Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 21, 2016

Synthesis and Optical Properties of Sb-Doped CdS Photocatalysts and Their Use in Methylene Blue (MB) Degradation

  • Irem Firtina Ertis EMAIL logo and Ismail Boz


Sb-CdS catalysts with good crystalline structure were prepared by chemical precipitation and hydrothermal method. The results showed that hydrothermal treatment is an effective method to prepare CdS based catalysts of hexagonal structure. Single Sb2S3 catalyst has spherical and Sb doped CdS catalysts have hexagonal structure. Sb doped CdS which is prepared by Na2S with chemical precipitation, has cubic structure. The band gap energies of Sb doped CdS photocatalysts were estimated using UV-visible reflectance spectra to be about the range of 2.35–2.57 eV. In particular, the photoluminescence (PL) spectra show enhancing emission peaks that strongly decrease with a doping Sb where the catalyst was prepared with ethylenediamine (EDA) and thioacetamide (TAA), has shown the lowest luminescence intensity. Photocatalytic degradation of methylene blue was carried out using Sb doped and Sb2S3-CdS binary catalysts under a 400 W medium-pressure mercury lamp of visible light irradiation (λ>420 nm). Higher photocatalytic degradation was achieved by adding Sb to CdS catalyst with using hydrothermal method and EDA as coordinating agent compare with the other catalysts. In this case the photocatalytic degradation of the Sb-CdS-EDA-TAA photocatalyst after 4 h irradiation time was about 84 %.


This work was supported by the Research Fund of Istanbul University by the Project number 12096.


1. 1. Awati, P. S., Awate, S. V., Shah, P. P., Ramaswamy, V., 2013. Photocatalytic Decomposition of Methylene Blue Using Nanocrystalline Anatase Titania Prepared by Ultrasonic Technique. Catal. Commun. 4(8), 393.10.1016/S1566-7367(03)00092-XSearch in Google Scholar

2. 2. Bagheri-Mohagheghi, M., Shahtahmasebi, N., Alinejad, M., 2008. The effect of the post-annealing temperature on the nano-structure and energy band gap of SnO2 semiconducting oxide nano-particles synthesized by polymerizing–complexing sol–gel method. Physica B. 403, 2431.10.1016/j.physb.2008.01.004Search in Google Scholar

3. 3. Bhargava, R. N., 1996. Doped Nanocrystalline Materials—Physics and Applications. J. Lumin. 70, 85.10.1016/0022-2313(96)00046-4Search in Google Scholar

4. 4. Bhargava, R. N., Gallenger, D., Hong, X., Nurmikko, A., 1994. Optical Properties of Manganese-Doped Nanocrystals of ZnS. Phys. Rev. Lett. 72, 416.10.1103/PhysRevLett.72.416Search in Google Scholar

5. 5. Cheng, B., Samulski, E. T., 2003. One-step, ambient-temperature synthesis of antimony sulfide (Sb2S3) micron-size polycrystals with a spherical morphology. Mater. Res. Bull. 38, 297.10.1016/S0025-5408(02)01031-0Search in Google Scholar

6. 6. Counio, G., Gacoin, T., Boilot, J. P., 1998. Synthesis and Photoluminescence of Cd1-x MnxS (x ≥ 5) Nanocrystals. J. Phys. Chem. B 102, 5257.10.1021/jp980511wSearch in Google Scholar

7. 7. Devendran, P., Alagesan, T., Manikandan, A., Asath Bahadur, S., Krishna Kumar, M., Rathinavel, S., Pandian, K., 2016. Sonochemical Synthesis of Bi2S3 Nanowires Using Single Source Precursor and Study of Its Electrochemical Activity. Nanosci. Nanotechnol. Lett. 8, 478–483.10.1166/nnl.2016.2111Search in Google Scholar

8. 8. Dressel, M., Gruner, G., 2002. Electrodynamics of Solids Optical Properties of Electron in Matter. Cambridge University Press, pp. 159–165.10.1119/1.1516200Search in Google Scholar

9. 9. Fuyu, Y., Parker, J. M., 1988. Quantum Size Effects in Heat Treated, Cd(S, Se) Doped Glasses. Mater. Lett. 6, 233.10.1016/0167-577X(88)90028-6Search in Google Scholar

10. 10. Han, Q., Chen, L., Wang, M., Yang, X., Lu, L., Wang, X., 2010. Low-temperature synthesis of uniform Sb2S3 nanorods and its visible-light-driven photocatalytic activities, Materials Science and Engineering. Mater. Sci. Eng. B 166, 118.10.1016/j.mseb.2009.10.010Search in Google Scholar

11. 11. Jinxin, Z., Gaoling, Z., Gaorong, H., 2007. Preparation of CdS nanoparticles by hydrothermal method in microemulsion. Front. Chem. China 2(1), 98.10.1007/s11458-007-0020-xSearch in Google Scholar

12. 12. Li, Y., Du, J., Peng, S., Xie, D., Lu, G., Li, S., 2008. Enhancement of Photocatalytic Activity of Cadmium Sulfide for Hydrogen Evolution by Photoetching. Int. J. Hydrogen Energ. 33, 2007.10.1016/j.ijhydene.2008.02.023Search in Google Scholar

