Abstract
The 25Cr2MoVA steel was subjected to various heat treatments. We found that the hardness increased when the quenching temperature was in the range of 870 – 910 °C, and then it decreased for the temperature of 910 – 990 °C. The maximum hardness was 553 HV after quenching from 910 °C. Following quenching from 910°C, the 25Cr2Mo-VA steel was tempered in the temperature range of 560 to 750 °C. With an increase in the tempering temperature, the hardness and tensile strength of the material decreased, while the impact toughness increased; the corrosion resistance increased initially and then decreased. The best heat treatment process for the 25Cr2MoVA steel involved quenching form 910 °C and tempering at 650°C for 1 h, the hardness was 362 HV, the tensile strength reached 1 310 MPa, the impact energy reached 149 J, and the material exhibited the best corrosion resistance.
References
[1] H. Devold: Oil and Gas Production Handbook -An Introduction to Oil and Gas Production, ABB ATPA Oil and Gas, Sweden (2006).Search in Google Scholar
[2] K.J. Li, H.Y. Ma, Y.S. He, J.C. Chang, S.Y. Bae, K.S. Shin: Fusion Eng. Des. 125 (2017) 361. DOI:10.1016/j.fusengdes.2017.04.13310.1016/j.fusengdes.2017.04.133Search in Google Scholar
[3] S. Karamanos: Mat. Sci. (2016). DOI:10.1115/1.403194010.1115/1.4031940Search in Google Scholar
[4] C.R. Knittel: J. Econ. Pers. 26 (2012) 93. DOI:10.1257/jep.26.1.9310.1257/jep.26.1.93Search in Google Scholar
[5] D.X. Gai, Z.C. Liu, W. Liu, J.G. Yang: Heat Mass Transfer 46 (2009) 267. DOI:10.1007/s00231-009-0563-010.1007/s00231-009-0563-0Search in Google Scholar
[6] G. Hillard, Huntington: Energy Econ. 32 (2010) 63. DOI:10.1016/j.eneco.2009.04.00610.1016/j.eneco.2009.04.006Search in Google Scholar
[7] A. Bandivadekar, K. Bodek, L. Cheah, C. Evans, M. Weiss: MIT. LFEE. 2008.Search in Google Scholar
[8] E. Mabruri, S. Prifiharni, M.S. Anwar, T.B. Romijarso, B. Adjiantoro: Mat. Today 5 (2018) 14918. DOI:10.1016/j.matpr.2018.04.03010.1016/j.matpr.2018.04.030Search in Google Scholar
[9] Q. Zheng, K.J. Li, X.G. Yin, B.B. Li, C.H. Li: Scanning 2017. 1928198. PMid:29430276; DOI:10.1155/2017/192819810.1155/2017/1928198Search in Google Scholar
[10] Y.Y. Li, S.D. Zhao, S.Q. Fan, B. Zhong: Meter. Sci. J. 30 (2014) 645. DOI:10.1179/1743284713Y.000000037810.1179/1743284713Y.0000000378Search in Google Scholar
[11] L.N. Pussegoda, S. Vue, J.J. Jonas: Meter. Sci. J. 7 (2013) 129. DOI:10.1179/mst.1991.7.2.12910.1179/mst.1991.7.2.129Search in Google Scholar
[12] S.J. Zhao, Q.F. Wang, T. Pan, C.Y. Zhang, Y.Q. Zhang: J. Iron & Steel Resea.Inter.14 (2007) 227. DOI:10.1016/S1006-706X(08)60084-910.1016/S1006-706X(08)60084-9Search in Google Scholar
[13] W.W. Qi, S.L. Chang, P. Huan, C. Jie, Z. Jian: J. Mater. Engine. Perform. 27 (2018) 1485. DOI:10.1007/s11665-017-2856-710.1007/s11665-017-2856-7Search in Google Scholar
[14] M.Y. Ma, H.B. Wu, L.D. Wang: Heat Treatment of Metals 37, (2012) 16. DOI:10.1007/s11783-0280-z10.1007/s11783-0280-zSearch in Google Scholar
[15] H.E. Emre, R. Kaçar: Mat. Res. 18 (2015). DOI:10.1590/1516-1439.30811410.1590/1516-1439.308114Search in Google Scholar
[16] X. Zhang, X. Wang, H.Z. Li: Tianjin Metallurgy 2 (2015) 16. DOI:10.1007/s11665-017-2856-710.1007/s11665-017-2856-7Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany