Review

Vipin Soni, Varun Goel, Paramvir Singh and Alok Garg*

Abatement of formaldehyde with photocatalytic and catalytic oxidation: a review

https://doi.org/10.1515/ijcre-2020-0003

Received January 4, 2020; accepted November 12, 2020; published online December 14, 2020

Abstract: Formaldehyde is one of the vital chemicals produced by industries, transports, and domestic products. Formaldehyde emissions adversely affect human health and it is well known for causing irritation and nasal tumors. The major aim of the modern indoor formaldehyde control study is in view of energy capacity, product selectivity, security, and durability for efficient removal of formaldehyde. The two important methods to control this harmful chemical in the indoor environments are photocatalytic oxidation and catalytic oxidation with noble metals and transition metal oxides. By harmonizing different traditional photocatalytic and catalytic oxidation technologies that have been evolved already, here we give a review of the efforts to degrade indoor formaldehyde. The major concern in this article is based on getting the degradation of formaldehyde at ambient temperature. In this article, different aspects of these two methods with their merits and demerits are discussed. The possible effects of operating parameters like preparation methods, support, the effect of light intensity in photocatalytic oxidation, relative humidity, etc. have been discussed comprehensively.

Keywords: catalytic oxidation; degradation; formaldehyde; photocatalyst.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_a</td>
<td>Activation energy</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CD</td>
<td>Colloidal deposition</td>
</tr>
<tr>
<td>CP</td>
<td>Colloidal precipitation</td>
</tr>
<tr>
<td>DRIFTS</td>
<td>Diffused Fourier transform infrared spectroscopy spectra</td>
</tr>
<tr>
<td>DOM</td>
<td>Dimensionally order microporous</td>
</tr>
<tr>
<td>eV</td>
<td>Electron volt</td>
</tr>
<tr>
<td>$E-R$</td>
<td>Eley–Rideal</td>
</tr>
<tr>
<td>FBR</td>
<td>Fixed bed reactor</td>
</tr>
<tr>
<td>GHSV</td>
<td>Gas hourly space velocity</td>
</tr>
<tr>
<td>IMP</td>
<td>Impregnation</td>
</tr>
<tr>
<td>ID</td>
<td>Inner diameter</td>
</tr>
<tr>
<td>$L-H$</td>
<td>Langmuir–Hinshelwood</td>
</tr>
<tr>
<td>LSP</td>
<td>Long six pyramids</td>
</tr>
<tr>
<td>MVK</td>
<td>Mars–Van krevelan</td>
</tr>
<tr>
<td>OMS</td>
<td>Octahedral molecule sieve</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate matter</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>PCO</td>
<td>Photocatalytic oxidation</td>
</tr>
<tr>
<td>RH</td>
<td>Relative humidity</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SSP</td>
<td>Short six pyramids</td>
</tr>
<tr>
<td>SBS</td>
<td>Sick building syndrome</td>
</tr>
<tr>
<td>SP</td>
<td>Six prism</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile organic compound</td>
</tr>
<tr>
<td>vol</td>
<td>Volume</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength</td>
</tr>
</tbody>
</table>

1 Introduction

Most of the people spend their time at shopping center, home, car and office, etc. Sometimes, there are more pollution levels indoors compared to outdoors. The common indoor air pollutants are volatile organic compounds (VOCs), carbon oxides (CO and CO$_2$), nitrogen oxides (NO$_x$), and particulate matter etc. The possible ways of emission of VOC are from chemical industrial plants, transportation, painting, electroplating, etc. (Wang, Ang, and Tade 2007). There are several origins inside the indoor which contaminate the air. Due to the adverse effect of these contaminants a term “Sick building syndrome (SBS)” has used for the buildings. Filtration and proper ventilation are commonly used for the purpose of the solution to indoor air pollutants as per the typical technology. But hazardous effects arise due to the microbiological and VOC contamination of air (Goswami 1999a).
So, for restraining pollution inside the building, several techniques have used like air exchange rate and the recent one is by using air purifiers. These air purifiers generally use the filters to remove the particulate matters or sorption material to adsorb odors or gases. But these techniques are not much efficient because they can’t eliminate them completely (Zhao and Yang 2003). VOCs e.g. benzene, formaldehyde (HCHO), xylene, and toluene are always discharged in both outdoor and indoor environments through various methods. Long-time divestment to contaminated surroundings though having a very few ppm of VOCs may source of long term sicknesses (Tang et al. 2006a). As per the various health agencies, VOCs are measured as a carcinogenic chemical for human being and longtime contact leads to diseases such as asthma and caused decrement in functioning of pulmonary part. Also, long time expose to formaldehyde can leads to nasopharyngeal cancer.

These VOCs have a very close relationship with sick building syndrome which is an important term used by occupants to represent reduced comfort or health. Fresh painting indoor may produce diseases like asthma (Norbäck, Edling, and Wieslander 1994). A little amount of HCHO can be hazardous to human being in case of long term aspects which produces serious health problems like nasal tumors, skin irritation, mucous membranes irritation of eyes etc. (Li et al. 2016a). In addition, the release of VOCs to the environment can form ozone layer depletion, urban smog in the greenhouse effect and the stratosphere (Liang, Li, and Jin 2012). The cumulative investigation is needed to overwhelmed hazards by VOCs to human healthiness and our environment has caused fast appreciation of toxic aspects of VOCs throughout the past two decades (Goode 1985). It is significant to change injurious volatile organic compounds (VOCs) into the environment-sociable compounds. Various methods have been proposed for reduction of VOCs like physical adsorption (Domingo-Garcia et al. 1999; Matsuo et al. 2008), plasma technology (Liang et al. 2010), plant absorption (Xu et al. 2010; Terelak et al. 2005), photocatalysis (Akbarzadeh et al. 2010; Fu, Zhang, and Li 2011; Li et al. 2010; Photong and Boonnamnuayvitaya 2009), and catalytic oxidation (Hu et al. 2015; Sekine 2002; Tang et al. 2006b).

Inside airstream can contain other hazardous contamination like microorganisms (Goswami 1999a). A combination of electrostatic precipitation and photocatalytic oxidation (PCO) has been found as an interactive effect to destroy contamination of air by the microorganism. Removal of microorganism can be done through the electrostatic precipitation. It brings microorganism on the surface coated with photocatalyst (Goswami 1999b). Unlike many other contaminants in indoors which can satisfactorily have diminished by many processes applied, formaldehyde can’t be correctly measured just due to its higher vapor pressure i.e. 3883 mm Hg at room temperature i.e. 25 °C and relatively very low boiling point temperature i.e. -19.3 °C (Pei and Zhang 2011). Subsequently catalytic oxidation process needed decreased temperature for degradation of HCHO, the current investigation is grounded on a catalyst for the complete oxidation at environmental conditions. The possible main sources of HCHO emissions are industries, building materials, and transportation (vehicles running by mainly diesel engine) (Singh and Chauhan 2016). Conventional methods, like using filters to remove the contaminants or by sorption materials (like granular activated carbon) to absorb various VOCs are the methods that can only decrease concentration of contaminants in environments. These methods can only alter the stage of the contaminants relatively than the removing them entirely. For HCHO degradation various methods have been reported including (a) chemisorption (b) biological/botanical filtration (c) thermal and non-thermal catalytic oxidation, (d) plasma decomposition with or without using catalyst, and (e) photocatalytic oxidation (PCO).

Plasma cluster ions generated by plasma disintegration process also has the capacity to degrade the HCHO. Generation of plasma is simply through electronic and photoionization the targeting factor through plasma process are density of ion, processing timing, and arrangement of chemicals (Ding et al. 2006). Byproducts and small amount of HCHO are the restriction of plasma technology. Plasma catalyst degradation of HCHO is sometimes problematic due to over formation of ozone (Yuan et al. 2020). In current time botanical filtration is also investigated for degradation of HCHO (Wu et al. 2003). For adsorption of HCHO, biomass bricks are also analyzed and have given an alternate option for diminishment (Zhang et al. 2019). Modified photocatalytic oxidation (PCO) is also a good removal technique for HCHO. Traditional UV light has replaced by visible light in latest PCO for the diminishing HCHO. For diminishment of HCHO, the most suitable photocatalyst TiO2 with varying absorption of noble metal (Pt, Au, Pd, Ag, etc.) and oxides of transition metal are generally used. Zhu and Wu (2015) has used Pt/TiO2 photocatalyst for abatement of HCHO.

In this review, there is a thorough description of the photocatalytic oxidation and thermal and non-thermal catalytic oxidation for the degradation of HCHO due to their merits among all mentioned process.

2 Photocatalytic oxidation process

A typical PCO process consists of light energy companionship of water vapor. Water vapors are used for production of
necessary hydroxyl radicals to diminish the VOCs and microbes (Goswami 2003). Water vapour and carbon dioxide (CO₂) are the harmless byproducts of degradation of VOCs using PCO process with semiconductor (Tompkins 2001). The aforementioned ability of PCO attained focus which generally destroys the hydrocarbons with the use of TiO₂ photocatalyst. For regulation of CO₂ i.e., regulated emission there is a carbon dioxide cycle available in nature to balance the concentration of CO₂ in the environment but for the VOCs, there is no such cycle available (Singh and Chauhan 2016). A patent has been filed for disinfecting the indoor air from the clothes, curtain, coverings, etc. and used it for producing the pure air of heating, ventilating, and air conditioning systems (Goswami 2008).

This invention is based on the PCO process in that it uses lightening the surface of photocatalyst with the origin of photons. The photocatalytic oxidation process combines water, oxygen, and VOCs on the catalyst surface to produce H₂O and CO₂ under light radiation. Researchers have used nano Titania (TiO₂) widely as a catalyst which is activated by light energy. Titania has been proven as effective photocatalyst. Photocatalysis technology using TiO₂ has sufficient potential for the purification of organic pollutants and wastewater (Hashimoto, Irie, and Fujishima 2005; Hoffmann et al. 1995; Wu et al. 2003). There are further several photocatalysts which have been used for degradation of HCHO which are ZnO, Al₂O₃, ZrO₂, WO₃, SnO₂, CeO₂, ZnS, Fe₂O₃ and CdS (Hoffmann et al. 1995). But the most popular photocatalyst used for oxidation of formaldehyde into harmless gases is TiO₂ and ZnO. TiO₂ is the readily available, relatively inexpensive, chemically stable element. Holes generated by photo-oxidation process are highly oxidizing in nature (Jin et al. 2007).

Fe₂O₃–TiO₂ supported with Pt doping is also an excellent catalyst for the decomposition of formaldehyde (Yang et al. 2000). TiO₂ doped with Ag metal also shows enhanced photocatalytic activity for the devastation of bacterial spores as a comparison to typical photocatalysis (Vohra et al. 2005). Arranging the photocatalysts into the active catalysts between Ti, Zn, and tungsten; the result shows that: TiO₂ (anatase) < ZnO < WO₃. There is generally two crystal form of TiO₂ available: anatase and rutile. The difference between these two structures is of band gaps. The band gaps of anatase and rutile phases are 3.23 and 3.02 ev respectively.

2.1 Working principle

When TiO₂ is irradiated by light, electron and hole pairs are generated in the bulk particle. While producing holes, electrons gain energy to leave from valence band to conduction band with crossing the band gap. The holes in valence band have great oxidative power and due to this, it makes hydroxyl radicals with reaction of absorbed hydroxide ions. This formation process is accountable for photo oxidation of HCHO. But alone TiO₂ has the restriction in case of application because of requirement of UV light and lesser solar radiation coming to Earth surface. Although this restriction has been eliminated by expansion of optical retaliation of TiO₂ up to visible light from UV. These UV lights are harmful to the human body. Decomposition through irradiation of light on catalyst surface is shown in Figure 1.