13. 13. Li, Y., Hu, Y., Peng, S., Lu, G., Li, S., 2009. Synthesis of CdS Nanorods by an Ethylenediamine Assisted Hydrothermal Method for Photocatalytic Hydrogen Evolution. J. Phys. Chem. C 113, 9352.10.1021/jp901505jSearch in Google Scholar

14. 14. Li, K. Q., Huang, F. Q., Lin, X. P., 2008. Pristine narrow-bandgap Sb2S3 as a high- efficiency visible-light responsive photocatalyst. Scripta Mater. 58, 834.10.1016/j.scriptamat.2007.12.033Search in Google Scholar

15. 15. Manikandan, A., Arul Antony, S., 2014. A novel approach for the synthesis and characterization studies of Mn2+ doped CdS nano-crystals by a facile microwave combustion method. J. Supercond. Nov. Magn. 27, 2725–2733.10.1007/s10948-014-2634-9Search in Google Scholar

16. 16. Manikandan, A., Durka, M., Arul Antony, S., 2014. A novel approach for the synthesis and characterization studies of Mn2+ doped CdS nano-crystals by a facile microwave combustion method. J. Supercond. Nov. Magn. 27, 2841–2857.10.1007/s10948-014-2771-1Search in Google Scholar

17. 17. Manikandan, A., Durka, M., Arul Antony, S., 2015. Role of Mn2+ Doping on Structural, Morphological, and Opto-Magnetic Properties of Spinel MnxCo1–xFe2O4 (x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) Nanocatalysts. J. Supercond. Nov. Magn. 28, 2047–2058.10.1007/s10948-015-2987-8Search in Google Scholar

18. 18. Manikandan, A., Hema, E., Durka, M., Amutha Selvi, M., Alagesan, T., Arul Antony, S., 2015. Mn2+ Doped NiS (MnxNi1-xS: x= 0.0, 0.3 and 0.5) Nanocrystals: Structural, Morphological, Opto-magnetic and Photocatalytic Properties. J. Inorg. Organomet. Polym. 25, 804–815.10.1007/s10904-014-0163-4Search in Google Scholar

19. 19. Manikandan, A., Hema, E., Durka, M., Seevakan, K., Alagesan, T., Arul Antony, S., 2015. Room temperature ferromagnetism of magnetically recyclable photocatalyst of Cu1-xMnxFe2O4-TiO2 (0.0 ≤ x ≤ 0.5) nano-composites. J. Supercond. Nov. Magn. 28, 1783–1795.10.1007/s10948-014-2945-xSearch in Google Scholar

20. 20. Manimegalai, D. K., Manikandan, A., Moortheswaran, S., Arul Antony, S., 2015a. Magneto- Optical and Photocatalytic Properties of Magnetically Recyclable Zn1-xMnxS (x = 0.0, 0.3 and 0.5) nano-catalysts. J. Supercond. Nov. Magn. 28, 2755–2766.10.1007/s10948-015-3089-3Search in Google Scholar

21. 21. Manimegalai, D. K., Manikandan, A, Moortheswaran, S., Arul Antony, S., 2015b. One-pot microwave irradiation synthesis and characterization studies of nanostructured CdS photo-catalysts. Adv. Sci. Eng. Med. 7(8), 722–727.10.1166/asem.2015.1753Search in Google Scholar

22. 22. Meenatchi, B., Renuga, V., Manikandan, A., 2016. Size-controlled synthesis of chalcogen and chalcogenide nanoparticles using protic ionic liquids with imidazolium cation. Korean J. Chem. Eng. 33(3), 934–944.10.1007/s11814-015-0224-6Search in Google Scholar

23. 23. Mehta, S. K., Kumar, S., Chaudhary, S., Bhasin, K. K., Gradzielski, M., 2009. Evolution of ZnS nanoparticles via facile CTAB aqueous micellar solution route: a study on controlling parameters. Nanoscale Res. Lett. 4, 17.10.1007/s11671-008-9196-3Search in Google Scholar

24. 24. Murase, N., Jagannathan, R., Kanematsu, Y., Watanabe, M., Kurita, A., Hirata, K., Yazawa, T., Kushida, T., 1999. Fluorescence and EPR Characteristics of Mn2+ -Doped ZnS Nanocrystals Prepared by Aqueous Colloidal Method. J. Phys. Chem. B 103, 754.10.1021/jp9828179Search in Google Scholar

25. 25. Oliva, F., Avalle, L., Santos, E., Camara, O., 2002. Photoelectrochemical characterization of nanocrystalline TiO2 films on titanium substrates. J. Photoch. Photobio. A 146, 175.10.1016/S1010-6030(01)00614-1Search in Google Scholar

26. 26. Peng, H., Liuyang, B., Lingjie, Y., Jinlin, L., Fangli, Y., Yunfa, C., 2009. Shape-Controlled Synthesis of ZnS Nanostructures: A Simple and Rapid Method for One-Dimensional Materials by Plasma. Nanoscale Res. Lett. 4, 1047.10.1007/s11671-009-9358-ySearch in Google Scholar

