Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 8, 2013

Effect of Some Hydrolytic Parameters in the Action of Subtilisin and Pancreatin on Whey Protein Concentrate

Marialice P.C. Silvestre, Wendel O. Afonso, Carlos O. Lopes Junior, Viviane D.M. Silva, Mariana W.S. Souza and Mauro R. Silva

Abstract

In this work, the influence of some reactional parameters in the hydrolysis of whey protein concentrate (WPC) was evaluated, in terms of the nutritional quality of peptide profiles of the hydrolysates as well as the reduction of costs for scaling-up the process. Two enzymes (subtilisin and pancreatin) were used for preparing 18 hydrolysates, using different E:S ratios and reaction times, and the distribution of peptides according to chain length was analyzed by size-exclusion chromatography. The studied parameters affected the peptide profiles of WPC hydrolysates and the best result was similar for subtilisin and pancreatin, both using an E:S ratio of 4:100, after 5 h and 10 h, respectively. In these conditions, these enzymes gave rise to the smallest large peptide contents (12.28% and 12.34%, respectively) and one of the highest amount of di- and tripeptides (13.34% and 13.00%, respectively) as well as of free amino acids (45.56% and 47.26%, respectively). However, in terms of number of samples the action of pancreatin was more advantageous than subtilisin, since among the nine hydrolysates, four showed appropriate peptide profiles (P1, P2, P5, and P6), from the nutritional point of view, while the same happened only with one hydrolysate prepared by using subtilisin (S3). Also, the economical advantage of using smaller E:S ratio and reaction time was observed in several cases for both enzymes.

References

1. FrenhaniPB, BuriniRB. Mecanismos de absorção de aminoácidos e oligpeptídeos. Arq Gastroenterol1999;36:22737.10.1590/S0004-28031999000400011Search in Google Scholar

2. HinsbergerA, SandhuBK. Digestion and absorption. Curr Paediatr2004;14:60511.10.1016/j.cupe.2004.08.004Search in Google Scholar

3. LoosenPC, BresspollierPR, JulieenAR, PejoanCH, VerneuilB. Procede pour preparer um hydrolysat enzymatique. Tessenderlo Cheemie n. v. [BE/BE]; Stations straat, B-3980 Tessenderlo (BE). A23J3/34, C12P21/06 C12S3/14, C07K15/00//A61K37/18, A23J3/04, 3/14. FR-PCT/BE91/00001, W091/10369.1991.Search in Google Scholar

4. ChataudJ, DesreumeuxS, CartwrightT. Procédé de fabrication d’un hydrolysat enzymatique de protéines riche en di- et tri-peptides, utilisable notamment en nutrition artificielle et en dietétique. Laboratório Roger Bellon, Neuilly-sur-Seine-FR. A23J3/00. FR87402837.6, 0.274946A1, 1988.Search in Google Scholar

5. González-Tello P, CamachoF, JuradoE, PáezMP, GuadixEM. Enzymatic hydrolysis of whey proteins. II. Molecular-weight range. Biotechnol Bioeng1994;44:52932.10.1002/bit.260440416Search in Google Scholar

6. Lopez-BajoneroLJ, Lara-CalderonP, Galvez-MariscalA, Velasquez-ArellanoA, Lopez-MunguiaA. Enzymatic production of a low-phenylalanine product from skim milk powder and caseinate. J Food Sci1991;56:93842.10.1111/j.1365-2621.1991.tb14610.xSearch in Google Scholar

7. OutinenMT, TossavainenO, HarjuM, LinkoP. Method for removing phenylalanine from proteinaceous compositions, a product so obtained and use there of Valio Oy, Helsink, Finland, Patents US 5547687, A23J3/34B4; A23J3/34C; A23L1/015E2; A61K38/01B; A61K38/01D6, 1996.Search in Google Scholar

8. ShimamuraS, TamuraY, MiyakawaH, SaitoH, KawaguchiY, IsomuraN, et al. Peptide mixture and products thereof. Morinaga Milk Industry Co., Ltd., Tokio, Japan, Patents US5952193, A23C 21/02; A23C 21/04; A23C 21/06; A61K 38/01, 1999.Search in Google Scholar

9. NicolauES, SquilassiKMBS, CottaMC, MesquitaAJ, MiraG. Whey: importance and nutritional characteristics. 2005. Available from: http://www.umc.br/pesquisa/nucleos_pesquisa/biotecnologia/pesquisadores/e_esposito.html. Accessed October 8th 2010.Search in Google Scholar

