Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 20, 2013

Calculation of the Effective Diffusion Coefficients in Drying of Chemical and Mechanical Pretreated Rosehip Fruits (Rosa eglanteria L.) with Selected Mass Transfer Models

Alejandra Mabellini, Elizabeth Ohaco, Carlos Márquez, Jorge E. Lozano and Antonio De Michelis

Abstract

The aim of this work was to select models of mass transfer to estimate effective mass diffusion coefficients during the dehydration of Rosa eglanteria fruits with air at 70°C. Fruits were pretreated chemically and mechanically (dipping it in NaOH and ethyl oleate solutions and cutting or perforating the fruit cuticle). Selected models were those of Becker and Fick’s second law, considering fruit shrinkage during drying. Both models satisfactorily predict the fruit drying, and the different pretreatments, to total or partially remove this waxen cuticle, noticeably improved water diffusion, reducing the time of processing from 28% (NaOH) to 52% (oleate and mechanical pretreatments). Mechanical pretreatments were the more effective, because oleate presents quality problems.

References

1. BartaJ. Fruit drying principles. In: HuiYH, editor. Handbook of fruit and fruit processing, 1st ed. Oxford: Blackwell, 2006:8193.Search in Google Scholar

2. VullioudM, PironeB, OchoaM, KesselerA, MárquezCA, De MichelisA. Avances durante el secado de frutos de la rosa mosqueta. Rev Presencia2007;51:57.Search in Google Scholar

3. DevicE, GuyotS, DaudinJD, BonazziC. Kinetics of polyphenol losses during soaking and drying of cider apples. Food Bioprocess Technol2010;3:86777.10.1007/s11947-010-0361-1Search in Google Scholar

4. DoymazI. Influence of pretreatment solution on the drying of sour cherry. J Food Eng2007;78:5916.10.1016/j.jfoodeng.2005.10.037Search in Google Scholar

5. GeorgeSD, CenkowskiS, MuirWE. A review of drying technologies for the preservation of nutritional compounds in waxy skinned fruit. Written for presentation at the 2004 North Central ASAE/CSAE Conference, Canada. Paper Nº MB04–104, 2004.Search in Google Scholar

6. AzoubelPM, MurrFE. Effect of pretreatment on the drying kinetics of cherry tomato (Lycopersicon esculentum var. cerasiforme). In: Welti-ChanesJ, Velez-RuizF, Barbosa-CánovasGV,editors. Transport phenomena in food processing. New York: CRC Press, 2003:13751.Search in Google Scholar

7. FengH, TangJ, MattinsonDS, FellmanJK. Microwave and spouted bed drying of frozen blueberries: the effect of drying and pre-treatment methods on physical properties and retention of flavour volatiles. J Food Process Preservation1999;23:46379.10.1111/j.1745-4549.1999.tb00398.xSearch in Google Scholar

8. GrabowskiS, MarcotteM. Pretreatment efficiency in osmotic dehydration of cranberries. In: Welti-ChanesJ, Velez-RuizF, Barbosa-CánovasGV, editors. Transport phenomena in food processing. New York: CRC Press, 2003:8394.Search in Google Scholar

9. GrabowskiS, MarcotteM, PoirierM, KudraT. Drying characteristics of osmotically pretreated cranberries: energy and quality aspects. Drying Technol 2002;20:1989–2004. Available at: http://cetcvarennes. nrcan.gc.ca/eng/publication/r2002083e.html. Accessed:12 June 2003.10.1081/DRT-120015580Search in Google Scholar

10. YangAP, WillsC, YangCS. Use of a combination process of osmotic dehydration and freeze drying to produce a raisin-type lowbush blueberry product. J Food Sci1987;52:16513, 64.10.1111/j.1365-2621.1987.tb05898.xSearch in Google Scholar

11. ErenturkS, GulabogluMS, GultekinS. The effects of cutting and drying medium on the vitamin C content of rosehip during drying. J Food Eng2004;68:5138.10.1016/j.jfoodeng.2004.07.012Search in Google Scholar

12. FemeniaA, SánchezE, SimalS, RossellóC. Effects of drying pretreatments on the cell wall composition of grape tissues. J Agric Food Chem1998;46:2716.10.1021/jf9705025Search in Google Scholar

13. GambellaF, PigaA, AgabbioM, VaccaV, D’hallewinG. Effect of different pre-treatments on drying of green table olives (Ascolana tenera var.). Grasas Y Aceites2000;51:1736.10.3989/gya.2000.v51.i3.475Search in Google Scholar