27. 27. Pileni. M. P., 2000. II-VI Semiconductors Made by Soft Chemistry: Syntheses and Optical Properties. Catal. Today 58, 151.10.1016/S0920-5861(00)00250-9Search in Google Scholar

28. 28. Rao, B. S., Kumar, B. R., Reddy, V. R., Rao, T. S., Chalapathi, G. V., 2011. Preparation and Characterization of CdS Nanoparticles by Chemical Co-Precipitation Technique. Chalcogenide Lett. 8(1), 39.Search in Google Scholar

29. 29. Reyes, P., Velumani, S., 2012. Structural and Optical Characterization of Mechanochemically Synthesized Copper Doped CdS Nanopowders. Mater. Sci. Eng. B 177, 1452.10.1016/j.mseb.2012.03.002Search in Google Scholar

30. 30. Saikia, D., Gogoi, P. K., Saikia, P. K., 2010. Structural and optical properties of nanostructured CdS thin films deposited at different preparative conditions. Chalcogenide Lett. 7(5), 317.Search in Google Scholar

31. 31. Sathyamoorthy, R., Sudhagar, P., Balerna, A., Balasubramanian, C., Bellucci, S., 2010. Surfactant-Assisted Synthesis of Cd1–x CoxS Nanocluster Alloys and Their Structural, Optical and Magnetic Properties. J. Alloys Compd. 493, 240.10.1016/j.jallcom.2009.12.063Search in Google Scholar

32. 32. Sreen, K., Poulose, C., Unni, B., 2008. Colored Cool Colorants Based on Rare Earth Metal Ions. Sol. Energ. Mat. Sol. C. 92, 1462.10.1016/j.solmat.2008.06.008Search in Google Scholar

33. 33. Tandon, S., Gupta, J. P., 1970. Measurement of Forbidden Energy Gap of Semiconductors by Diffuse Reflectance Technique. J. Phys. Stat. Sol. 38(1), 363.10.1002/pssb.19700380136Search in Google Scholar

34. 34. Thambidurai, M., Muthukumarasamy, N., Agilan, S., Murugan, N., Arul, N. S., Vasantha, S., Balasundaraprabhu, R., 2010. Studies on Optical Absorption and Structural Properties of Fe Doped CdS Quantum Dots. Solid State Sci. 12, 1554.10.1016/j.solidstatesciences.2010.06.020Search in Google Scholar

35. 35. Thambidurai, M., Muthukumarasamy, N., Velauthapillai, D., Agilan, S., Balasundaraprabhu R., 2012. Structural, Optical, and Electrical Properties of Cobalt- Doped CdS Quantum Dots. J. Electron. Mater. 41(4), 665.10.1007/s11664-012-1900-5Search in Google Scholar

36. 36. Ting, C., Chen, S., Liu, D. M., 2000. Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films. J. Appl. Phys. 88, 4628.10.1063/1.1309039Search in Google Scholar

37. 37. Tsuji, I., Kudo, A., 2003. H2 evolution from aqueous sulphite solutions under visible light irradiation over Pb and halogen-codoped ZnS photocatalysts. J. Photoch. Photobio. A 156, 249.10.1016/S1010-6030(02)00433-1Search in Google Scholar

38. 38. Valencia, S., Marin, J. M., Restrepo, G., 2010. Study of the Bandgap of Synthesized Titanium Dioxide Nanoparticules Using the Sol-Gel Method and a Hydrothermal Treatment. The Open Mater. Sci. J. 4, 9.10.2174/1874088X01004010009Search in Google Scholar

39. 39. Wang, Y., Heron, N., Moller, K., Bein, T., 1999. Three-Dimensionally Confined Diluted Magnetic Semiconductor Clusters: Zn1–xMnxS. Solid State Commun. 77, 133.10.1016/0038-1098(91)90421-QSearch in Google Scholar

40. 40. Wendlandt, W., Hecht, H., 1966. Reflectance Spectroscopy. Wiley Interscience, New York.Search in Google Scholar

41. 41. Yan, C., Liu, J., Liu, F., Wu, J., Gao, K., Xue, D., 2008. Tube Formation in Nanoscale Materials. Nanoscale Res. Lett. 3, 473.10.1007/s11671-008-9193-6Search in Google Scholar

42. 42. Zhu, L., Meng, Z., Cho, K., Oh, W. C., 2012. Synthesis of CdS/CNT-TiO2 with a High Photocatalytic Activity in Photodegradation of Methylene Blue. New Carbon Mater. 27(3), 166.10.1016/S1872-5805(12)60011-0Search in Google Scholar

43. 43. Zuo, T., Sun, Z., Zhao, Y., Jiang, X., Gao, X., 2010. The Big Red Shift of Photoluminescence of Mn Dopants in Strained CdS: A Case Study of Mn-Doped MnS-CdS Heteronanostructures. J. Am. Chem. Soc. 132, 6618.10.1021/ja100136aSearch in Google Scholar PubMed

Published Online: 2016-12-21
Published in Print: 2017-04-01

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2023 from
Scroll to top button