Electrons and holes permit oxidation and reduction on the photocatalyst surface (Ohtani 2008). The corresponding equation of generation of holes and electron due to irradiation of photon can be written as:

\[
\text{TiO}_2 + \text{photons} \rightarrow \text{electron}(e^-) + \text{hole}(h^+) \quad (1)
\]

In above reaction process, holes are responsible for oxidation process while electrons for reduction which is also shown in Figure 2.

Oxidation reaction : \(\text{hole}(h^+) + \text{OH}^- \rightarrow \text{OH}^*\) \quad (2)

Reduction reaction : \(e^- + \text{O}_{2\text{ads}} \rightarrow \text{O}_{2\text{ads}}^-\) \quad (3)

The role of hydroxyl radical (OH*) is important as formaldehyde gas is passed through the photocatalytic oxidation device, it oxidizes the gaseous HCHO into harmless CO₂ and H₂O. These hydroxyl radical generally derived from oxidation of water vapor or adsorbed hydroxyl anion.

Different activity during the PCO has various advantages (Ollis 2000);
- It is recognized as the safe process which commonly uses the anatase TiO₂ as a photocatalyst, an n-type semiconductor found also in some toothpaste and pharmaceutical suspensions.
- During the oxidation process, final source of oxygen is molecular oxygen which is a safer oxidant as compared to hydrogen peroxide or ozone etc.

Figure 1: Formaldehyde degradation due to irradiation of light on catalyst surface.
- The photocatalysis process generally requires room temperature.
- As mentioned above hydroxyl radicals are photo-generated in the surface of Titania which is simpler process since there are many mechanisms available for the oxidation process.

UV–Vis light is responsible for the creation of electron–holes pairs in the photocatalyst during PCO of VOCs.

2.1.1 UV responsive photocatalysts

Emphasize on different types of defects in TiO₂ like surface oxygen vacancies, Ti interstitials and oxygen atoms for high impact on the photo-dissociation of HCHO. These defects have a high impact on the thermal excitation of oxygenated organic compounds on TiO₂ (Benz et al. 2009; Bowker and Bennett 2009; Landis et al. 2012; Li and Diebold 2009; Lu, Linsebigler, and Yates 1994; Wang et al. 2003; Zhang et al. 2007). Due to wide energy bandgap titanium oxide activates only through ultraviolet (UV) region. TiO₂ is activated through the irradiation of photon (hv) on the surface with ultra-band energy from the UV light source. Formation of electrons and holes caused oxidation of absorbed toxic organic pollutants and form CO₂ and H₂O (Zou et al. 2006). All the literature tills now had shown that the surface of noble metal sides has the most active site for the oxidation process of HCHO (Kecskés, Raskó, and Kiss 2004). In different semiconductor materials, ZnO has bandgap relatively equal to TiO₂ (Xu and Schoonen 2000) and the origin of ZnO is quite wide. But UV activation of ZnO was not easy till suitable morphological differences invented. It is quite understood that defects influenced the photocatalysis (Gupta, Barick, and Bahadur 2011; Shi et al. 2011). Therefore, by improving the morphologies and the defects in ZnO enhance the photocatalytic properties. UV activation of ZnO enhances by etching the sample with Argon (Ar) (Liao et al. 2013). The 254 nm wavelength UV lamp emitted higher photons which have contributed efficient degradation of HCHO over TiO₂/UV. Doping of silver (Ag) or cerium (Ce) ions could enhance photocatalytic property of TiO₂. The degradation of HCHO over Ce-TiO₂, Ag-TiO₂, and TiO₂ can be arranged in order of Ce-TiO₂ > Ag-TiO₂ > TiO₂ (Liang, Li, and Jin 2012). The reason for increasing photocatalytic oxidation due to doping is increase of chemisorbed oxygen at the surface of TiO₂ (Yang et al. 2006). It creates an imbalance charge vacancy on the catalyst surface.

2.1.2 Visible light responsive photocatalysts

Since UV sources are power consuming, costly, and hazardous to health, visible sources are readily available, inexpensive and energy saving. To enhance the spectrum, range of photocatalyst from UV light to visible light; three methods have been used: transition metal doping into TiO₂; doping of nitrogen into TiO₂ and with sensitizing dyes. Transition metal ions like Mn, Fe, V, Cr, Co, Ni or Cu increases the spectrum region into the visible light region (Zang et al. 2000). Presence of metals like Li⁺, Ce³⁺, Co³⁺, Zn²⁺, Cd²⁺, Cr³⁺, Fe³⁺, Al³⁺, Mn²⁺, and Pt sufficiently change the photocatalytic activity of TiO₂. Different nitrogen-doped TiO₂ were used as photodegradation of gaseous HCHO (Zang et al. 2000). In the case of visible light irradiation TiO₂₋ₓNₓ has better photocatalytic activity than TiO₂. The addition of ZrO₂ into TiO₂₋ₓNₓ possesses higher porosity, higher surface area, and enhanced thermal stability rather than TiO₂₋ₓNₓ samples (Wang et al. 2006).

A very few literatures have quoted the effect of noble metal on photocatalyst. Noble metal doping into TiO₂ has a higher capability to transfer electrons. In the case of Pt-TiO₂, Pt plays the role of core of core–shell Pt-TiO₂ which can increase the photo-activity for abatement of HCHO (Zhu and Wu 2015). To enhance the spectrum, range of photocatalyst from UV to visible range, gold (Au)
nanoparticle support was used on TiO₂ because of its high visible light absorption (Tsukamoto et al. 2012; Wang and Astruc 2014; Yang et al. 2014). The preparation of Au nanocatalyst affects the catalytic activity process. Atmospheric pressure oxygen has strong activity for CO oxidation which catalyst affects the catalytic activity process. Atmospheric Astruc 2014; Yang et al. 2014). The preparation of Au nano-visible light absorption (Tsukamoto et al. 2012; Wang and correlation results in low crystallinity of anatase structure with comparison to pure TiO₂, the crystallite size of Ag-doped TiO₂ decreases. TiO₂-Ag and TiO₂-Ag-TEA permit higher degradation rates as compared to pure TiO₂ (Kocareva, Grozdanov, and Pejova 2001). The different state of silver Ag⁺, Ag²⁺, and metal Ag at the surface of TiO₂ suppresses the recombination of electron–hole which leads to an increase the photocatalytic activity of TiO₂ (Ubolchonlakate, Sikong, and Tontai 2010). The mechanism involves;

$$2Ag^+ + HCHO + 3OH^- \rightarrow 2Ag + HCOO^- + 2H_2O \quad (4)$$

HCHO degradation by TiO₂ or TiO₂ composite can be written as:

$$HCHO + OH^- \rightarrow HCO^- + H_2O \quad (5)$$

$$HCO^- + OH^- \rightarrow HCOOH \quad (6)$$

$$HCOOH + 2h^+ \rightarrow CO_2 + 2H^+ \quad (7)$$

Metal and non-metal doping are suitable techniques for improving the photo-activity of Titania. Doping metal atoms depressed the recombination of electrons and holes while doping nonmetal atoms can generally influence the different properties of titania such as lattice structure, band gap (Asahi et al. 2001; Khan, Al-Shahry, and Inglor 2002; Lin et al. 2007; Ohno et al. 2004). Photocatalyst doped with silver ion has been developed by Vohra et al. (2006) to devastate the airborne microbes. The result shows that photocatalyst doped with Ag can be used effectively for high concentrated contaminants. Zhao et al. (2004) have quoted that spectrum region and photocatalytic activity can be improved by doping with non-metal boron and metal oxide Ni₂O₃, Zhang et al. (Liu et al. 2008) have reported that strong absorption in the visible range for nitrogen nickel doped Titania. Absorption line is moved to lower energy region for the different proportion of nitrogen nickel doped titania such as N (0.010) Ni (0.015) TiO₂ (600), while no absorption for samples Ni (0.015) TiO₂ (600) and pure TiO₂ (600) have observed. The bandgap energies were 2.29, 2.30, 3.17 and 3.15 ev have been reported for sample N (0.010) Ni (0.015) TiO₂ (600), N (0.010) TiO₂ (600), pure TiO₂ (600) and Ni (0.015) TiO₂ (600).

It shows the decrease in the bandgap due to the mixing of nitrogen. Transition metal ions doping in TiO₂ inject high energy ions into the TiO₂ lattice during ion implantation techniques. Anpo, Tanahashi, and Kubokawa (1980), Anpo et al. (1985, 2000), Yamashita et al. (1998) have experimented with the transition metal doping like V, Cr, and Fe on TiO₂. Lam et al. (2007) has reported that in absence of Cr ion; even 1.2 mW/cm² visible intensity light could not activate the photo-activity of TiO₂. After injection of Cr ion Cr/TiO₂ thin film gets activated for visible light. Heterostructured combination of waste zeolite and graphitic carbon nitride supported on TiO₂ has prepared by Liu and Lin (2019) under the market available LED light for diminishment of HCHO. The decomposition of formaldehyde in the range of UV and visible light at different wavelengths is given in Table 1.

2.2 Kinetics and mechanism involved

For progression of the photocatalysis, generally initial steps are as below:

$$TiO_2 + hv \rightarrow \text{holes} + \text{electrons} \quad (8)$$

$$\text{holes} + OH^- \rightarrow \cdot OH \quad (9)$$

$$\text{Ti}^{4+} + e^- \rightarrow \text{Ti}^{3+} \quad (10)$$

$$\text{Ti}^{3+} + O_{2ads} \rightarrow \text{Ti}^{5+} + O^-_{2ads} \quad (11)$$

$$OH^- + \text{pollutant} \rightarrow \text{oxidized pollutant} \quad (12)$$

The absorbed formaldehyde on the surface of catalyst will be oxidized by hydroxyl radicals and superoxide ions which are also termed as highly reactive components. During this process some byproducts would also have formed which will be converted in CO₂ by O₂⁺ or O⁻ oxidation. Photo-degradation process for formaldehyde in the steps of oxidation and reduction can be inscribed as follows (Ding et al. 2006):

$$TiO_2 + \text{photons} + \text{electrons} + \text{holes} \quad (13)$$

Oxidation

$$\text{HCHO} + H_2O + 2h^+ \rightarrow \text{HCOOH} + 2H^+ \quad (14)$$

$$\text{HCOOH} + 2h^+ \rightarrow \text{CO}_2 + 2H^+ \quad (15)$$

$$\text{Reduction} \quad O_2 + 4e^- + 4H^+ \rightarrow H_2O \quad (16)$$
<table>
<thead>
<tr>
<th>S. no.</th>
<th>Catalysts</th>
<th>Parent material</th>
<th>Inlet condition</th>
<th>Type of reactor</th>
<th>Doping element</th>
<th>Preparation method</th>
<th>Weight (%)</th>
<th>Time (h)</th>
<th>Wavelength (nm)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Photo catalyst</td>
<td>TiO₂</td>
<td>HCHO-400 ppm, 500 W Xenon Lamp</td>
<td>A cubic, airlight, SS reactor (30 cm x 30 cm)</td>
<td>Ni, N</td>
<td>Sol gel method</td>
<td>N(0.01)a TiO₂</td>
<td>57.76</td>
<td>85</td>
<td>1.75</td>
</tr>
<tr>
<td>2</td>
<td>Photo catalyst</td>
<td>TiO₂</td>
<td>A lamp (λ = 200–300 nm) with maximum light intensity 254 nm, flow rate – 3 L/min</td>
<td>Cylindrical photocatalytic reactor with inner diameter 18.0 mm</td>
<td>Ce</td>
<td>Sol gel method</td>
<td>3 wt% TiO₂</td>
<td>70</td>
<td>70.5</td>
<td>1.06</td>
</tr>
<tr>
<td>3</td>
<td>Photocatalyst</td>
<td>ZnO</td>
<td>100 ppm formaldehyde gas, LED used here were ultraviolet (365 ± 5 nm, 3.6 mW/cm²) and white (400–800 nm, 35.5 mW/cm²) light, room temperature (25°C)</td>
<td>Gas phase photocatalytic reactor with inner volume of 1.2 L</td>
<td>Ag</td>
<td>Metal organic framework</td>
<td>5 wt% ZnO</td>
<td>70</td>
<td>70.5</td>
<td>0.92</td>
</tr>
<tr>
<td>4</td>
<td>Photo catalyst</td>
<td>TiO₂</td>
<td>20 mL of aqueous solution of formaldehyde (200–500 ppm)</td>
<td>Photocatalytic reactor</td>
<td>V₂O₅</td>
<td>Sol–gel</td>
<td>0.22d V₂O₅</td>
<td>0.21</td>
<td>0.16</td>
<td>0.21</td>
</tr>
<tr>
<td>5</td>
<td>Photo catalyst</td>
<td>TiO₂</td>
<td>18 W daylight lamp at room temperature (initial HCHO)</td>
<td>Photocatalytic reactor</td>
<td>Pt</td>
<td>Reverse micelle sol–gel method</td>
<td>1 wt% Pt</td>
<td>84.52</td>
<td>100</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Table 1: (continued)