10. SilvaMR. Obtenção de hidrolisados enzimáticos do concentrado protéico de soro de leite com alto teor de oligopeptídeos e elevada atividade inibitória sobre a enzima conversora de angiotensina, utilizando a pancreatina e a papaína. Master’s degree dissertation. Belo Horizonte: Universidade Federal de Minas Gerais, 2010.Search in Google Scholar

11. BransG, SchröenCGPH, Van der SmanRGMBoomRM. Membrane fractionation of milk: state of the art and challenges. J Membr Sci2004;243:26372.10.1016/j.memsci.2004.06.029Search in Google Scholar

12. OttesenM, SvendsenI. The subtilisins. In: PerlmannGE, LorandL, editors. Proteolytic enzymes – methods in enzymology. New York: Academic Press;1970:199215.10.1016/0076-6879(70)19014-8Search in Google Scholar

13. ReedG. Enzymes in food processing. 2 ed.London: Academic Press, 1975.Search in Google Scholar

14. RaoMB, TanksaleAM, GhatgeMS, DeshpandeVV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev1998;62:597635.10.1128/MMBR.62.3.597-635.1998Search in Google Scholar

15. BeynonRJ, BondJS. Proteolytic enzymes: a practical approach. New York: Oxford University Press,1989:278.Search in Google Scholar

16. PereaA, UgaldeU, RodriguezI, SerratJL. Preparation and characterization of whey protein hydrolysates: applications in industrial whey bioconversion processes. Enzyme Microbiol Technol1993;15:41823.10.1016/0141-0229(93)90129-PSearch in Google Scholar

17. ParkYK. In: LimaUA, AquaroneE, BorzaniW, SchmidellW, editors. Biotecnologia industrial. Vol. 1. São Paulo: Edgard Blugher, 2001:36371.Search in Google Scholar

18. Adler-NissenJL. Procesamiento enzimatico de las proteínas alimenticias. Aliment1981;6:2933.Search in Google Scholar

19. ChobertJM, SitohyMZ, WhitakerJR. Solubility and emulsifying properties of caseins modified enzymatically by Staphylococcus aureus V8 protease. J Agric Food Chem1988a;36:2204.10.1021/jf00079a055Search in Google Scholar

20. ChobertJM, Bertrand-HardC, NicolasMG. Solubility and emulsifying properties caseins and whey proteins modified enzymatically by trypsin. J Agric Food Chem1988;36:88392.10.1021/jf00083a002Search in Google Scholar

21. SilvestreMPC, HamonM, YvonM. Analyses of protein hydrolysates. 1. Use of poly (2-hydroxyethyl-aspartamide)-silica column in size-exclusion chromatography for the fracionation of casein hydrolysates. J Agric Food Chem1994;42:277882.10.1021/jf00048a024Search in Google Scholar

22. SilvestreMPC, HamonM, YvonM. Analyses of protein hydrolysates. 2. Characterization of casein hydrolysates by a rapid peptide quantification method. J Agric Food Chem1994;42:27839.10.1021/jf00048a025Search in Google Scholar

23. BiasuttiEAR, LopesDCF, SouzaMWS, CamposRBD, SegallSD, SilvestreMPC. Obtenção de hidrolisados do soro de leite com alto teor de oligopeptídeos utilizando-se subtilisina. Braz J Food Technol2007;10:22532.Search in Google Scholar

24. SilvaVDM, De MarcoLMAfonsoWO, LopesDCF, JanuárioJN, AguiarMJB, et al. Preparation of low-phenylalanine whey hydrolysates, using papain and pancreatin immobilized on activated carbon and alumina. Am J Food Technol2007;2:32741.10.3923/ajft.2007.327.341Search in Google Scholar

25. SouzaMWS, BiasuttiEAR, CarreiraRL, Afonso, SilvaVDM, SilvestreMPC. Obtaining oligopeptides from whey: use of subtilisin and pancreatin. Am J Food Technol2008;3:31524.10.3923/ajft.2008.315.324Search in Google Scholar

26. MoratoAF, CarreiraRL, JunqueiraRG, SilvestreMPC. Optimization of casein hydrolysis for obtaining high contents of small peptides: use of subtilisin and trypsin. J Food Compos Anal2000;13:84357.10.1006/jfca.2000.0912Search in Google Scholar

27. MoraisHA, BarbosaCMS, LopesDCF, OliveiraMC, SilvestreMPC. Caracterização do perfil peptídico e de aminoácidos em hidrolisados de casein. Arch Latinoam Nutr2002;52:7783.Search in Google Scholar

28. BarbosaCMS, MoraisHA, DelvivoFM, MansurHS, OliveiraMC, SilvestreMPC. Papain hydrolysates of casein: molecular weight profile and encapsulation in lipospheres. J Sci Food Agric2004;84:1891900.10.1002/jsfa.1855Search in Google Scholar

