Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 1, 2020

A Coordinated Voltage Control Scheme of Distribution Networks with Distributed Generation Based on On-Load Tap Changers and Shunt Capacitors by Particle Swarm Optimization

  • Minh Y Nguyen ORCID logo EMAIL logo

Abstract

Recently, the voltage stability and control of distribution networks become challenges due to the large line impedance, load variations and particularly the presence of distributed generation. This paper presents a coordinated voltage control scheme of distribution systems with distributed generation based on on-load tap changer and shunt capacitors. The problem is to determine the optimal operation of voltage regulation devices to minimize a multi-objective function including power losses, voltage deviations and operation stresses while subject to the allowable voltage ranges, line capacity and switching stresses, etc. The problem is formulated and solved by a modified particle swarm optimization algorithm to treat the large-scale and high nonlinearity property. The proposed scheme is applied to a typical 48-bus distribution network in Vietnam. The result of simulation shows that the voltage profile can be improved while the power loss of distribution systems can be reduced significantly.

Acknowledgements

This work is supported by Thai Nguyen University of Technology as its project on Smart grid and Distributed generation.

Appendix

Table 1:

The parameter of the distribution network.

LineBus i – jFij (mm2)Srated,ij (MVA)Lij (km)R0.ij (Ω)X0.ij (Ω)
112AC-18519.430.500.08000.1900
223AC-18519.431.100.16940.4100
334AC-18519.431.200.18480.4500
445AC-18519.430.800.12320.3000
556AC-18519.430.500.07700.1900
667AC-18519.430.600.09240.2300
778AC-18519.431.000.15400.3800
889AC-18519.430.400.06160.1500
9910AC-356.670.800.61840.3400
101011AC-356.670.800.61840.3400
111112AC-356.671.401.08220.6000
121213AC-356.671.301.00490.5600
131314AC-356.670.900.69570.3900
141415AC-356.670.600.46380.2600
151516AC-356.670.700.54110.3000
161617AC-356.670.400.30920.1700
171718AC-356.671.301.00490.5600
181819AC-356.670.800.61840.3400
191920AC-356.671.401.08220.6000
20921AC-7010.10.400.16800.1600
212122AC-7010.10.300.12600.1200
222223AC-7010.10.300.12600.1200
232324AC-7010.11.200.50400.4900
242425AC-7010.11.300.54600.5300
252526AC-7010.10.610.25620.2500
262627AC-7010.10.800.33600.3300
272728AC-7010.10.300.12600.1200
282829AC-7010.100.420.17640.1700
292930AC-356.670.500.38650.2100
303031AC-356.670.300.23190.1300
313132AC-356.670.500.39000.2100
323233AC-356.670.620.48000.2660
333334AC-356.670.900.69570.3861
343435AC-356.670.200.15460.0858
35536AC-356.671.200.92760.5148
363637AC-356.670.400.30920.1716
372138AC-356.671.200.92760.5148
383839AC-356.671.200.92760.5148
393940AC-356.670.500.38650.2145
402641AC-356.671.100.85030.4719
414142AC-356.670.700.54110.3003
422943AC-356.670.700.54110.3003
434344AC-356.670.500.38650.2145
444445AC-356.670.900.69570.3861
451246AC-356.670.900.69570.3861
464647AC-356.670.800.62000.3432
474748AC-356.670.700.54000.3000
Table 2:

The active and reactive power load of the distribution network.

