Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 17, 2019

Adaptive Automatic Voltage Regulation in Rural 0.38kV Electrical Networks

  • Aleksandr Vinogradov ORCID logo , Alina Vinogradova ORCID logo , Igor Golikov and Vadim Bolshev ORCID logo EMAIL logo

Abstract

Development of smart grids for power supply to rural consumers assumes the creation of adaptive voltage regulation systems in 0.38 … 10 kV electrical networks as one of the directions. This paper considers a new approach to create an algorithm for controlling the technical means of regulation and voltage stabilization. The proposed adaptive voltage regulation system allows collecting and processing information on the actual voltage at the consumer inputs and automatically determine the voltage regulation coefficient. The developed mathematical model allows calculating the voltage regulation coefficient depending on the voltage at various points of the 0.38 kV electric network. In the paper there are also new methods of adaptive automatic voltage regulation in the 0.38 kV electrical networks and the requirements to the functional capabilities of this system. The article suggests technical solutions for the implementation of adaptive automatic voltage regulation system. The successful tests of experimental model of this system have been carried out.

References

[1] Momoh JA. Smart grid design for efficient and flexible power networks operation and control. In: 9th Power Systems Conference and Exposition, PSCE ’09, 2009:1–8.10.1109/PSCE.2009.4840074Search in Google Scholar

[2] Goulden M, Bedwell B, RennickEgglestone S, Rodden T, Spence A. Smart grids, smart users? The role of the user in demand side management Energy. Energy Res Soc Sci. 2014;2:21–9.10.1016/j.erss.2014.04.008Search in Google Scholar

[3] Alhelou H, Hamedani-Golshan ME, Zamani R, Heydarian-Forushani E, Siano P. Challenges and opportunities of load frequency control in conventional, modern and future smart power systems: a comprehensive review. Energies. 2018;11:2497. DOI: 10.3390/en11102497.Search in Google Scholar

[4] Zame KK, Brehm CA, Nitica AT, Richard CL, Schweitzer III GD. Smart grid and energy storage: policy recommendations. Renewable Sustainable Energy Rev. 2018;82:1646–54.10.1016/j.rser.2017.07.011Search in Google Scholar

[5] Vinogradova AV. Statisticheskaya harakteristika sel’skih ehlektricheskih setej [Statistical characteristic of rural electrical networks]. Agrotekhnika i ehnergoobespechenie. 2014;1:419–23.Search in Google Scholar

[6] Vinogradov A, Vasiliev A, Bolshev V, Semenov A, Borodin M. Time factor for determination of power supply system efficiency of rural consumers. In: Kharchenko V, Vasant P, editors. Handbook of research on renewable energy and electric resources for sustainable rural development. Hershey, PA: IGI Global, 2018:394–420. DOI: 10.4018/978-1-5225-3867-7.ch017.Search in Google Scholar

[7] Kalpana R, Singh B, Bhuvaneswari G. A 20-pulse asymmetric multiphase staggering autoconfigured transformer for power quality improvement. IEEE Trans Power Electr. 2018;33:917–25.10.1109/TPEL.2017.2721958Search in Google Scholar

[8] Abdel Aleem SHE, Abdelaziz AY, Zobaa AF. Egyptian grid code of wind farms and power quality. In: Bansal R., editor(s). Handbook of distributed generation. Cham: Springer. 2017:227–45.10.1007/978-3-319-51343-0_7Search in Google Scholar

[9] Gómez-Lázaro E, Molina-García A, Fuentes JA. Influence of voltage dips on industrial equipment: analysis and assessment. Electr Power Energy Syst. 2012;41:87–95. DOI: 10.1016/j.ijepes.2012.03.018.Search in Google Scholar

[10] Vinogradov A, Borodin M, Bolshev V, Makhiyanova N, Hruntovich N. Improving the power quality of rural consumers by means of electricity cost adjustment. In: Kharchenko V, Vasant P, editors. Renewable energy and power supply challenges for rural regions. Hershey, PA: IGI Global, 2019:312–41.10.4018/978-1-5225-9179-5.ch013Search in Google Scholar