29. CarreiraRL, De MarcoLMDiasDR, MoraisHA, SilvestreMPC. Analysis of peptide profiles of casein hydrolysates prepared with pepsin, trypsin and subtilisin. Acta Farm Bonaer2004;23:1725.Search in Google Scholar

30. LopesDCF, DelvivoFM, SilvestreMPC. Hydrolysates of skim milk powder: peptide profiles for dietetic purposes. Br Food J2005;107:4253.10.1108/00070700510573195Search in Google Scholar

31. SoaresRDL, CapobiangoM, BiasuttiEAR, SilvestreMPC. Enzyme catalyzed production of oligopeptides from skim milk. Food Biotechnol2007;21:4556.10.1080/08905430701191148Search in Google Scholar

32. LopesDCF, BizzottoCS, CarreiraRL, AfonsoWO, LopesJr, CO, SilvestreMPC. Removal of phenylalanine from protein hydrolysates prepared with rice. J Food Technol2008;6:5765.Search in Google Scholar

33. AfonsoWO, BiasuttiEAR, GeraldiLM, SilvaVDM, CapobiangoM, SilvestreMPC. Emprego da hidrólise enzimática utilizando subtilisina para elevar o valor nutricional do soro de leite. Nutrire2009;34:97114.Search in Google Scholar

34. CarreiraRL, SilvaVDM, LimaLG, MoraisHA, SilvestreMPC. Perfil peptídico de hidrolisados proteicos da farinha de trigo. Pesq Agropec Trop2011;41:4819.10.5216/pat.v41i4.10754Search in Google Scholar

35. AOAC (Association of Official Agricultural Chemists). Official methods of analysis of AOAC international. 16th ed. Arlington: AOAC International, 1995.Search in Google Scholar

36. NielsenSS. Food analysis. Gaithersburg: Aspen Publisher, 1998.Search in Google Scholar

37. Pimentel-GomesF.. Curso de estatística experimental. 14 ed.Piracicaba: Nobel, 2000.Search in Google Scholar

38. SammelLM, ClausJR. Whey protein concentrates effects on pink color development in a cooked ground turkey breast model system. Meat Sci2003; 65:12939.10.1016/S0309-1740(03)00039-1Search in Google Scholar

39. MortensonMA, VickersZM, ReinecciusGA. Flavor of whey protein concentrates and isolates. Int Dairy J2008;18:64957.10.1016/j.idairyj.2007.12.003Search in Google Scholar

40. MoraisHA, De MarcoLMOliveiraMC, SilvestreMPC. Casein hydrolysates using papain: peptide profile and encapsulation in liposomes. Acta Aliment2005;34:5969.10.1556/AAlim.34.2005.1.9Search in Google Scholar

41. SilvaMC, SilvaVDM, LanaAMQ, SilvestreMPC. Grau de hidrólise e perfil peptídico de hidrolisados enzimáticos do concentrado protéico de soro de leite. Aliment Nutr2009;20:395402.Search in Google Scholar

42. AmiotJ, BrissonGJ. Continuous automatic nitrogen determination for gel chromatography of protein enzymatic hydrolysates. J Chromatogr1980;193:4969.10.1016/S0021-9673(00)87756-0Search in Google Scholar

43. Vallejo-Cordoba B, NakaiS, PowrieWD, BeveridgeT. Protein hydrolysates for reducing water activity in meat products. J Food Sci1986;51:115661.10.1111/j.1365-2621.1986.tb13072.xSearch in Google Scholar

44. DeeslieWD, CheryanM. Functional properties of soy protein hydrolysates from a continuous ultrafiltration reactor. J Agric Food Chem1988;36:2631.10.1021/jf00079a007Search in Google Scholar

45. LemieuxL, AmiotJ. Application of reversed-phase high-performance liquid chromatography to separation of peptides from phosphorylated and dephosphorylated casein hydrolysates. J Chomatogr A1989;473:189206.10.1016/S0021-9673(00)91301-3Search in Google Scholar

46. AdachiS, KimuraY, MurakamiK, MatsunoR, YokogoshiH. Separation of peptide groups with definite characteristics from enzymatic protein hydrolysate. Agric Biol Chem1991;55:92532.10.1080/00021369.1991.10870720Search in Google Scholar

47. ArmsteadIP, LingJR. Chromatographic separation of mixed peptides from amino acids in biological digests with volatile buffers. J Chromatogr1991;586:25963.10.1016/0021-9673(91)85130-8Search in Google Scholar