BusBus namePD0 (kW)QD0 (kVAr)
1TBA 110kV Dan
2Dong Quang 1376.00319.64
3Khach san Dong A257.50176.28
4Luong Ngoc Quyen 1272.00168.57
5Tinh doi172.25144.78
6Nguyen Hue170.00105.36
7Luong Ngoc Quyen 2148.7592.19
8Hong Ha110.0076.07
9Cu xa quan khu108.8067.43
10Co khi mo210.00116.07
11Gia suc201.08124.74
12Viet Thai306.00189.64
13Phan Dinh Phung159.3898.77
14Truong VHNT306.00189.64
15Uy ban thanh pho238.00147.50
16Cho Moi127.579.02
17Bot khoang195.2159.00
18Xuan Hoa170.00105.36
19Dong Tien 2176.16147.20
20Dan cu tinh doi327.50279.02
21Dong Quang 5261.38161.99
22Bac Nam 2287.30178.05
23Be tong151.00131.61
24Nga 3 cho Moi148.7592.19
25Kho bac410.00316.07
26Gia Sang 2170.00105.36
27Vien set206.00189.64
28Quynh Minh410.00316.07
29Gia Sang 1170.00105.36
30Cau Loang 1157.2597.45
31K khi Giang Sang 3407.75330.21
32Bia Chien Thang168.00142.14
33Cau Loang 2187.04153.94
34Thai Hung404.04364.48
35K khi Giang Sang 2185.88102.96
36Bac Nam 1170.00105.36
37Bac Nam 3238.00147.50
38Ngan hang nong nghiep79.5251.26
39Nui Tien113.5282.33
40Xuan Quang 189.8067.43
41Xuan Quang 2161.20137.93
42Dong Tien 3162.05138.46
43Trai Bau 1108.0867.43
44Trai Bau 2168.00142.14
45Dan cu gia suc177.65110.10
46Qui bo 1144.85107.67
47Minh Cau 1172.00108.57
48Dien Luc92.4061.21
Total9633.586901.19

References

[1] Erbrink JJ, Gulski E, Smit JJ, Seitz PP, Quak B, Leich R, et al. Diagnosis of onload tap changer contact degradation by dynamic resistance measurements. IEEE Trans Power Delivery. 2010;25:2121–31.10.1109/TPWRD.2010.2050499Search in Google Scholar

[2] de Oliveira Quevedo J, Cazakevicius FE, Beltrame RC. Analysis and design of an electronic on-load tap changer distribution transformer for automatic voltage regulation. IEEE Trans Ind Electron. 2016;64:883–94.10.1109/TIE.2016.2592463Search in Google Scholar

[3] Bidram A, Davoudi A. Hierarchical structure of microgrids control system. IEEE Trans Smart Grid. 2012;3:1963–76.10.1109/TSG.2012.2197425Search in Google Scholar

[4] Katiraei F, Iravani MR, Lehn PW. Micro-grid autonomous operation during and subsequent to islanding process. IEEE Trans Power Delivery. 2005;20:248–57.10.1109/PES.2004.1373266Search in Google Scholar

[5] Gao F, Iravani MR. A control strategy for a distributed generation unit in grid-connected and autonomous modes of operation. IEEE Trans Power Delivery. 2008;23:850–9.10.1109/TPWRD.2007.915950Search in Google Scholar

[6] Karimi H, Nikkhajoei H, Iravani MR. Control of an electronically-coupled distributed resource unit subsequent to an islanding event. IEEE Trans Power Delivery. 2008;23:493–501.10.1109/PES.2008.4596149Search in Google Scholar

[7] Brabandere KD, Bolsens B, den Keybus JV, Woyte A, Driesen J, Belmans R. A voltage and frequency droop control method for parallel inverters. IEEE Trans Power Electron. 2007;22:1107–15.10.1109/PESC.2004.1355222Search in Google Scholar

[8] Piagi P, Lasseter RH. Autonomous control of microgrids. In: Proceedings of the IEEE Power and Energy Society General Meeting, Montreal, Canada, June 2006.10.1109/PES.2006.1708993Search in Google Scholar

[9] Katiraei F, Iravani MR. Power management strategies for a microgrid with multiple distributed generation units. IEEE Trans Power Syst. 2006;21:1821–31.10.1109/TPWRS.2006.879260Search in Google Scholar

[10] Sao CK, Lehn PW. Autonomous load sharing of voltage source converters. IEEE Trans Power Syst. 2008;23:1088–98.10.1109/TPWRD.2004.838638Search in Google Scholar

[11] Chung I-Y, Liu W, Cartes DA, Collins EG, Moon S-I. Control methods of inverter-interfaced distributed generators in a microgrid system. IEEE Trans Ind Appl. 2010;46:1078–88.10.1109/TIA.2010.2044970Search in Google Scholar