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Catalysts Parent material</th>
<th>Inlet condition</th>
<th>Type of reactor</th>
<th>Doping element</th>
<th>Preparation method</th>
<th>Weight (%)</th>
<th>Time (h)</th>
<th>Wavelength (nm)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>Photo catalyst TiO$_2$</td>
<td>45 W energy saving lamp provided the UV-Vis light source, formaldehyde concentration was 1.0 ± 0.5 mg</td>
<td>Self-designed glass reactor (0.22 m3, 600 × 600 × 600 mm)</td>
<td>Zr</td>
<td>sol–gel</td>
<td>Reference</td>
<td>1.04° 1.04° 1.03° 1.03° 1.03°</td>
<td>1 1 1 1 1</td>
<td>incorporation of Pt into TiO$_2$</td>
</tr>
</tbody>
</table>

5 wt% 1.28° 1.00° 0.99° 0.98° 0.97° 0.95°
8 wt% 1.03° 1.02° 1.01° 0.99° 0.97° 0.96°
10 wt% 1.01° 1.00° 0.98° 0.98° 0.96° 0.95°
12 wt% 1.03° 1.03° 1.01° 1° 0.97° 0.96°
15 wt% 1.01° 1.01° 1.01° 1.01° 1.00° 0.99°

a = atomic ratio of N to Ti, b = atomic ratio of Ni to Ti, c = calcination temperature, d = conversion in absorbance unit (a.u.), e = conversion in mg/m3.

The band response of TiO$_2$ is moved from UV to visible range due to doping of Zr.
The above reactions illustrated that four h^+ is stoichiometrically required for complete oxidation of one HCHO molecule.

2.3 Kinetic experiments of photocatalytic oxidation

Extracting data from kinetic experiments is the prime factor for the optimum design of the reactor. An ample number of the test has been performed by Goswami, Trivedi, and Block (1997) by changing the influencing parameters like water vapor content, the intensity of light, air velocity, etc. over the TiO$_2$ photocatalyst for varying the reaction timing for the destruction of contaminants.

2.3.1 Light sources and intensity

In photocatalytic process recombination electron–hole pair and interstitial charge transfers are second-order and first-order processes respectively which show that while increasing the light intensity rate of recombination of electron and holes increases which ultimately lower the quantum efficiency (Yang and Liu 2007). By literature it has been noted that reaction rate is directly proportional to light intensity for the low intensity of light and is however proportional to the square root of intensity of light under medium light intensity and totally independent of light intensity under high light intensity.

2.3.2 Effect of water vapor

Total photocatalytic decomposition of formaldehyde into CO$_2$ gets decreased due to the insufficient water vapor. 50% relative humidity along with sufficient stay time creates an efficient quantity of water molecules to cause inactivation of microorganisms (Goswami 1998). On the other hand, on surface of catalyst, the presence of excess water vapor can also reduce the reaction rate because excess water vapor can block active sites on the surface. The effect of water vapor on formaldehyde oxidation can analyze as: with an increase of water vapor from low to high, the oxidation rate will also increase proportionally but after that as water vapor will cross the optimum level the reaction rate immediately start decreasing. For the below, 10 ppmv concentration of formaldehyde with relative humidity ranges between 15 and 60% Langmuir–Hinshelwood suggests 1st order oxidation rate for formaldehyde (Zhao and Yang 2003). Up to 35% RH the decomposition of formaldehyde into CO$_2$ increases after that it will start diminishing hence 35% RH turns to be the optimal condition for degradation rate (Liang, Li, and Jin 2012).

In existence of water vapor, the increased reaction rate is observed due to the behavior of hydroxyl radicals as a hole trap to create surface occupied hydroxyl radicals. During photocatalysis hydroxyl radicals carried out two action, one is capturing of HCHO molecules and the second one is reducing the electron–hole recombination (Liang, Li, and Jin 2012).

2.3.3 Contaminant concentration

The concentration of reactants may also have an impact on the reaction rate similar to light intensity and relative humidity. Different reactant proportion alters the reaction rates. As per Noguchi et al. (1998), HCHO concentration above the 600 ppmv reduces reaction rates. Deng et al. (2017) have also given the range of initial concentration to determine the order of the reaction. According to him HCHO ranging from 35 to 107 ppm does not affect the conversion of formaldehyde. Langmuir–Hinshelwood model directly relates between contaminant concentration and reaction rates. Generally, the actual concentration of VOCs is lesser in normal indoor but for the investigation of the oxidation process, there is a need for higher concentration.

2.3.4 Photocatalytic reactors

Basically the surface of reactors layered with catalyst is used to degrade the VOCs. Flat plate and annular reactor are the basic structure for the evaluation of kinetic models. Other than this, for achieving greater surface area different models are design which ultimately improves performance and provide better radiation on catalyst surface. Commercially available examples are: monolith, packed bed and fluidized bed photo catalytic reactors. With some improvisation for increasing the catalyst area other reactors are corrugated plate (Passalia, Alfano, and Brandi 2012), multi plate, multi annular (Zazueta, Destaillats, and Puma 2013), foam packed bed (Ibhadon et al. 2007) and paper based immobilized TiO$_2$ reactors (Adjimi et al. 2014).

For greater air inlet, plate type and annular type reactors were not commercially appropriate. Though these types’ reactors are only used for investigating different kinetic parameters. For appropriate design and greater conversion over unit mass of catalyst, packed bed reactors are usually available. This reactor also has the limitation of unit maintenance. For overcoming this fluidized bed reactors are the option with low pressure drop. Monolith reactors possess increased flow, low pressure drop and
compact design. This has also limitation of quick diminishment of light intensity. This limitation can overcome with improvisation of optical fibers passing with each monolith (Boyjoo et al. 2017).

To overcome the different drawback of photo catalytic reactors several improvements have been done to increase the efficiency. For example: Qin et al. (2020) has used annular reactor to provide uniform illumination of catalyst and increased flux flow of the contaminants. This modified photocatalytic reactor is widely used in practical use. They have concluded that degradation efficiency of HCHO with foil catalyst annular photo reactor was 2.28 times greater than commercial TiO₂ powder catalysts.

3 Catalytic oxidation

Due to the formation of harmless CO₂ and H₂O through highly effective total degradation of HCHO, photocatalytic oxidation was a demanding option for complete catalytic oxidation of HCHO. Various by-products which are harmful in nature like CO were found in the degradation of HCHO (Yang et al. 2007). Another disadvantage that makes PCO insufficient is that catalytic surface gets deactivated by time. Moreover, a catalyst possesses high reactivity with the confirmation of restricted energy requirement for the process of catalytic oxidation. At an increased temperature i.e. thermal or at room temperature i.e. non-thermal, catalytic oxidation uses a catalyst for diminishment of VOCs. Hence, at ambient temperature catalytic oxidation posses assuring option for diminishment of VOCs emission since it converts VOCs into CO₂ (Zhang, Jiang, and Shangguan 2016). Catalytic oxidation also termed as a low temperature (293–673 K) degradation process and it is termed as powerful post remedial technology.

The major advantage of catalytic oxidation includes the formation of CO₂ and H₂O from HCHO with no intermediate pollutants (Bai, Arandiyan, and Li 2013; Pei and Zhang 2011). General catalysts in catalytic oxidation process increase the chemical reaction by providing sufficient activation energy (Eₐ) which is shown in Figure 3. Transition metal oxides (Co, Ag, Ni, and Mn) (Chen et al. 2009; Imamura et al. 1994; Ma et al. 2014; Tang et al. 2006b; Wen et al. 2009; Xu et al. 2011) and supported noble metal (Pd, Rh, Pt and Au) (Arzamendi et al. 2009; Huang and Leung 2011a; Imamura et al. 1991; Kim, Park, and Hong 2011; Li et al. 2011; Sekine 2002; Zhang and He 2007; Zhang, He, and Tanaka 2005; Zhang, He, and Tanaka 2006; Zhang et al. 2012) catalysts are the established catalysts for the HCHO degradation at room temperature.

3.1 Noble metal catalysts

For degradation of HCHO, noble metals support effect the catalytic activity strongly. Many researchers have been proposed in support Pt, Pd, Au, Rh which is having strong catalytic activity and stability. Complete oxidation of formaldehyde can be achieved through noble metal. In Figure 1, it has been shown that activation energy requirement after noble support gets decreased and ambient temperature is sufficient for oxidation of HCHO. Among all noble metal catalysts, Pt support affects strongly and it is sufficient to do oxidation at ambient temperature. Generation of CO₂ and H₂O on noble doped supports is shown in Figure 4.

3.1.1 Pt supported noble metal catalyst

Platinum has a very high dispersion degree over TiO₂ (Zhang, He, and Tanaka 2005). Zhang, He, and Tanaka (2005) have reported that Pt/TiO₂ catalyst has a 100% conversion of HCHO. Peng and Wang (2007) has reported that at 20 °C HCHO conversion was only 14.3% but at 120 °C the conversion becomes 97% even at 1% Pt loaded TiO₂. The optimized use of Pt is a great concern till now since it is
highly expensive from other catalysts. A very low concentration of Pt even at 0.1 wt% at TiO₂ possesses excellent conversion of HCHO at ambient temperature (Huang and Leung 2011b).

A comparative catalytic activity has been shown with taking pure TiO₂ and Pt-TiO₂ is given in Table 2. The removal efficiency has been remarkably increased by using such catalyst. With the various pre-treatment of Pt, the valence state of Pt can be changed which ultimately influenced the HCHO removal efficiency (An et al. 2013). MnO₂ have better catalytic efficiency rather than other transition metal oxide. Yu et al. (2011) has made catalyst Pt/MnO₂ to test their performance. They reported that catalytic activity of Pt loading on urchin (support) like MnO₂ vary in a fashion of 2 wt% Pt/urchin like MnO₂ > 1 wt% Pt/urchin-like MnO₂ >> urchin-like MnO₂. Preparation through colloidal deposition route Pt supported iron oxide (Pt/Fe₂O₃) showed excellent catalytic activity and long duration stability over HCHO oxidation (An et al. 2011). An et al. (2013) has prepared Pt/Fe₂O₃ catalyst with several methods like co-precipitation, impregnation, and colloidal-deposition method. They found out that relatively higher catalytic activity for the colloidal deposition method (Pt/Fe₂O₃-CD) among different methods used. Due to its high dispersion degree, Pt could weaken the Fe–O bond presented at the Pt/Fe₂O₃ interstitial and ultimately fasten the active oxygen HCHO oxidation. Extremely low Pt content was proved to be the dominant for catalytic oxidation of HCHO at ambient temperature, although practical aspect of this type of catalyst diminishes with the period of time i.e. not active.

