Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 19, 2021

Effect of heat treatment on the microstructure and properties of 25Cr2MoVA petroleum casing steel

  • Pengjun Cao , Yilong Zhang , Kejian Li EMAIL logo , Jiling Dong and Wei Wu

Abstract

The 25Cr2MoVA steel was subjected to various heat treatments. We found that the hardness increased when the quenching temperature was in the range of 870 – 910 °C, and then it decreased for the temperature of 910 – 990 °C. The maximum hardness was 553 HV after quenching from 910 °C. Following quenching from 910°C, the 25Cr2Mo-VA steel was tempered in the temperature range of 560 to 750 °C. With an increase in the tempering temperature, the hardness and tensile strength of the material decreased, while the impact toughness increased; the corrosion resistance increased initially and then decreased. The best heat treatment process for the 25Cr2MoVA steel involved quenching form 910 °C and tempering at 650°C for 1 h, the hardness was 362 HV, the tensile strength reached 1 310 MPa, the impact energy reached 149 J, and the material exhibited the best corrosion resistance.


Dr. Kejian Li School of Metallurgy and Materials Engineering, Chongqing University of Science & Technology 20 east, University road 401331 Chongqing P. R. China Tel.: +86 (0)23 6502 3519

References

[1] H. Devold: Oil and Gas Production Handbook -An Introduction to Oil and Gas Production, ABB ATPA Oil and Gas, Sweden (2006).Search in Google Scholar

[2] K.J. Li, H.Y. Ma, Y.S. He, J.C. Chang, S.Y. Bae, K.S. Shin: Fusion Eng. Des. 125 (2017) 361. DOI:10.1016/j.fusengdes.2017.04.13310.1016/j.fusengdes.2017.04.133Search in Google Scholar

[3] S. Karamanos: Mat. Sci. (2016). DOI:10.1115/1.403194010.1115/1.4031940Search in Google Scholar

[4] C.R. Knittel: J. Econ. Pers. 26 (2012) 93. DOI:10.1257/jep.26.1.9310.1257/jep.26.1.93Search in Google Scholar

[5] D.X. Gai, Z.C. Liu, W. Liu, J.G. Yang: Heat Mass Transfer 46 (2009) 267. DOI:10.1007/s00231-009-0563-010.1007/s00231-009-0563-0Search in Google Scholar

[6] G. Hillard, Huntington: Energy Econ. 32 (2010) 63. DOI:10.1016/j.eneco.2009.04.00610.1016/j.eneco.2009.04.006Search in Google Scholar

[7] A. Bandivadekar, K. Bodek, L. Cheah, C. Evans, M. Weiss: MIT. LFEE. 2008.Search in Google Scholar

[8] E. Mabruri, S. Prifiharni, M.S. Anwar, T.B. Romijarso, B. Adjiantoro: Mat. Today 5 (2018) 14918. DOI:10.1016/j.matpr.2018.04.03010.1016/j.matpr.2018.04.030Search in Google Scholar

[9] Q. Zheng, K.J. Li, X.G. Yin, B.B. Li, C.H. Li: Scanning 2017. 1928198. PMid:29430276; DOI:10.1155/2017/192819810.1155/2017/1928198Search in Google Scholar

[10] Y.Y. Li, S.D. Zhao, S.Q. Fan, B. Zhong: Meter. Sci. J. 30 (2014) 645. DOI:10.1179/1743284713Y.000000037810.1179/1743284713Y.0000000378Search in Google Scholar

[11] L.N. Pussegoda, S. Vue, J.J. Jonas: Meter. Sci. J. 7 (2013) 129. DOI:10.1179/mst.1991.7.2.12910.1179/mst.1991.7.2.129Search in Google Scholar

[12] S.J. Zhao, Q.F. Wang, T. Pan, C.Y. Zhang, Y.Q. Zhang: J. Iron & Steel Resea.Inter.14 (2007) 227. DOI:10.1016/S1006-706X(08)60084-910.1016/S1006-706X(08)60084-9Search in Google Scholar

[13] W.W. Qi, S.L. Chang, P. Huan, C. Jie, Z. Jian: J. Mater. Engine. Perform. 27 (2018) 1485. DOI:10.1007/s11665-017-2856-710.1007/s11665-017-2856-7Search in Google Scholar

[14] M.Y. Ma, H.B. Wu, L.D. Wang: Heat Treatment of Metals 37, (2012) 16. DOI:10.1007/s11783-0280-z10.1007/s11783-0280-zSearch in Google Scholar

[15] H.E. Emre, R. Kaçar: Mat. Res. 18 (2015). DOI:10.1590/1516-1439.30811410.1590/1516-1439.308114Search in Google Scholar

[16] X. Zhang, X. Wang, H.Z. Li: Tianjin Metallurgy 2 (2015) 16. DOI:10.1007/s11665-017-2856-710.1007/s11665-017-2856-7Search in Google Scholar

Received: 2020-02-17
Accepted: 2020-09-28
Published Online: 2021-02-19

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 29.11.2023 from https://www.degruyter.com/document/doi/10.1515/ijmr-2020-7740/html
Scroll to top button