[12] Rocabert J, Luna A, Blaabjerg F, Rodríguez P. Control of power converters in AC microgrids. IEEE Trans Ind Electron. 2012;27:4734–49.10.1109/TPEL.2012.2199334Search in Google Scholar

[13] Karimi H, Davison EJ, Iravani R. Multivariable servomechanism controller for autonomous operation of a distributed generation unit: design and performance evaluation. IEEE Trans Power Syst. 2010;25:853–65.10.1109/TPWRS.2009.2031441Search in Google Scholar

[14] Bahrani B, Saeedifard M, Karimi A, Rufer A. A multivariable design methodology for voltage control of a single-DG-unit microgrid. IEEE Trans Ind Electron. 2013;9:589–99.10.1109/TII.2012.2221129Search in Google Scholar

[15] Kim J, Guerrero JM, Rodriguez P, Teodorescu R, Nam K. Mode adaptive droop control with virtual output impedances for an inverter-based flexible AC microgrid. IEEE Trans Power Electron. 2011;26:689–701.10.1109/TPEL.2010.2091685Search in Google Scholar

[16] Delghavi MB, Yazdani A. An adaptive feedforward compensation for stability enhancement in droop-controlled inverter-based microgrids. IEEE Trans Power Delivery. 2011;26:1764–73.10.1109/TPWRD.2011.2119497Search in Google Scholar

[17] Mohamed Y, El-Saadany EF. Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Trans Ind Electron. 2008;23:2806–16.10.1109/TPEL.2008.2005100Search in Google Scholar

[18] Li Y, Li YW. Power management of inverter interfaced autonomous microgrid based on virtual frequency-voltage frame. IEEE Trans Smart Grid. 2011;2:30–40.10.1109/TSG.2010.2095046Search in Google Scholar

[19] Tsikalakis AG, Hatziargyriou ND. Centralized control for optimizing microgrids operation. IEEE Trans Energ Convers. 2008;23:241–8.10.1109/PES.2011.6039737Search in Google Scholar

[20] Katiraei F, Iravani R, Hatziargyriou N, Dimeas A. Microgrids management. IEEE Power Energ Mag. 2008;6:54–65.10.1109/MPE.2008.918702Search in Google Scholar

[21] Chen C, Duan S, Cai T, Liu B, Hu G. Smart energy management system for optimal microgrid economic operation. IET Renew Power Gener. 2011;5:258–67.10.1049/iet-rpg.2010.0052Search in Google Scholar

[22] Quanyuan J, Meidong X, Guangchao G. Energy management of microgrid in grid-connected and stand-alone modes. IEEE Trans Power Syst. 2013;28:3380–9.10.1109/TPWRS.2013.2244104Search in Google Scholar

[23] Guerrero JM, Hang L, Uceda J. Control of distributed uninterruptible power supply systems. IEEE Trans Ind Electron. 2008;55:2845–59.10.1109/TIE.2008.924173Search in Google Scholar

[24] Lopes JA, Moreira CL, Madureira AG. Defining control strategies for microgrids islanded operation. IEEE Trans Power Syst. 2006;21:916–24.10.1109/TPWRS.2006.873018Search in Google Scholar

[25] Prodanović M, Green TC. High-quality power generation through distributed control of a power park microgrid. IEEE Trans Ind Electron. 2006;53:1471–82.10.1109/TIE.2006.882019Search in Google Scholar

[26] IEEE Standard 1547-2018, IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces. IEEE Standard Association, DOI: 10.1109/IEEESTD.2018.8332112, ISBN: 978-1-5044-4639-6, April 2018.Search in Google Scholar

[27] Thang VV. An optimization model for distribution system reinforcement integrated uncertainties of photovoltaic systems. Electr Eng. 2018;100:677–86.10.1007/s00202-017-0533-3Search in Google Scholar

Received: 2019-09-07
Revised: 2020-01-10
Accepted: 2020-01-17
Published Online: 2020-02-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/ijeeps-2019-0203/pdf
Scroll to top button