Alkali metal ions (like Li⁺, K⁺ and Na⁺) have strong stabilization ability. Pt–O (OH)₉-alkali-metal species have stabilized atomic dispersion on the surface of the catalyst and it became an efficient low surface catalyst. Zhang et al. (2012) have shown a low-temperature catalyst 2% Na–1% Pt/TiO₂ with varying loadings of Na (z = 0, 1, 2) at a gas hourly space velocity (GHSV) of 12,000 h⁻¹. They found out that HCHO completely converted at 15 °C while in the case of 1% Na and 0% Na addition the conversion was 96 and 19% at the same temperature respectively. Without Pt, Na can be washed out from TiO₂ surface hence Pt only can have stabilized it on TiO₂. These results can also be reported for Pt/SiO₂ with the addition of alkali ions (Zhai et al. 2010). Due to formation of Pt-(ONa)ₙ species, Pt species doped by Na were oxidized more as compared to Pt/TiO₂ (Li et al. 2011; Peng and Wang 2007). The result proposed by Zhang, He, and Tanaka (2005) shows that the particle size of Pt is affected by the addition of Na as 10 (Na free), 4.8 (2% Na) and 6.8 Å (1% Na). Addition of alkali metal ion can suppress the Pt–Pt bond in presence of O₂ and deepens atomically dispersed Pt–O species on TiO₂ surface. Most of the work has been proposed on the support of TiO₂ (An et al. 2013; Huang and Leung 2011a, 2011b; Li et al. 2011; Nie et al. 2013; Yu et al. 2011; Zhai et al. 2010; Zhang et al. 2012; Zhu et al. 2011). Different positive influence of alkali metal on Pt/MnO₂ has been analyzed by Chen et al. (2014). To increase the catalytic activity of birnessite and cryptomelane by noble metal support, various studies have been done till now (Liu et al. 2012a; Yu et al. 2011). Chen et al. (2014) has investigated the effect of salts (Na₂CO₃, Na₂SO₄, and NaNO₃) over Pt/MnO₂ and found the increasing effect of anions in salt as the following manner: CO₃²⁻ > SO₄²⁻ > NO₃⁻. HCHO conversion at 50 °C over the Na₂CO₃ supported catalyst was found 100%. Since, residual anions (SO₄²⁻ and NO₃⁻) were collected on the surface of Pt/MnO₂ hence effective surface area gets reduced with Na₂SO₄ and NaNO₃ which ultimately influence the physiochemical aspects of the catalysts (Wang et al. 2012).

The advantages with using Na₂CO₃ support is that CO₃²⁻ got burn at the higher temperature which ultimately exposed the higher specific surface area and pore volume for increasing catalytic degradation of HCHO oxidation. During practical uses generally all the catalysts adding noble metal which are structurally granular or powder possess great value of pressure drop. They also possess some engineering limitation like dust pollution, removal of nano catalysts with corresponding gases and so on. Hence, due to low pressure drops and forming quality, macroscopically fabricated catalysts are more considerable (Groppi and Tronconi 2005; Kolodziej and Łojewska 2005). Yu et al. (2013) has investigated the diminishment of HCHO over Au₀.₅Pt₀.₅/MnO₂/cotton catalyst and found that 15 wt% Au₀.₅Pt₀.₅/MnO₂/cotton possess best performance among 25 wt% Au₀.₅Pt₀.₅/MnO₂/cotton, 10 wt% Au₀.₅Pt₀.₅/MnO₂/cotton, and 6 wt% Au₀.₅Pt₀.₅/MnO₂/cotton. They also reported that cotton surface has gully shape which increases the superficial area of cotton and it does not affect the decomposition of HCHO itself. Cotton fiber just promotes the adsorption of HCHO. Zhang and He (2007) has proposed a comparative data for the catalytic over TiO₂ with 1 wt% noble metal supports (Pt, Rh, Pd, and Au). They resulted in the catalytic activity of Pt/TiO₂ >> Rh/TiO₂ > Pd/TiO₂ > Au/TiO₂ >> TiO₂. They also found that 1 wt% of Pt/TiO₂ catalyst could decompose the HCHO into CO₂ and H₂O in a GHSVs of 50,000 h⁻¹ even at ambient temperature. So, format species are potent surface variant on the Pt/TiO₂ and Rh/TiO₂ including with absorbed CO variant in Pt/TiO₂. As in case of Pd/TiO₂ and Au/TiO₂ formation of format species and its degradation into CO is not influencing in nature.

3.1.2 Pd supported noble catalysts

Better thermal stability and comparatively low cost of Pd over precious metal catalysts (like Pt and Au dependent
<table>
<thead>
<tr>
<th>S. no.</th>
<th>Catalysts</th>
<th>Parent material</th>
<th>Inlet condition</th>
<th>Type of reactor</th>
<th>Doping element</th>
<th>Preparation method</th>
<th>Weight (%)</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Noble metal catalyst</td>
<td>TiO₂</td>
<td>HCHO 100 ppm, He balance, O₂ - 20 vol%, discharge 50 cm³/min, GHSV 50,000 h⁻¹</td>
<td>Fixed-bed quartz reactor</td>
<td>Pt</td>
<td>Impregnation</td>
<td>1</td>
<td>100</td>
<td>100 100</td>
<td>At ambient cond.</td>
</tr>
<tr>
<td></td>
<td>tion 100% HCHO</td>
</tr>
<tr>
<td>2</td>
<td>Metal catalyst</td>
<td>TiO₂</td>
<td>HCHO 100 mg/m³, N₂ balance, O₂ 22 vol%, discharge 1200 cm³/min, GHSV 300,000 cm³/g</td>
<td>Tubular fixed bed reactor</td>
<td>Pt</td>
<td>Impregnation 0.6 wt%</td>
<td>4.1 20 78 94 97 99.25</td>
<td>100 100 100 100 100</td>
<td>- - - - - - - - - -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Among all Pt/TiO₂</td>
</tr>
<tr>
<td>3</td>
<td>Noble metal catalyst</td>
<td>SiO₂</td>
<td>HCHO 100 mg/m³, N₂ balance, O₂ 22 vol%, discharge 1200 cm³/min, GHSV 300,000 cm³/g</td>
<td>Tubular fixed bed reactor</td>
<td>Pt</td>
<td>Impregnation 0.6 wt%</td>
<td>5.6 7.1 28.6 89.7 89.81 100</td>
<td>- - - - - - - - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SiO₂ found second effective support for Pt in case of degradation of HCHO at room temperature</td>
</tr>
<tr>
<td>4</td>
<td>Noble metal catalyst</td>
<td>TiO₂</td>
<td>HCHO 140 ppm, 25% RH, 20% O₂, GHSV 95,000 h⁻¹, He balance</td>
<td>Fixed-bed reactor</td>
<td>2Na–Pd</td>
<td>Impregnation</td>
<td>- - - -</td>
<td>98.96 99.48 100 100 100</td>
<td>96.77 97.98 97.58 97.58 95.96 97.98</td>
<td>With 2Na–Pd/TiO₂</td>
</tr>
<tr>
<td></td>
<td>approximately</td>
</tr>
<tr>
<td>5</td>
<td>Noble metal oxide</td>
<td>(Tang et al. 2006)</td>
<td>HCHO 580 ppm, He balance, O₂ = 1.80%, GHSV = 30,000 ml/(g cat h)</td>
<td>Fixed-bed reactor</td>
<td>Ag/MnO₂–CeO₂</td>
<td>Deposition precipitation</td>
<td>11.81 33.56 68.89 100 100</td>
<td>- - - - - - - - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conversion into CO₂ from HCHO starts at 40 °C with Ag/MnO₂–CeO₂ catalyst at given inlet condition</td>
</tr>
<tr>
<td>6</td>
<td>Noble metal catalyst</td>
<td>TiO₂</td>
<td>HCHO 160 ppm, 25 °C, 20% O₂, 30% RH, GHSV 190,000 h⁻¹, He balance</td>
<td>K–Pd/TiO₂</td>
<td>Impregnation 1 wt% Pd/TiO₂</td>
<td>- - - -</td>
<td>100 100 100 100 100</td>
<td>100 100 100 100 100</td>
<td>100% decomposi-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tion is achieved with K–Pd/TiO₂ and K–Pd/TiO₂</td>
</tr>
<tr>
<td>7</td>
<td>Noble metal catalyst</td>
<td>TiO₂</td>
<td>HCHO 100 ppm, He balance, O₂ 20 vol%, discharge 50 cm³/min, GHSV 50,000 h⁻¹, diameter = 4 mm</td>
<td>Fixed-bed quartz reactor</td>
<td>Pt</td>
<td>Impregnation 1 wt% Na</td>
<td>- - - -</td>
<td>99.57 99.58 99.58 98.29 99.57</td>
<td>97.44</td>
<td>100% R.T. conver-</td>
</tr>
<tr>
<td></td>
<td>sion of HCHO is obtained with GHSV = 50,000 h⁻¹</td>
</tr>
<tr>
<td>8</td>
<td>Noble metal catalyst</td>
<td>TiO₂</td>
<td>HCHO 140 ppm, He balance, O₂ 20 vol%, discharge 50 cm³/min, GHSV 95,000 h⁻¹, diameter = 6 mm</td>
<td>Fixed-bed reactor (inlet diameter = 6 mm)</td>
<td>Pd</td>
<td>Impregnation 8 wt% Na</td>
<td>- - - -</td>
<td>82.91 94.31 99.19 100 100</td>
<td>- - - - - - - - - -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100% conversion is gained over 2 wt% Na-Pd/TiO₂ for</td>
</tr>
<tr>
<td></td>
<td>approximately</td>
</tr>
</tbody>
</table>

Table 2: Degradation of formaldehyde with different catalysts at room temperature.
<table>
<thead>
<tr>
<th>No.</th>
<th>Catalysts/Parent material</th>
<th>Inlet condition</th>
<th>Type of reactor</th>
<th>Doping element</th>
<th>Preparation method</th>
<th>Weight (%)</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>CeO$_2$ (nano-rods)</td>
<td>HCHO 600 ppm, N$_2$ balance, 20% O$_2$, GHSV 10,000 h$^{-1}$</td>
<td>Fixed-bed quartz tubular reactor (4 mm internal 115 diameter)</td>
<td>Pt</td>
<td>Hydrothermal method</td>
<td>0.3 g of nano-rods, 0.005 g of PdCl$_2$, 0.3 g of nano- octahedrons, 0.005 g of PdCl$_2$</td>
<td>2 wt% Na</td>
<td>5.16</td>
<td>42.62</td>
</tr>
<tr>
<td>10.</td>
<td>TiO$_2$</td>
<td>600 ppm of HCHO, RH 50%, O$_2$ 20 vol%, He balance, discharge 50 cm3/min, and GHSV 12,000 h$^{-1}$</td>
<td>Fixed-bed quartz flow reactor</td>
<td>Pt</td>
<td>Impregnation</td>
<td>2% Na, 1 wt% Pt</td>
<td>10%</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>11.</td>
<td>CeO$_2$</td>
<td>HCHO 80 ppm, 21 vol % O$_2$/N$_2$, temperature: 25°C, RH 50%, GHSV = 34,000 h$^{-1}$</td>
<td>Continuous flow fixed-bed quartz micro-reactor</td>
<td>Au</td>
<td>Deposition-pre-cipitation method</td>
<td>Au = 1 wt% with NaOH, Au = 1 wt% with urea, Au = 1 wt%</td>
<td>1 wt% Au</td>
<td>19.59</td>
<td>21.13</td>
</tr>
<tr>
<td>12.</td>
<td>Mn$_2$O$_4$</td>
<td>HCHO 660 ppm, 21% O$_2$ and 79% N$_2$, discharge 50 mL/min, GHSV 20,000 mL/gcat h, room temperature 298 K</td>
<td>Fixed-bed mator</td>
<td>Au${50}$-P${50}$ / cotton support</td>
<td>Co-reduction</td>
<td>Au${50}$-P${50}$ / cotton support</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13.</td>
<td>Fe-oxide</td>
<td>Formalin (an aqueous solution of 37% formaldehyde), flow rate: 6.25 mg of formaldehyde per m3 space</td>
<td>U-shape glass reactor</td>
<td>Au</td>
<td>Co-precipitation approach</td>
<td>7.10 Au$_{50}$/Fe-O</td>
<td>19.4</td>
<td>52.38</td>
<td>82.42</td>
</tr>
</tbody>
</table>

