.2517-6161.1982.tb01222.x.Search in Google Scholar

32. Heckman, JJ, Honoré, BE. The identifiability of the competing risks model. Biometrika 1989;76:325–30. https://doi.org/10.1093/biomet/76.2.325.Search in Google Scholar

33. Fine, JP, Jiang, H, Chappell, R. On semi-competing risks data. Biometrika 2001;88:907–19. https://doi.org/10.1093/biomet/88.4.907.Search in Google Scholar

34. Tsiatis, A. A nonidentifiability aspect of the problem of competing risks. Proc Natl Acad Sci Unit States Am 1975;72:20–2. https://doi.org/10.1073/pnas.72.1.20.Search in Google Scholar PubMed PubMed Central

35. Prentice, RL, Kalbfleisch, JD, Peterson, AVJr, Flournoy, N, Farewell, VT, Breslow, NE. The analysis of failure times in the presence of competing risks. Biometrics 1978:541–54. https://doi.org/10.2307/2530374.Search in Google Scholar

36. Bäuerle, N, Müller, A. Modeling and comparing dependencies in multivariate risk portfolios. ASTIN Bulletin. J IAA 1998;28:59–76. https://doi.org/10.2143/ast.28.1.519079.Search in Google Scholar

37. Denuit, M, Lefevre, C, Mesfioui, MH. On s-convex stochastic extrema for arithmetic risks. Insur Math Econ 1999;25:143–55. https://doi.org/10.1016/s0167-6687(99)00030-x.Search in Google Scholar

38. Müller, A. Orderings of risks: a comparative study via stop-loss transforms. Insur Math Econ 1996;17:215–22. https://doi.org/10.1016/0167-6687(96)90002-5.Search in Google Scholar

39. Venter, GG. Tails of copulas. Proc Casualty Actuarial Soc 2002;89:68–113.Search in Google Scholar

40. Bernstein, S. Sur les fonctions absolument monotones. Acta Math 1929;52:1–66. https://doi.org/10.1007/bf02592679.Search in Google Scholar

41. McNeil, AJ, Nešlehová, J. Multivariate Archimedean copulas, d-monotone functions and l-norm symmetric distributions. Ann Stat 2009;37:3059–97. https://doi.org/10.1214/07-aos556.Search in Google Scholar

42. Genest, C, MacKay, J. The joy of copulas: bivariate distributions with uniform marginals. Am Statistician 1986;40:280–3. https://doi.org/10.1080/00031305.1986.10475414.Search in Google Scholar

43. Fréchet, M. Sur les tableaux de corrélation dont les marges sont données. Ann. Univ. Lyon, 3e serie, Sciences, Sect. A 1951;14:53–77.Search in Google Scholar

44. Hoeffding, W. Masstabinvariante korrelationstheorie. Berlin: Schriften des Mathematischen Instituts und Instituts fur Angewandte Mathematik der Universitat Berlin; 1940, vol 5:181–233 pp.Search in Google Scholar

45. Nelder, JA, Mead, R. A simplex method for function minimization. Comput J 1965;7:308–13. https://doi.org/10.1093/comjnl/7.4.308.Search in Google Scholar

46. Schaffar, R, Rachet, B, Belot, A, Woods, LM. Estimation of net survival for cancer patients: relative survival setting more robust to some assumption violations than cause-specific setting, a sensitivity analysis on empirical data. Eur J Cancer 2017;72:78–83. https://doi.org/10.1016/j.ejca.2016.11.019.Search in Google Scholar

47. Dickman, PW, Sloggett, A, Hills, M, Hakulinen, T. Regression models for relative survival. Stat Med 2004;23:51–64. https://doi.org/10.1002/sim.1597.Search in Google Scholar

48. Sarfati, D, Blakely, T, Pearce, N. Measuring cancer survival in populations: relative survival vs cancer-specific survival. Int J Epidemiol 2010;39:598–610. https://doi.org/10.1093/ije/dyp392.Search in Google Scholar

49. Zahl, PH. Frailty modelling for the excess hazard. Stat Med 1997;16:1573–85. https://doi.org/10.1002/(sici)1097-0258(19970730)16:14<1573::aid-sim585>3.0.co;2-q.10.1002/(SICI)1097-0258(19970730)16:14<1573::AID-SIM585>3.0.CO;2-QSearch in Google Scholar

50. Louzada, F, Cancho, VG, Yiqi, B. The log-Weibull-negative-binomial regression model under latent failure causes and presence of randomized activation schemes. Statistics 2015;49:930–49. https://doi.org/10.1080/02331888.2014.925900.Search in Google Scholar

51. Reason, J. The contribution of latent human failures to the breakdown of complex systems. Philos Trans R Soc Lond B Biol Sci 1990;327:475–84. https://doi.org/10.1098/rstb.1990.0090.Search in Google Scholar PubMed

52. Slud, EV, Byar, DP, Schatzkin, A, Prentice, R, Kalbfleisch, J. Dependent competing risks and the latent-failure model. Biometrics 1988;44:1203–5. https://doi.org/10.2307/2531915.Search in Google Scholar

53. Danieli, C, Remontet, L, Bossard, N, Roche, L, Belot, A. Estimating net survival: the importance of allowing for informative censoring. Stat Med 2012;31:775–86.10.1002/sim.4464Search in Google Scholar PubMed

54. Lambert, PC, Smith, LK, Jones, DR, Botha, JL. Additive and multiplicative covariate regression models for relative survival incorporating fractional polynomials for time-dependent effects. Stat Med 2005;24:3871–85. https://doi.org/10.1002/sim.2399.Search in Google Scholar PubMed

55. Remontet, L, Bossard, N, Belot, A, Esteve, J, French Network of Cancer Registries FRANCIM. An overall strategy based on regression models to estimate relative survival and model the effects of prognostic factors in cancer survival studies. Stat Med 2007;26:2214–28. https://doi.org/10.1002/sim.2656.Search in Google Scholar PubMed

Received: 2021-02-21
Revised: 2021-12-05
Accepted: 2021-12-22
Published Online: 2022-01-24

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.3.2023 from https://www.degruyter.com/document/doi/10.1515/ijb-2021-0016/html
Scroll Up Arrow