[11] Kraiczy M, Stetz T, Braun M. Parallel operation of transformers with on load tap changer and photovoltaic systems with reactive power control. IEEE Trans Smart Grid. 2018;9:6419–28.10.1109/TSG.2017.2712633Search in Google Scholar

[12] Dohnal D. On load tap changers for power transformers. Regensburg, Germany: Maschinenfabrik Reinhausen, 2013.Search in Google Scholar

[13] Golikov IO, Vinogradov AV. Adaptivnoe avtomaticheskoe regulirovanie napryazheniya v sel’skih ehlektricheskih setyah 0,38 kV [Adaptive automatic voltage regulation in rural power networks of 0.38 kV]. Orel, Russia: FGBOU VO Orel GAU, 2017.Search in Google Scholar

[14] Vinogradov AV, Borodin MV, Vinogradova AV, Selezneva AO, Bolshev VE. Sistema kontrolya nadezhnosti ehlektrosnabzheniya i kachestva ehlektroehnergii v ehlektricheskih setyah 0,38 kV [Monitoring system for reliability of power supply and quality of electric power in 0.38 kV electric networks]. Promyshlennaya ehnergetika. 2018;3:14–18.Search in Google Scholar

[15] Vinogradov A, Bolshev V, Vinogradova A, Kudinova T, Borodin M, Selesneva A. А system for monitoring the number and duration of power outages and power quality in 0.38 kV electrical networks. In: Vasant P, Zelinka I, Weber GW, editor(s). Intelligent computing & optimization. ICO 2018. Advances in intelligent systems and computing Vol. 866. Cham: Springer, 2019:1–10.Search in Google Scholar

[16] Bolshev VE, Vinogradov AV. Obzor zarubezhnyh istochnikov po teme povysheniya ehffektivnosti sistem ehlektrosnabzheniya [Overview of foreign sources on improving the efficiency of power supply systems]. Agrotekhnika i ehnergoobespechenie. 2017;2:21–5.Search in Google Scholar

[17] Vinogradov AV, Vinogradova AV, Bolshev VE. Ustrojstva i sistema monitoringa nadezhnosti ehlektrosnabzheniya i otkloneniya napryazheniya v ehlektricheskih setyah 0,38 kV [Devices and monitoring system for reliability of power supply and voltage deviation in electrical networks of 0.38 kV]. Vestnik NGIEHI. 2017;11:69–82.Search in Google Scholar

[18] Gheorghe S, Tanasa C, Ene S, Mihaescu M. Power quality, Energy efficiency and the performance in electricity distribution and supply companies. In: 18th International Conference and Exhibition on Electricity Distribution. Turin: IET, 2005.Search in Google Scholar

[19] Santarius P, Krejci P, Brunclik Z, Prochazka K, Kysnar F. Evaluation of power quality in regional distribution networks. In: 23rd International Conference on Electricity Distribution. Lyon: AIM, 2015.Search in Google Scholar

[20] Hartungi R, Jiang L. Investigation of power quality in health care facility. In: 10th International Conference on Renewable Energies and Power Quality (ICREPQ’10), Granada, Spain, 2010.Search in Google Scholar

[21] Giacco R, Vieira T. An assessment of the electric power quality and electrical installation impacts on medical electrical equipment operations at health care facilities. Am J Appl Sc. 2009;6:638–45.10.3844/ajassp.2009.638.645Search in Google Scholar

[22] Irwin L. Asset management benefits from a wide area power quality monitoring system. In: 23rd International Conference on Electricity Distribution. Lyon: AIM, 2010.Search in Google Scholar

[23] Dhapare SC, Lothe NR, Ramachandran P. Power quality monitoring with smart meters. In: 23rd International Conference on Electricity Distribution. Lyon: AIM, 2015.Search in Google Scholar