Table 2: (continued)
Table 2: (continued)

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Catalysts</th>
<th>Parent material</th>
<th>Inlet condition</th>
<th>Type of reactor</th>
<th>Doping element</th>
<th>Preparation method</th>
<th>Weight (%)</th>
<th>Temperature (ºC)</th>
<th>Time (h)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.</td>
<td>Transition metal oxide</td>
<td>Ag</td>
<td>HCHO 80 ppm, RH 50%, 2% O₂/N₂ and GHSV = 30,000 h⁻¹</td>
<td>Fixed-bed quartz reactor</td>
<td>-</td>
<td>Co-precipitation method</td>
<td>Ag-MnO₂, CeO₂ mixed oxide (Ag/Mn = 1:5:4, molar ratio)</td>
<td>-</td>
<td>34.35 44.78 100 100 100</td>
<td>- - - - - -</td>
</tr>
<tr>
<td>15.</td>
<td>Noble metal catalysts</td>
<td>Fe₂O₃</td>
<td>HCHO 100-500 ppm, 20 vol% O₂/N₂ balance</td>
<td>Quartz tube</td>
<td>Pt</td>
<td>Colloid deposition method (CD)</td>
<td>1.0 wt%</td>
<td>100 100 - - - - - - - -</td>
<td>CD processed Pt/Fe₂O₃ catalyst converts 100% HCHO at even 20°C</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Transition metal oxide</td>
<td>3D Co₃O₄</td>
<td>HCHO 400 ppm, GHSV = 30,000 mL/h (g %), 20 vol% O₂, N₂ balance gas</td>
<td>Fixed-bed quartz reactor (dia. 10 mm)</td>
<td>-</td>
<td>Hard template method</td>
<td>-</td>
<td>2.41 4.81 30.93 91.41</td>
<td>99.71 99.43 99.14 99.16 99.14 99.43</td>
<td>Partial conversion of HCHO starts at R.T. approx. 100% conversion over 3D Co₃O₄ catalyst prepared by hard template method at 120°C with GHSV = 30,000 mL/(g h)</td>
</tr>
<tr>
<td>17.</td>
<td>Transition metal oxide</td>
<td>MnO₂</td>
<td>HCHO 100 ppm, GHSV = 30,000 mL/(g at h)</td>
<td>Fixed-bed reactor (length = 500 mm, diameter = 4 mm)</td>
<td>Graphene (G─Mn)</td>
<td>Hydrothermal method</td>
<td>K₂MnO₄ concentration of 3 mg/mL</td>
<td>31.06 64.59 99.38 100</td>
<td>- - - - - -</td>
<td>G-MnO₂ hybrid catalyst gained 100% conversion efficiency at 65°C with concentration of 2 mg/mL</td>
</tr>
<tr>
<td>18.</td>
<td>Transition metal oxide</td>
<td>MnO₂</td>
<td>HCHO 100 ppm, 20 vol% O₂, He balance gas, discharge 5.0 cm²/min GHSV = 50,000 h⁻¹</td>
<td>Fixed-Bed Quartz flow reactor (length) 300 mm, (diameter) 4 mm</td>
<td>MnO₂</td>
<td>Hydrothermal method</td>
<td>K₂MnO₄ concentration of 3 mg/mL</td>
<td>36.48 59.63 71.43 82.61</td>
<td>- - - - - -</td>
<td>HCHO is partially converted at R.T. and approx. 100% degradation could be gained at 80°C over K₂MnO₄</td>
</tr>
</tbody>
</table>

V. Soni et al.: Abatement of formaldehyde |
Table 2: (continued)

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Catalysts</th>
<th>Parent material</th>
<th>Inlet condition</th>
<th>Type of reactor</th>
<th>Doping element</th>
<th>Preparation method</th>
<th>Weight (%)</th>
<th>Temperature (ºC)</th>
<th>Time (h)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.</td>
<td>Transition metal oxide (Ghosh et al. 2006)</td>
<td>MnO₂</td>
<td>O₂, 20.0%, He balance gas, discharge 80 mL/min</td>
<td>Octahedral molecular sieve (OMS-2) nanorods</td>
<td></td>
<td>Molar composition of MnSO₄, H₂O, KMnO₄, and K₂S₂O₇ was 39:28:1</td>
<td></td>
<td></td>
<td></td>
<td>Honeycomb Nano sphere catalyst</td>
</tr>
<tr>
<td>20.</td>
<td>Transition metal oxide (Ghosh et al. 2014)</td>
<td>Pt/MnO₂</td>
<td>HCHO 200 ppm of HCHO, discharge 50 mL/min</td>
<td>Octahedral cubic fixed-bed reactor</td>
<td></td>
<td>Impregnation process</td>
<td>2 w% Na, 1 w% Pt</td>
<td>72.34</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>21.</td>
<td>Noble metal catalyst (An et al. 2013)</td>
<td>MnO₂</td>
<td>HCHO 460 ppm, discharge 50 mL/min, GHSV = 20,000 mL/g, (g cat), (g cat)</td>
<td>Fixed-bed reactor</td>
<td>Pt</td>
<td>Reflux method</td>
<td>0 w%</td>
<td>10</td>
<td>34.71</td>
<td>65.88</td>
</tr>
<tr>
<td>22.</td>
<td>Transition metal oxide (Xu et al. 2014a, 2014b)</td>
<td>CeO₂</td>
<td>HCHO 810 ppm, 50 mg catalyst, 20% O₂, N₂, Balance gas, GHSV = 84,000 h⁻¹</td>
<td>Fixed-bed quartz tube reactor of 9 mm internal diameter containing 50 mg of catalyst powder mixed with quartz sand</td>
<td>Ag/CeO₂-N</td>
<td>Hydrothermal method</td>
<td>2 w%</td>
<td>–</td>
<td>–</td>
<td>13.73</td>
</tr>
<tr>
<td>23.</td>
<td>Transition metal oxide catalyst (Zhao et al. 2015b)</td>
<td>TiO₂</td>
<td>HCHO 110 ppm, 20% O₂, N₂, Balance gas, GHSV = 100,000 mL/h (g cat)</td>
<td>Fixed-bed quartz flow reactor (inlet dia = 4 mm)</td>
<td>Ag</td>
<td>Solution impregnation</td>
<td>8 w%</td>
<td>–</td>
<td>9.56</td>
<td>40.26</td>
</tr>
<tr>
<td>24.</td>
<td>Mixed oxide catalyst (Shi et al. 2011a, 2012a)</td>
<td>Co-Mn oxides</td>
<td>CoMn(3/1)</td>
<td>Coprecipitation method</td>
<td>Atomic ratio of Co/Mn = 3/1</td>
<td>–</td>
<td>13.22</td>
<td>44.83</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>25.</td>
<td>Transition metal oxide catalyst (Ghosh et al. 2006)</td>
<td>OMS-2</td>
<td>HCHO 500 ppm, 10 vol% O₂, N₂, Balance gas, flow rate 100 cm³/min</td>
<td>Fixed-bed quartz tube reactor of 8 mm diameter</td>
<td>Pt/OS-2</td>
<td>Impregnation method</td>
<td>1 w%</td>
<td>–</td>
<td>–</td>
<td>16.37</td>
</tr>
</tbody>
</table>
Table 2: (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Catalysts</th>
<th>Parent material</th>
<th>Inlet condition</th>
<th>Type of reactor</th>
<th>Doping element</th>
<th>Preparation method</th>
<th>Weight (%)</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.</td>
<td>Transition metal oxide catalyst (Bai and Li 2014)</td>
<td>Co$_2$O$_4$</td>
<td>Discharge 100 mL/min, HCHO 100 ppm, 20% (vol) of O$_2$, N$_2$ balance gas, GHSV = 30,000 h$^{-1}$</td>
<td>Fixed bed quartz tube reactor (diameter = 10 mm)</td>
<td>K-Ag/Co$_2$O$_4$</td>
<td>Impregnation method</td>
<td>K (1.7 wt %), Ag (8.2 wt %)</td>
<td>62.23</td>
<td>81.14</td>
<td>100</td>
</tr>
<tr>
<td>27.</td>
<td>Transition metal oxide catalyst (Liu et al. 2016b)</td>
<td>MnO$_x$</td>
<td>HCHO 600 ppm gaseous, O$_2$ 21%, N$_2$ balance gas, discharge 100 mL/min</td>
<td>Fixed-bed reactor</td>
<td>Ag/FeO$_{0.1-0.5}$-MnO$_x$</td>
<td>One-pot synthesis method</td>
<td>Fe/Ag = 0.1, Mn = 0.5, molar ratio</td>
<td>49.22</td>
<td>65.73</td>
<td>91.8</td>
</tr>
<tr>
<td>28.</td>
<td>Noble metal catalyst Zeolite</td>
<td>HCHO 60 ppm gaseous, 20% O$_2$, 3% H$_2$O, Ar balance gas</td>
<td>Packed-bed flow reactor</td>
<td>Pt</td>
<td>Incipient precipitation</td>
<td>wt%</td>
<td>0.1 wt%</td>
<td>25.37</td>
<td>44.12</td>
<td>60.92</td>
</tr>
<tr>
<td>29.</td>
<td>Noble metal catalyst Ce$_2$O$_3$</td>
<td>HCHO 8 ppm, HCHO 100 ppm, GHSV = 30,000 h$^{-1}$</td>
<td>Continuous flow reactor</td>
<td>Au</td>
<td>Gas bubbling assisted DP</td>
<td>wt%</td>
<td>1 wt%</td>
<td>18.82</td>
<td>41.94</td>
<td>82.79</td>
</tr>
<tr>
<td>30.</td>
<td>Noble metal catalyst TiO$_2$</td>
<td>HCHO 10 ppm, RH</td>
<td>Fixed-bed reactor</td>
<td>Pt</td>
<td>Impregnation</td>
<td>wt%</td>
<td>0.1 wt% Pt</td>
<td>25.31</td>
<td>5.39</td>
<td>5.39</td>
</tr>
</tbody>
</table>
catalysts) make it beneficial of use. But it requires a high temperature for oxidation. 1% of Pd nanoparticles can efficiently oxidize HCHO at ambient temperature (Vijayakrishnan et al. 1992). Huang et al. (2013a) have also found out that the deposition precipitation method is more capricious than the impregnation method in the case of Pd/TiO$_2$ catalysts due to larger capacity for production and transfer of chemisorbed oxygen. The removal efficiency of HCHO with Pd wt% in the case of impregnation method shows the trend in the following manner: 8.5, 93.2, and 19% removal efficiency for 0.1, 0.5, and 1% Pd. Expensive cost of Pd limits the high Pd loading. Alkali metal as an electronic or textural conductor prefers as a catalyst for several catalytic processes including NO (Xu et al. 2014a, 2014b) and CO oxidation (Mirkelamoglu and Karakas 2006; Yentekakis et al. 1994). Zhang et al. (2014) has conducted a test on 2Na–Pd/TiO$_2$ catalyst at a GHSV of 95,000 h$^{-1}$. They found out that 100% HCHO decomposition into CO$_2$ and H$_2$O at 25 °C with a feed concentration of 140 ppm of HCHO. Result proves that Na species act as an inductor and stabilizer for negatively charged and well-dispersed Pd variants that promotes water and chemisorbed oxygen’s activation.