14. TarhanS. Selection of chemical and thermal pretreatment combination for plum drying at low and moderate drying air temperatures. J Food Eng2006;79:25560.10.1016/j.jfoodeng.2006.01.052Search in Google Scholar

15. PetrucciV, CanataN, BolinH, FullerG, StaffordA. Use of oleic acid derivatives to accelerate drying of Thompson seedless grapes. Paper presented in the Symposium “Novel Uses of Agricultural Oils” at the AOCS Spring Meeting, New Orleans, 1973.Search in Google Scholar

16. Di MatteoM, CinquantaL, GalieroG, CrescitelliS. Effect of a novel physical pretreatment process on the drying kinetics of seedless grapes. J Food Eng2000;46:839.10.1016/S0260-8774(00)00071-6Search in Google Scholar

17. MárquezCA, De MichelisA, GinerSA. Drying kinetics of rose hip fruits (Rosa eglanteria L). J Food Eng2006;77:56674.10.1016/j.jfoodeng.2005.06.071Search in Google Scholar

18. BrennanJG. Evaporation and dehydration. In: BrennanJG, editor. Food processing handbook, 1st ed. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2006:71121.Search in Google Scholar

19. SaracenoA, AversaM, CurcioS. Advanced modeling of food convective drying: a comparison between artificial neural networks and hybrid approaches. Food Bioprocess Technol2010;5:1694705.10.1007/s11947-010-0477-3Search in Google Scholar

20. OhacoEH, MabelliniA, MárquezCA, De MichelisA, LozanoJE. Aceleración del secado de frutos de la rosa rubiginosa mediante el empleo de pretratamientos químicos y mecánicos. Proceeding of (Trabajo 13.13, publicado en CD, 5 pp) XII Congreso CYTAL – AATA. Facultad de Ciencias de la Alimentación, UNER, Entre Ríos, Argentina, 7–9 de octubre, 2009.Search in Google Scholar

21. OchoaMR, KesselerAG, PironeBN, MárquezCA, De MichelisA. Volume and area shrinkage of whole sour cherry fruits (Prunus cerasus) during dehydration. Drying Technol2002;20:14756.10.1081/DRT-120001371Search in Google Scholar

22. GinerSA, MascheroniRH. Diffusive drying kinetics in wheat. Part.1. Potential for a simplified analytical solution. J Agric Eng Res2001;80:35162.Search in Google Scholar

23. MarquézCA. Deshidratación de frutos no tradicionales: Rosa mosqueta (rose hips). Tesis doctoral. Universidad Politécnica de Valencia. España, 2003.Search in Google Scholar

24. ZogzasNP, MaroulisZB, Marinos-KourisD. Moisture diffusivity data compilation in foodstuffs. Drying Technol1996;14:222553.10.1080/07373939608917205Search in Google Scholar

25. CrankJ. The mathematics of diffusion, 2nd ed. Oxford: Oxford University Press, 1975.Search in Google Scholar

26. BurmesterK, EggersR. Heat and mass transfer during the coffee drying process. J Food Eng2010;99:4306.10.1016/j.jfoodeng.2009.12.021Search in Google Scholar

27. MárquezCA, De MichelisA. Comparison of drying kinetics for small fruits with and without particle shrinkage considerations. Food Bioprocess Technol2009;2:17.10.1007/s11947-009-0218-7Search in Google Scholar

28. BeckerHA. A study of diffusion in solids of arbitrary shape, with application to the drying of the wheat kernel. J Appl Polym Sci1959;1:21226.10.1002/app.1959.070010212Search in Google Scholar

29. Barbosa-CánovasGV, Vega-MercadoH. Dehydration of foods. New York: Chapman & Hall, 1996.10.1007/978-1-4757-2456-1Search in Google Scholar

30. MabelliniA, OhacoE, MárquezCA, De MichelisA, LozanoJE. Coeficientes de difusión efectivos durante el secado con aire caliente de rosa mosqueta pretratada y sin pretratar. Proceeding of III Congreso Internacional de Ciencia y Tecnología de Alimentos. Córdoba – Argentina. 15 al 17 de Abril de 2009. Libro 3: Avances en Ingeniería y Tecnología, 2009:12634.Search in Google Scholar

Published Online: 2013-11-20

©2013 by Walter de Gruyter Berlin / Boston

Scroll Up Arrow