[24] Interstate Council for Standardization, Metrology and Certification. GOST 32144–2013 EHlektricheskaya ehnergiya. Sovmestimost‘ tekhnicheskih sredstv ehlektromagnitnaya. Normy kachestva ehlektricheskoj ehnergii v sistemah ehlektrosnabzheniya obshchego naznacheniya [GOST 32144–2013 Electric energy. Electromagnetic compatibility of technical means. Norms for power quality in general-purpose power supply systems]. Moscow, Russia: Standartinform, 2013.Search in Google Scholar

[25] Popov NM. Avarijnye rezhimy v setyah 0,38 kV s gluhozazemlennoj nejtral’yu [Emergency modes in 0.38 kV networks with a deadly neutral]. Kostroma, Russia: izd. KGSKHA; 2005.Search in Google Scholar

[26] Budzko IA, Leshchinskaya TB, Sukmanov VI. EHlektrosnabzhenie sel’skogo hozyajstva [Electricity supply of agriculture]. Moscow, Russia: Kolos; 2000.Search in Google Scholar

[27] Borodin MV, Psarev IA. Ocenka fakticheskogo kachestva ehlektroehnergii i analiz kolichestva obrashchenij po povodu nesootvetstviya kachestva ehlektroehnergii normativnym znacheniyam [The estimation of actual quality of the electric power and the analysis of the number of complaints concerning the inconsistency of the quality of electricity to the normative values]. Agrotekhnika i ehnergoobespechenie. 2017;4:54–62.Search in Google Scholar

[28] Vinogradov AV, Golikov IO 2014. Patent RF 2 527 479 C1, MPK H02J 3/12 (2006.01) Sposob avtomaticheskogo regulirovaniya napryazheniya na ehlektricheskoj podstancii [The method of automatic voltage regulation at an electrical substation].Search in Google Scholar

[29] Obuhov SG. Matematicheskoe modelirovanie v sistemah ehlektrosnabzheniya: uchebnoe posobie [Mathematical modeling in power supply systems: a textbook]. Tomsk, Russia: Izd-vo Tomskogo politekhnicheskogo universiteta, 2014.Search in Google Scholar

[30] Zakaryukin VP, Kryukov AV. Metody sovmestnogo modelirovaniya sistem tyagovogo i vneshnego ehlektrosnabzheniya zheleznyh dorog peremennogo toka [Methods for joint modeling of traction and external power supply systems for AC railroads]. Irkutsk, Russia: IrGUPS, 2010.Search in Google Scholar

[31] Popov NM, Shagimardanov DEH. Modelirovanie odnofaznyh nagruzok v faznyh koordinatah [Simulation of single-phase loads in phase coordinates]. Vestnik VIEHSKH. 2013;4:24–6.Search in Google Scholar

[32] Vinogradov AV, Golikov IO. Sovremennye stabilizatory napryazheniya, ih raznovidnosti, dostoinstva i nedostatki [Modern voltage regulators, their varieties, advantages and disadvantages]. Agrotekhnika i ehnergoobespechenie. 2014;1:409–14.Search in Google Scholar

[33] Vinogradov AV, Golikov IO. Laboratornye ispytaniya ustrojstva avtomaticheskogo regulirovaniya napryazheniya v ehlektricheskoj seti, postroennogo na baze mikrokontrollerov ATMEL AVR [Laboratory tests of the automatic voltage regulation device in the electric network, built on the basis of microcontrollers ATMEL AVR]. Aktual’nye problemy v ehnergetike i agropromyshlennom komplekse: mater. Vseros. nauch.-prakt. konf. s mezhdunarodnym uchastiem (g. Blagoveshchensk, 10 aprelya 2015 g.) 2015: 7–12.Search in Google Scholar

Received: 2018-10-04
Revised: 2019-04-16
Accepted: 2019-04-22
Published Online: 2019-05-17

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.12.2023 from https://www.degruyter.com/document/doi/10.1515/ijeeps-2018-0269/html
Scroll to top button