A series of alkali metal (K, Li, Na and Cs) doping have investigated on Pd/TiO$_2$ support by Li et al. (2016b). They resulted in K > Cs > Na > Li like the trend in the condition of 550 ppm HCHO and a GHSV of 640,000 h$^{-1}$ over Pd/TiO$_2$ support. The highest Pd dispersion degree with active sites is showing by K-Pd/TiO$_2$ catalyst among all in ambient temperature HCHO oxidation. Li, Zhang, and He (2017) have reported the optimized value of loading at Pd/TiO$_2$ support is 2 wt% in a GHSV range of 80,000–190,000 h$^{-1}$ and RH of 25–65%. They found an activity trend of 2.0 Na–Pd/TiO$_2$ > 1.0 Na–Pd/TiO$_2$ > 4.0 Na–Pd/TiO$_2$ > Pd/TiO$_2$ among the different loadings of sodium. Galvan et al. (Huang et al. 2013b) has reported that total combustion of HCHO had achieved at 220 °C temperature over 18.2% Mn/Al$_2$O$_3$ catalyst. But due to the addition of 0.1% Pd this temperature gets reduced to 90 °C (Álvarez-Galván et al. 2004). At the surface of Pd–Mn/Al$_2$O$_3$, several activities have involved for the decomposition of HCHO. The relative rates are PdO > MnO$_2$ >> Al$_2$O$_3$. Interstitial oxygen of the PdO cluster has high activity in oxidation of HCHO (Cordi and Falconer 1996).

3.1.3 Supported gold catalysts

Earlier gold was assumed as the poor heterogeneous catalyst due to its electronic structure. However, after the discovery of Haruta et al. (1989), highly dispersed particles of metallic gold permit co-oxidation at relatively low temperatures. This was just the initiation of the application of gold as the catalyst. Gold catalysts have been reported as active catalysts in hydrogenation of carbon oxide, in water gas shift reaction and most importantly in oxidation of VOCs (Delannoy et al. 2010; Dobrosz-Gómez, Kocemba, and Rynkowski 2008; Hosseini et al. 2012; Wang et al. 2011; Yi et al. 2010a, 2010b). In spite of the high-temperature requirement for total oxidation of HCHO, Fe$_2$O$_3$, CeO$_2$, and ZrO$_2$-supported Au has been proved as an active catalyst (Hong et al. 2010; Li et al. 2007). Chen et al. (2013) has prepared Au/TiO$_2$ catalyst by two methods i.e. deposition precipitation (DP) with urea and with NaOH to examine the catalytic activity of Au/TiO$_2$ for decomposition of HCHO oxidation. They reported that Au/CeO$_2$ (DPU prepared) shows higher catalytic activity than Au/CeO$_2$ (prepared through DPN) due to higher active surface oxygen variant even at high GHSV of 143,000 h$^{-1}$. It has been illustrated that presence of Au weakens surface Ce–O bond (Scire et al. 2003; Serre et al. 1993). Li et al. (2008) have prepared a series of gold/iron-oxide catalysts for the decomposition of HCHO through co-precipitation method. They critically observed the decomposition of HCHO by varying the Au loading from 0.73, 2.52, 4.85 to 7.10 wt% on gold iron supported catalysts and found that 7.10 wt% of gold content showed highest catalytic activity.

They suggested that gold species exist in fractional charged gold atoms (Au$^{\delta +}$ where $\delta < 1$) which is a transition state between cationic gold (Au$^+$) and metallic gold. Liu et al. (2012a) have fabricated 3-D ordered macro-porous (3DOM) Au/CeO$_2$ catalyst with a different process named colloidal crystal template process joined with a precursor complexion technique. They noticed that 3DOM Au/CeO$_2$ catalysts decomposes 30% HCHO at ambient temperature and 100% decomposition showed at ~75 °C for ~0.56 wt% of Au. Mutually connected spherical voids promoting the less aggregation and fine dispersion of Au nanoparticles may credit for their improved catalytic activity for the 3DOM structure of Au/CeO$_2$. Deactivation of 3DOM Au/CeO$_2$ catalyst happened due to formation of carbonate and hydrocarbon at eon surface of 3DOM Au/CeO$_2$. For enhancement of result, another test using 3DOM Au/CeO$_2$–Co$_3$O$_4$ catalysts fabricated through precursor thermal decomposition assisted colloidal templating technique has carried out (Liu et al. 2012a). The result shows that catalyst 3DOM Au/CeO$_2$–Co$_3$O$_4$ acquired proper 3DOM shape with adjustable pore sizes. Their phase structures, compositions, and elemental valence state on the surface can be monitored by regulating the molar ratio (Ce/Co). With the help of thermal decomposition of Ce and Co oxalate precursor, the nanowalls pore size of 3–4 nm were made in 3DOM Au/CeO$_2$–Co$_3$O$_4$. They achieved 100%
decomposition of HCHO at ∼39 °C for 3DOM Au/Co3O4 catalyst.

3.1.4 Supported silver catalyst

The different oxidation states of silver (Ag) permit it to use with different supports. Zhang et al. (2015b) has used different supports (TiO2, Al2O3, and CeO2) for analyzing their catalytic activity doped with Ag. Results show that Ag/TiO2 exhibit superior catalytic activity among them with 100% oxidation of HCHO at 95 °C followed by 110, 125 °C by Ag/Al2O3 Ag/CeO2 respectively. TiO2, Al2O3, and CeO2 have approximately equal activation energy but high dispersion degree of silver and size factor over supports create a difference. Tang et al. (2006a) have used the mixed oxide (MnOx-CeO2) doped with Ag to improve catalytic activity of mixed oxides. Result shows that due to oxygen transfer mechanism 100% oxidation of HCHO takes place at 373 K over Ag/MnOx-CeO2 catalyst. To use the silver more effectively Bai and Li (2014) has prepared 3D-Ag/Co3O4 with addition of K+ ions catalyst. Result shows that addition of Ag into 3D-Co3O4 decreases the conversion temperature to 110 °C in GHSV of 30,000 h⁻¹.

3.2 Reaction mechanism and pathway for catalytic oxidation of formaldehyde

A generalized reaction mechanism is not illustrated because of characteristic of HCHO molecule and catalyst is the factors on which the legitimacy of every mechanism depends. For VOC oxidation, there are possibly three mechanisms i.e., Eley–Rideal, Langmuir–Hinshelwood and Mars–Van Krevelan (Liotta 2010; Ordóñez et al. 2002).

As per the L–H mechanism, kinetics of reactions between the solid and gas phase can be quantitatively treated (Lam et al. 2007). According to this, the surface reaction between initial contaminants and oxidizer (absorbed molecules) is the basic process. In the E–R mechanism, the gas phase absorbed particle retaliates with contaminant particles. Further, in case of the MVK mechanism, it is two-stage redox reaction mechanisms that involve the oxidation and reduction of VOC particles and oxygen. The redox states of the MVK mechanism are as follows.

(a) First, catalysts will be oxidized by oxygen in gas phase to create an oxygen adsorption site (O). This (O) reacts with the absorbed particles or contaminants in the air.
(b) Simultaneously in the 2nd step pollutant molecules will reduce the oxidized catalyst (Ding et al. 2006).

The following are the two steps

\[O_2 + (\cdot) \xrightarrow{k_o} (O_2) \xrightarrow{} 2(O) \]
\[R + (O) \xrightarrow{k_i} CO_2 + H_2O + (\cdot) \]

where \(k_o \) represents as the oxygen rate constant, \(k_i \) represents as constant for surface reaction rate, and blank symbol (·) depicts an oxygen adsorption site.

Generally, MVK mechanism is broadly applied for HCHO oxidation over platinum catalysts (Liu et al. 2012a). Rapid formation of format species from the oxidation of HCHO is a major step for conversion into CO2 and H2O is performed in two steps i.e.

\[\text{HCOO} \]
\[\text{HCHO} \xrightarrow{(\cdot)k_{r1}} (\text{HCOOH}) \xrightarrow{(\cdot)k_{r2}} (\text{CO}_2) \rightarrow \text{CO}_2 \]

With

\[O_2 + (\cdot) \xrightarrow{k_i} (O_2) \xrightarrow{} 2(O) \]

In case of Pt/TiO2, at metal-support interface, after the formation of oxygen vacancies, oxygen absorbed on the active sites with packing the vacancy by oxygen molecule and coordinating with the Ti⁴⁺ as an adatom (Alexeev et al. 2005). The formation of a high intensity of oxygen species greatly influences the oxidation reaction. For sodium-free Pt/TiO2 catalysts, the reaction mechanism includes the formation of formate species which is purely degraded into CO species (Zhang, He, and Tanaka 2006). This formed CO species ultimately converted into CO2 after exposure of the catalyst to O2 and finally CO2 leaves the surface. So the reaction mechanism includes the following steps for the decomposition of HCHO into CO2 i.e.

\[\text{HCHO} \rightarrow \text{HCOO}^- \rightarrow \text{CO} \rightarrow \text{CO}_2 \]

In the decomposition process, rate demonstrative step is the conversion of formate into CO. Zhang et al. (2012) has studied reaction mechanism of decomposition of HCHO into CO2 over Sodium doped Pt/TiO2 catalyst with using in situ DRIFTS. They reported that on the surface of the catalyst, two types of surface (OH) groups were formed at 3695 and 3600 cm⁻¹. After 60 min, a complete reaction occurred between active OH groups and formate because of the disappearance of HCOO⁻ species from the base.
Results show a new pathway for 2% Na–1% Pt/TiO$_2$ catalyst i.e.

$$\text{HCHO} \rightarrow \text{HCOO} \rightarrow \text{OH} \rightarrow \text{H}_2\text{O} + \text{CO}_2$$ (22)

This reaction gives a new preferable path for the decomposition of HCHO into CO$_2$ i.e. surface hydroxyls and formate reaction are preferred rather than degradation of formate into CO. Zhang, He, and Tanaka (2006) have also proposed two different paths for the decomposition process which are when deficiency of OH group occurs on the catalyst surface, the formation of surface CO starts from formate species.

$$\text{HCOO} - \text{M} \rightarrow \text{OH} - \text{M} + \text{CO} - \text{M}$$ (23)

But in the case of an abundant amount of OH groups present, decomposition of formate into CO$_2$ takes place.

$$\text{HCOO} - \text{M} + \text{OH} - \text{M} \rightarrow \text{H}_2\text{O} + \text{CO}_2 + 2\text{M}$$ (24)

A similar result has given by Zhang, He, and Tanaka (2006) that in case of Pt/TiO$_2$ and Rh/TiO$_2$ catalysts, effective surface species are formate species along with absorbed CO molecules on Pt/TiO$_2$.

$$\text{HCHO} \xrightarrow{\text{Pt, Rh, Pd, Au, Ag}(\text{O})} \text{HCOOH} - \text{M} \xrightarrow{\text{Pt, Rh, Pd, Au}} \text{HCOO} - \text{M} \xrightarrow{\text{Pt, Rh}} \text{CO} - \text{M} + \text{H}_2\text{O}$$

$$\text{CO}_2 + \text{M}$$ (25)

Liu et al. (2012a) has further explained the reaction mechanism of 3DOM Au/CeO$_2$ the catalyst for enhancing the catalytic oxidation of HCHO. They explained the reaction mechanism in two steps catalyzed with ionic Au$^{3+}$ and metallic Au0 and suggested that higher catalytic performance has shown by ionic Au$^{3+}$. Hereafter adsorption of HCHO takes place onto the CeO$_2$ surface. This process includes the formation of HCOOH and Au0 with the transformation of active oxygen from Au$_2$O$_3$. Now formate species would be formed due to the interaction of CeO$_2$ and HCOOH. CO$_2$ would be produced with the complete oxidation of HCOOH. Chen et al. (2013) has elucidated the reaction intermediate using in situ DRIFTS for Au/CeO$_2$ catalysts. They also gave a similar reaction for decomposition of HCHO into CO$_2$ which involves four basic steps for the decomposition. The first major step includes the formation of formate species due to oxidation of HCHO in the deficiency of O$_2$ and/or H$_2$O.