48. LemieuxL, PiotJM, GuillochonD, AmiotJ. Study of the efficiency of a mobile phase used in size-exclusion HPLC for the separation of peptides from a casein hydrolysate according to their hydrodynamic volume. Chromatography1991;32:499504.10.1007/BF02327894Search in Google Scholar

49. SchmidtDG, PollJK. Enzymatic hydrolysis of α-lactalbumin and β-lactoglobulin in buffer solutions by proteolytic enzymes. Neth Milk Dairy J1991;45:22540.Search in Google Scholar

50. AubryAF, CaudeM, RossetR. Separation and identification of dipeptides in an hydrolyzed brain extract. Chromatography1992;33:5338.10.1007/BF02262244Search in Google Scholar

51. VisserS, SlagenCJ, RobbenAJPM. Determination of molecular mass distributions of whey protein hydrolysates by high-performance size-exclusion chromatography. J Chromatogr A1992;599:2059.10.1016/0021-9673(92)85474-8Search in Google Scholar

52. ParradoJ, MillanF, Hernandez-PinzónI, BautistaJ, MachadoA. Characterization of enzymatic sunflower protein hydrolysates. J Agric Food Chem1993;41:18215.10.1021/jf00035a003Search in Google Scholar

53. KopaciewiczW, RegnierFE. Nonideal size-exclusion chromatography of proteins: effects of pH at low ionic strength. Anal Biochem1982;126:816.10.1016/0003-2697(82)90102-6Search in Google Scholar

54. GolovchenkoN, KataevaIA, AkimenkoVK. Analysis of pH-dependent protein interactions with gel filtration medium. J Chromatogr1992;591:1218.10.1016/0021-9673(92)80229-NSearch in Google Scholar

55. KammounR, BejarS, EllouzR. Protein size distribution and inhibitory effect of wheat hydrolysates on Neutrases. Bioresour Technol2003;90:24954.10.1016/S0960-8524(03)00130-5Search in Google Scholar

56. AkiyamaH, SakataK, YoshikaY, MurataY, IshiharaY, TeshimaR, et al. Profile analysis and immunoglobulin E reactivity of wheat protein hydrolysates. Int Arch Allergy Immunol2006;140:3642.10.1159/000092000Search in Google Scholar

57. KongX, ZhouH, QianH. Enzymatic hydrolysis of wheat gluten by proteases and properties of the resulting hydrolysates. Food Chem2007;102:75963.10.1016/j.foodchem.2006.06.062Search in Google Scholar

58. PengX, XiongYL, KongB. Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance. Food Chem2009;113:196201.10.1016/j.foodchem.2008.07.068Search in Google Scholar

59. Li-JunL, Chuan-HeZ, ZhengZ. Analyzing molecular weight distribution on whey protein hydrolysates. Food Bioprod Process2008;86:16.10.1016/j.fbp.2007.10.007Search in Google Scholar

60. SuR, HeZ, QiW. Pancreatic hydrolysis of bovine casein: changes in the aggregate size and molecular weight distribution. Food Chem2008;107:1517.10.1016/j.foodchem.2007.07.078Search in Google Scholar

61. Saint-SauveurD, GauthierSF, BoutinY, MontoniA. Immunomodulating properties of a whey protein isolate, its enzymatic digest and peptide fractions. Int Dairy J2008;18:26070.10.1016/j.idairyj.2007.07.008Search in Google Scholar

62. ContrerasMM, Hernández-LedesmaB, AmigoL, Martín-ÁlvarezPJ, RecioI. Production of antioxidant hydrolysates from a whey protein concentrate with thermolysin: optimization by response surface methodology. Food Sci Technol2010;44:915.10.1016/j.lwt.2010.06.017Search in Google Scholar

63. PouliotY, GuyMM, TremblayM, GaonachAC, TingBPCP, GauthierSF, et al. Isolation and characterization of an aggregating peptide from a tryptic hydrolysate of whey proteins. J Agric Food Chem2009;57:37604.10.1021/jf803539fSearch in Google Scholar

64. DelvivoFM, SilvaVDM, MoraisHA, FigueiredoAFS, AguiarMJB, SilvestreMPC. Desenvolvimento de formulação dietética para fenilcetonúricos à base de hidrolisados de soro de leite. Rev Bras Nutr Clín2005;20:11726.Search in Google Scholar

65. BiasuttiEAR, AfonsoWO, Lopes JrCOCoelhoJV, SilvaVDM, SilvestreMPC. Ação da pancreatina na obtenção de hidrolisados protéicos de soro de leite com elevado teor de oligopeptídeos. Braz J Pharm Sci2008;44:5160.10.1590/S1516-93322008000100007Search in Google Scholar

Published Online: 2013-06-08

©2013 by Walter de Gruyter Berlin / Boston