$$\text{HCHO}(\text{ad}) + [\text{OH}]_s \xrightarrow{k_1} \text{H}^+ + [\text{HCOO}^-]_s + [\text{I}]_s$$ (33)

In water containing feed gas, generation of hydroxyl groups absorbed the HCHO and then these OH groups oxidize the reactant.

$$\text{HCHO}(\text{ad}) + [\text{OH}]_s \xrightarrow{k_2} [\text{HCOO}^-]_s + \text{H}^+$$ (34)

Now hereafter oxidation of equations (33) and (34) could form CO$_2$ on Au/CeO$_2$ catalyst.

$$[\text{HCOO}^-]_s + [\text{O}]_s + \text{H}^+ \xrightarrow{k_3} \text{H}_2\text{O} + \text{CO}_2 + 2[\text{I}]$$ (35)

$$[\text{HCOO}^-]_s + [\text{OH}]_s \xrightarrow{k_4} \text{CO}_2 + \text{H}_2\text{O}$$ (36)

Tang et al. (2006b) has investigated the catalytic oxidation of HCHO over Ag/MnO$_2$–CeO$_2$ catalysts. For oxidation purposes, he used CeO$_2$ which is famous for the oxygen equipped catalyst. They proposed the mechanism in a way that oxidation of HCHO is performed with the oxygen released due to the degradation of Ag$_2$O. Further, the formation of Ag$_2$O is continuously achieved through the re-oxidation of Ag from MnO$_2$ and oxygen from CeO$_2$ regenerate.
Ce₂O₃ is formed through the oxygen of feed gas and formic acid. For MnO₂, temperature with neglecting the intermediates such as CO₂ and H₂O. They observed that 100% conversion at 353 K. Tang et al. (Xingfu et al. 2006) have synthesized decomposed to H₂O and CO₂. Which are: pyrolusite, crptomelane, and todorokite. They had shown that complete conversion of HCHO into CO₂ and H₂O can be achieved through 2 × 2 manganese oxide with the crystal tunnel size of 0.46 × 0.46 nm² at 140 °C. However, the conversion is limited to 20 and 40% for 1 × 1 and 3 × 3 manganese oxide with the 0.23 × 0.23 and 0.69 × 0.69 crystal tunnel size. Tian et al. (2012) had evaluated catalytic activity of bimelane type manganese oxides prepared through the microemulsion process. They have taken BSW-100, BSW 120, and BSW-140 (manganese oxide products by heating 60, 100, 120, and 140 °C) catalyst to examine their catalytic properties over HCHO oxidation. They reported that at 100 °C BSW-120 conversion rates are about 100% which showed that BSW-120 is a better catalyst for HCHO decomposition. Manganese oxides reduce in the following steps:

\[\text{MnO}_2 \rightarrow \text{Mn}_3\text{O}_4 \rightarrow \text{Mn}_2\text{O}_3 \rightarrow \text{MnO} \] (37)

Jingjing et al. (Pei, Han, and Lu 2015) has prepared a hopcatl catalyst (CuO–MnO₂) to examine the removal efficiency of indoor formaldehyde. They found that at room temperature (25 °C, 50% RH, and 180 ppb concentration level indoor) removal efficiency was 30% which is a quite good removal performance at room temperature. The proposed reaction process over CuO/MnO₂ between oxygen and formaldehyde as follows:

\[\text{HCHO} + \rightarrow K_{\text{HCHO}} \text{HCHO}^* \] (38)

\[\text{O}_2 + \rightarrow K_{\text{O}_2} \text{O}_2^* \] (39)

\[\text{HCHO}^* + \text{O}_2^* \rightarrow K_{\text{HCHO}^*} \text{CO}_2^* + \text{H}_2\text{O}^* \] (40)

\[\text{H}_2\text{O}^* \rightarrow K_{\text{H}_2\text{O}^*} \text{H}_2\text{O} + \star \] (41)

\[\text{CO}_2^* \rightarrow K_{\text{CO}_2^*} \text{CO}_2 + \star \] (42)

where \(K = \text{reaction ppbm/s; } K_{\text{HCHO}}, K_{\text{H}_2\text{O}^*}, K_{\text{O}_2^*}, \) and \(K_{\text{CO}_2^*} \) are the absorption equilibrium constant respectively ppb⁻¹. A hybrid catalyst based on graphene–MnO₂ has been examined as a new catalyst for effective low-temperature oxidation of HCHO by Lu et al. (2016). This hybrid designed catalyst showed strong removal efficiency and indicating a much low 100% removal at 65 °C temperature. They have resulted that the incorporation of graphene nanosheet exposes not only active surface but also promoted a large
amount of OH\(^{-1}\) surface species as given in Figure 6 (Lu et al. 2016).

3.3.2 Co oxide catalyst

Co\(_3\)O\(_4\) let strong catalytic performance for a different field. Bai, Arandiyan, and Li (2013) has performed a comparative study on nano-Co\(_3\)O\(_4\), 3D-Co\(_3\)O\(_4\), and 2D-Co\(_3\)O\(_4\) for catalytic oxidation of HCHO at 400 ppm HCHO concentration and GHSV of 30,000 mL/(g h). At 130 °C complete conversion of HCHO is getting through 3D-Co\(_3\)O\(_4\) in space velocity of 30,000 mL/(g h) and termed as best the catalyst among all. They found that 3D-Co\(_3\)O\(_4\) has best catalytic activity among 2D-Co\(_3\)O\(_4\) and nano-Co\(_3\)O\(_4\). They found that the stability of HCHO conversion is also long when tested over 160 h. Ma et al. (2011) has evaluated the performance of Co\(_3\)O\(_4\)–CeO\(_2\) and Au/Co\(_3\)O\(_4\)–CeO\(_2\) which was made through the nano casting method. The evidence of the test result clearly shows the effect of morphology. Mesoporous nanocasted Co\(_3\)O\(_4\) catalyst yield CO\(_2\) about 20.3% at 25 °C in contrast to 2.5% CO\(_2\) through Co\(_3\)O\(_4\) which were made through the precipitation method.

3.3.3 Al\(_2\)O\(_3\) catalyst

Due to high surface area of Al\(_2\)O\(_3\), Zhang and He (2005) have used it for catalytic oxidation of formaldehyde at room temperature. The observation shows that no catalytic oxidation of formaldehyde takes place at room temperature in CO\(_2\), but at the catalyst surface adsorption takes place. When adsorption reached to saturation point at the catalyst surface, the intensity of HCHO decreased to zero. The time of conversion of formaldehyde to CO\(_2\) decrease as 2100–700 and 400 min as the increase GHSV 10,000–30,000 and 50,000 h\(^{-1}\).

3.3.4 Mixed oxide catalyst

Li et al. (2014) has worked on the mixed oxide catalyst and investigated the catalytic activity for Mn\(_x\)Ce\(_{1-x}\)O\(_2\) (x varies like 0.3, 0.5, 0.7, and 0.9) for the removal of HCHO. They prepared Mn\(_x\)Ce\(_{1-x}\)O\(_2\) with different methods (pechini) from trend and observed that for x = 0.5, 100% removal efficiency has found at 270 °C for GHSV of 10,000 h\(^{-1}\). They arranged the result in the varying Mn fraction. The trend follows: T\(_{100}\) (100% completion at temperature) values are 285, 270, 295, and 310 °C for x = 0.3, 0.5, 0.7, and 0.9 for catalyst Mn\(_x\)Ce\(_{1-x}\)O\(_2\). The decomposition of formaldehyde due to different catalyst is given in Table 2 at room temperature.

3.4 Operating parameter for catalytic oxidation

For preparing strong influencing catalysts and increasing removal efficiency of HCHO, it is important to understand significance of the operating parameter of catalytic oxidation. Catalytic activity is directly affected through operating parameter hence optimized value is mandatory.

3.4.1 Effect of relative humidity

Atmospheric moisture promotes catalytic activity of HCHO oxidation. This has been verified through the diffuse reflectance infrared Fourier transform (DRIFT) that presence of moisture improves performance of the hydroxyl group. There have been found some contradictory reports that indoor moisture blocks the active site by adsorbing on them at low temperatures (Skrobot et al. 2003). The unstable condition for the catalyst is arisen due to presence of H\(_2\)O\(_2\) which helps in thorough loss of activity. In another literature, it has been found that presence of indoor moisture depreciated catalytic activity of TiO\(_2\) supported gold catalyst (Bollinger and Vannice 1996). However, Kwon et al. (2015) have reported that in presence of water vapor excellent catalytic activity have been observed with the Pt loading of more than 0.5%. Even they reported that 100%
conversion of HCHO with the 0.1% platinum concentration. In the absence of moisture, conversion decrease to 8% with 0.1% of platinum loading. The result was confirming by the DRIFTS that formation of hydroxyl group in presence of humidity improves results. This leads to the conversion of HCHO in formate even absence of atmospheric oxygen. Zhao et al. (2012) has investigated the impact of water vapor on reaction stability and conversion of HCHO into CO₂ over MnO₂ catalyst. Their report comes in the following form: for dry air flow approximate over 80% HCHO was converted into CO₂ by ozone and only 20% of CO₂ comes out. But for RH = 55%, oxidation of HCHO into CO₂ reported 100% with enhanced reaction stability. This conversion was supported by formation of O₃ which thoroughly oxidized HCHO into CO₂. A mechanistic study has been done by Huang et al. (2013b) for investigating the role of water vapor over Pd/TiO₂ catalyst. They reported that 0.1% Pd made by deposition precipitation method shows strong active-ness over HCHO decomposition and stable in the highly humid air. Analysis also include dissociated hydroxyl radical from water vapour support th process of adsorption and oxygen movement over the Pd/TiO₂ catalyst. They resulted that for RH = 50%, 100% HCHO conversion was observed while it was limited to 78.5 and 54.5% for 25% RH and 0% RH respectively.

3.4.2 Effect of calcination temperature

Calcination temperature plays an influencing role in catalytic oxidation of HCHO. Tang et al. (2006a) has synthesized MnOₓ–CeO₂ catalyst at different calcinated temperature and resulted that below calcination temperature of 773 K due to making of MnOₓ–CeO₂ solid solution. No diffraction peak related to manganese oxide has been observed and at the calcinated temperature of 773 K due to the phase isolation between MnO₂ and CeO₂, a clear diffraction peak observed for MnO₂.

3.4.3 Effect of preparation method

Preparation of catalyst for catalytic oxidation involves different processes such as Co-precipitation, impregnation, colloidal deposition method, microemulsion, sol–gel, and modified co-precipitation. An et al. (2013) has prepared a catalyst Pt/Fe₂O₃ for catalytic oxidation of HCHO using different methods which are co-precipitation, impregnation, and colloidal deposition methods which are listed in Table 2. Result shows that enhanced dispersion of Pt causes weakening of Fe–O bond at interface of Pt/FeOₓ and hence improves the mobility of involved oxygen in oxidation of HCHO. Yu et al. (2011) have used high dispersion and small nano-sized Pt particles to improve the catalytic activity of Pt/MnO₂ for HCHO oxidation using reflux the method and hydrothermal method which is also shown in Table 2. Tang et al. (2008) has used impregnation technique for preparation Pt/MnOₓ–CeO₂ catalyst to decompose HCHO at room temperature. But An et al. (2013) has analyzed a different method to give a comparative view using co-precipitation (CP), impregnation (IMP), and colloidal deposition (CD). They resulted in higher catalytic activity for CD rather than CP and IMP method and proved through TEM result that at the surface of catalysts below 3 nm Pt particles were formed. Hence, it is clear that preparation method affects the structure of support and catalysts redox property. Tian et al. (2012) has used microemulsion process for bimessite type manganese oxides catalysts to increase the high surface area (upto 154 m²/g).

3.4.4 Effect of feed rate of HCHO

The performance of catalytic oxidation of HCHO varied with fluctuation in feed rate of HCHO. The reaction rate of catalytic oxidation is much dependent on the molar ratio of oxygen to HCHO. Phenomena have been illustrated that lower the concentration ultimately decrease the light off temperature for catalytic oxidation of VOCs (Veser, Žiauddin, and Schmidt 1999). Peng and Wang (2007) has experiment the performance of noble metal catalyst with different feed rate of 100, 240, 400 mg/m³ and resulted 41.5, 33.1, and 22.7% conversion at ambient temperature for HCHO respectively which is described in Table 2. This result ultimately illustrated that with the decrease in feed rate of HCHO would increase catalytic activity at ambient temperature. Reaction rate is generally not affected through mass transfer if fast mass transfer or very slow reaction rate happened. Similar results have been also illustrated by Tang et al. (2008) that excellent HCHO decomposition is getting through low concentration of HCHO. Kim, Park, and Hong (2011) has given a similar applicability of feed rate while catalytic oxidation of HCHO. They evaluated a proper applicability of feed rate that if reaction rate will increase with increase in HCHO inlet feed and vice versa. The trend observed that by increasing feed concentration there is decrement in overall catalytic activity. As temperature perspective Pei, Han, and Lu (2015) has evaluated the feed rate for catalytic oxidation of HCHO. They concluded that below 120 °C, decrease in conversion observed as inlet feed rate of HCHO increases and at ~180 °C the impact of inlet concentration of HCHO becomes obsolete. De la Peña O’Shea et al. (2005) has used two different feeds for the simultaneous decomposition of formaldehyde and methanol and result shows that different feeds have different 100% conversion temperature.
3.4.5 Effect of morphology

Morphology with exposed crystal plane on surface and crystallinity are crucial as a point of catalytic oxidation. Change in the morphology of oxide supported catalyst is in trend for regulating the catalytic activity (Feng et al. 2013; Zhou and Li 2012). Different morphology of gold doped ceria supported catalysts has been used. This involves nano-sized gold on finely defined CeO$_2$ nanorods in which deposition of gold demonstrated to weak the Ce–O bond by the clusters of gold. Due to creation of vacancy, O atom combines with Au atom at surface and this action would lead an electron to Ce by weaken CE–O bond (Xu et al. 2014a, 2014b). Lie et al. (Liu et al. 2012a) have used three-dimensionally averaged mesoporous Au/CeO$_2$ catalyst for improved catalysts supported by noble metal. They have observed that blockage of active sites on this structure may not happen with formed hydrocarbonate and carbonate. Hence this morphology shows efficient ways for oxidation of HCHO. 3D macroroporous Au/CeO$_2$–Co$_3$O$_4$ catalyst with nanoporous walls (Liu et al. 2012b). Different morphological have been also used for MnO$_2$ for improvement in like pyrolusite, cryptomelane, and todorokite (de la Peña O’Shea et al. 2005). Co$_3$O$_4$, with 3D, 2D, and nanostructure possess a strong catalytic activity for abatement of HCHO (Bai, Arandiyan, and Li 2013). Su et al. (2019) have used cryptomelane type octahedral molecular sieve catalysts and investigated that degradation of HCHO on this morphology is greatly supported by reaction temperature from 50 to 110 °C.

3.4.6 Effect of support

For catalytic oxidation of HCHO large surface area is a prime requirement but this reactivity mainly influenced active component sites. Peng and Wang (2007) has compared the different supports Ce$_{0.8}$Zr$_{0.2}$O$_2$, Ce$_{0.2}$Zr$_{0.8}$O$_2$, SiO$_2$, and TiO$_2$ with 0.6 wt% loading of Pt for catalytic oxidation of HCHO and resulted that catalytic activity of TiO$_2$ based support is best among the SiO$_2$, Ce$_{0.2}$Zr$_{0.8}$O$_2$, and Ce$_{0.8}$Zr$_{0.2}$O$_2$ which is shown in Table 2 also. The degradation activity belongs to the well dispersion of Pt on different types of support. At the support because of small sized Pt, has a strong effect on degradation process. For evaluating the effect of support Park et al. (2012) has used different support of Mn–CeO$_2$, Al$_2$O$_3$, and TiO$_2$ with 0.25Pd/Beta zeolite catalyst for relative study at 50,000 h$^{-1}$. They resulted that 0.25 Pd/Beta and 0.25 Pd/Al$_2$O$_3$ catalysts could convert over 80% HCHO at 40 °C which illustrates that Beta Zeolite and Al$_2$O$_3$ come out as a strong catalyst as compare to TiO$_2$ and Mn–CeO$_2$ for low-temperature oxidation (below 100 °C). Yu et al. (2013) have used different support MnO$_2$/cotton possess strong catalytic activity for temperature below 100 °C. Graphene-based MnO$_2$ supported catalyst has been synthesized by Lu et al. (2016) and revealed that the graphene nanosheet just reduces the activation energy of MnO$_2$ catalyst from 85.5 and 39.5 kJ/mol.

3.4.7 Effect of metal addition to support

To enhance catalytic oxidation of HCHO over catalyst and improve the reaction rate this parameter also has been taken into consideration via different researchers. For example, Zhang et al. (2012) have used alkali addition to find the stronger catalytic activity for Pt/TiO$_2$ catalyst at environment temperature and the effects are listed comprehensively in Table 2. These alkali metal ions (like K$^+$, Na$^+$, and Li$^+$) improve stability of catalysts by atomically dispersion. With different support of Pt/MnO$_2$, Chen et al. (2014) have examined the behavior of catalysts by atomically dispersion. These alkali metal salts for enhanced HCHO oxidation. The different salt used by Chen involves Na$_2$CO$_3$, Na$_2$SO$_4$, and NaN$_3$ which resulted that at a lower temperature of 50 °C, 100% conversion of HCHO is getting through Na$_2$CO$_3$ additional catalysts. Similar tests have also been conducted on Pd/TiO$_2$ catalysts by modification of sodium by Zhang et al. (2014) with different loadings of sodium ion. They gave a comprehensive result that 2 wt% Na addition into Pd/TiO$_2$ converts 100% HCHO even at room temperature of 25 °C. The same results have been proposed by Li, Zhang, and He (2017) that due to addition 2 wt% Na catalytic surface produces abundant OH group which is ultimate increases the oxidation of HCHO.

4 Discussion on literature

In this paper, the methods of catalytic activation of HCHO at room temperature include two processes i.e. photocatalytic process and catalytic oxidation. With all the research main focus concentrated on photocatalyst and catalytic oxidation illustrated in this point of discussion. A photocatalytic oxidation process involves different processes during the decomposition of HCHO. These are: (1) flow of HCHO to the catalyst surface; (2) soaking of reactants on the catalyst surface; (3) irradiation of photon from light intensity; (4) redox reaction on catalyst surface; (5) flow of harmless product from surface, and (6) flow of product from the catalyst surface into the air. The important process in the PCO process is the absorption of the reactant, which have to oxidize. The adsorption process is an intermediate process which occurs before the photo-chemical reaction to start. So, adsorption of reactant is
important to concern while PCO. Another term that can enhance the activity of PCO is the selection of a proper reactor which extensively includes an annular reactor, monolith reactor, fluidized bed reactor, and powder plate reactor. The structures of photocatalysts also influence the PCO of HCHO. Nanoparticles with zero dimensionally have a high specific surface area, while 1D fiber tubes possess the advantage of light scattering properties. Various intermediate has also been observed during the photocatalytic oxidation of HCHO which are HCOOH, CO, Ozone, etc. and these species were quickly observed by catalyst surface. They would convert into CO₂ otherwise they will find as the outcome. The photocatalytic performance of titania can be enhanced by addition of metal and nonmetal which suppressed recombination of electron and hole pairs. Applicability of PCO had been limited to UV activation since it extended to the visible light range (λ > 420 nm) with the addition of proper doping.

There are many disadvantages of PCO listed here which are: (1) concentration of HCHO in the indoor environment is less, for that PCO doesn’t show efficient performance due to high film diffusional resistance; (2) it is very difficult to increase the photocatalytic activity of reactor per unit volume since space limitation is there when doped through noble metal on TiO₂. As among all the noble metal catalysts and metal oxide catalysts, Pt shows good catalytic performance over oxidation of HCHO at room temperature. A small addition of Pt is enough for catalytic oxidation of formaldehyde but due to some limitation of high cost which makes Pt unused for practical application. Among various catalysts, Pd shows also good catalytic activity of different support like TiO₂, Al₂O₃, MnO₂, CeO₂, and Zeolite for the oxidation of HCHO and is abundantly available in nature. Negatively charged Pd supported catalysts improve the catalytic oxidation. For enhanced catalytic oxidation of HCHO with improved structure and chemical state, Pd species done well. With the proper support of metal oxide and with different morphology Pd catalysts can easily oxidize HCHO in CO₂ and H₂O at even room temperature. For lowering the temperature for catalytic oxidation addition of alkali plays an effective factor also. This effect is discussed in Table 2. Another noble metal, gold also does an influencing catalytic oxidation with well-defined morphology such as: three-dimensionally ordered macroporous with nanowalls.

There are some disadvantages noticed as well except the cost is poorly resistant to poisoning. Other than this, manganese oxide exhibits good catalytic properties to the different oxidation states available. Manganese and ceria oxide supports are well in oxygen storage capacity, redox properties, and thermal resistance. Different morphological changes like pyrolusite, cryptomelane, and todorokite in the case of MnO₂ have a strong effect on reaction rate. The addition of noble metal over the transition metal oxide supported catalyst also improves the catalytic degradation of HCHO and makes the transition oxide catalysts preferable for the environmental temperature condition. The various structure has been used for enhancing the property of metal oxide such as CeO₂nanorods, graphene support MnOₓ, manganese dioxide nano-sheets on cellulose fibers, nano-Co₃O₄, 3D-Co₃O₄, and 2D-Co₃O₄.

5 Conclusion

In this article, the most popular techniques for formaldehyde degradation i.e. photocatalytic oxidation and catalytic oxidation have been discussed. In spite of availability of efficient catalysts, the challenging work concern over higher efficiency, optimum design, and low cost availability. Moreover, the catalytic degradation of HCHO through the catalytic oxidation with noble metal and transitional metals supported metal oxide is emphasized in this review paper. To do this catalytic oxidation process subdivided into two main section; noble metal and metal oxide catalysts which give further insights the dependency of relative humidity, calcination temperature, preparation method, feed rate, morphology, addition of metal. In recent years a lot of work has been carried out on lowering temperature of oxidation of HCHO to room temperature with noble metal-supported metal oxide and transitional metal oxide.

In various articles, different groups have worked on nanostructures, reduction properties, active surface area, etc. So, the recent work corresponding to the degradation of indoor HCHO has been focused on designing and finding effective support like graphene, cotton, ZnO. Current work also just focused on varying operating parameters like preparation method, calcination temperature, the oxidation state of metals, etc. The addition of alkali, rare Earth metal to the supported catalyst is still not cleared with transition metal oxide. Other degradation processes like thermocatalytic process are also used but possess the difficulty of conversion of HCHO into CO₂ at ambient condition. Advanced processes are using this process with modification in morphology, concentration etc. to completely degrade the HCHO from the indoor environment. Element like MnO₂, without proper morphology and additives cannot enhance rate of degradation. The role of HCHO concentration, space velocity, and water vapor strongly affect the catalytic oxidation of HCHO. Long-time stability of catalyst and formation of the intermediate products are still a major concern for the practical application. In recent years, research work has been
concentrated on complete catalytic oxidation of HCHO at ambient temperature. Some works are really appreciable in this context. But there is still a large gap of their practical uses either due to cost or intermediate product limitation. However, the development of effective low-cost catalyst formation is the biggest work that has to be done. The work on transition metal oxides like (MnO₂, CeO₂) still needs a proper synthesis to work on room temperature of influencing the removal of formaldehyde.

Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

