Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 19, 2021

Diffusion-alloying sintering of Cr–Mo pre-alloyed iron powders with carbon: The effect of the carbon introduction method on the sinter’s properties

  • Lubomir Anestiev EMAIL logo , Jordan Georgiev , Seryozha Valkanov , Marcela Selecká , Sabine Cherneva and Roumen Iankov


The influence of the carbon introduction method on the microstructure and the mechanical properties of sinters produced from iron-based powders by diffusion-alloying sintering has been studied. Two methods of carbon introduction were tested: (1) Premixing of the base powder with graphite, and (2) Coating of the base powder with a carbon-containing substance. The results obtained could be summarized as (1) The microstructure and the mechanical properties depend on the method of carbon introduction; (2) The sinters produced from coated powders possess finer micro-structure, improved homogeneity, and in two out of three of the studied compositions, better mechanical properties. Based on the results obtained, a reasonable assumption was made that the method of carbon introduction affects the dissolution rate of the carbon additive, thus affecting the micro-structure and the mechanical properties of the sinter.

Dr. Lubomir Anestiev, Bulgarian Academy of Sciences, Institute of Metal Science Technologies and Equipment with Hydro- and Aerodynamic Centre 67 Shipchenski Prohod Str. 1574 Sofia, Bulgaria Tel: +359 2 4626 297 Fax: +359 2 4626 202 Web:


[1] A. Šalak: Ferrous Powder Metallurgy, Cambridge International Science Publishing, Cambridge (1997).Search in Google Scholar

[2] J. Georgiev, L. Anestiev, M. Selecká: Fundamentals of C7H7 Carburizing Process and its Influence on the Sintering Processes and the Resulting Mechanical Properties, Encyclopedia of Iron and Steel of America (EISA), Taylor and Francis Publ. (2016) 598. DOI:10.1081/E-EISA-12004982610.1081/E-EISA-120049826Search in Google Scholar

[3] L. Anestiev, M. De Wulf, L. Froyen, L. Dupré, J. Melkebeek: J. Magn. Magn. Mater. 281 (2004) 124. DOI:10.1016/j.jmmm.2004.04.10110.1016/j.jmmm.2004.04.101Search in Google Scholar

[4] T. Pieczonka, J. Georgiev, M. Stoytchev, S.C. Mitchell, D. Teodosiev, S. Gyurov, Powder Metall. Prog. 4 (2004) 211.Search in Google Scholar

[5] S.C. Mitchell, A.S. Wronski, J. Georgiev, M. Stoytchev, in: Proc. PM’2004, World Congress and Exhibition, vol. 3, Vienna, Austria, (2004) 308.Search in Google Scholar

[6] A. Zeleňák, M. Kupková, J. Georgiev, R. Oriňáková: Acta Metall. Slovaca – Conference 3 (2013) 171. DOI:10.12776/amsc.v3i0.12210.12776/amsc.v3i0.122Search in Google Scholar

[7] Iron and steel powders for sintered components, Höganäs Handbook for Sintered Components, ch. Pre-alloyed Powders, (accessed February 2019), ISBN 978-91983614-0-7 pp.307 –388; vol.6 Metallography, ibid.Search in Google Scholar

[8] Agilent Nanoindenter G200 User’s Guide, Part Number G2A13192-1, Rev C, Agilent Technologies, Inc. (2012).Search in Google Scholar

[9] M. Datcheva, S. Cherneva, M. Stoycheva, R. Iankov, D. Stoychev: Mater. Sci. Appl. 2 (2011) 1452. DOI:10.4236/msa.2011.21019610.4236/msa.2011.210196Search in Google Scholar

[10] W. Oliver, G. Pharr: J. Mater. Res. 19 (2004) 3. DOI:10.1557/jmr.2004.19.1.310.1557/jmr.2004.19.1.3Search in Google Scholar

[11] B.-K. Jang, H. Matsubara: Mater. Lett. 59 (2005) 3462. DOI:10.1016/j.matlet.2005.06.01410.1016/j.matlet.2005.06.014Search in Google Scholar

[12] L. Zhang, T. Ohmura, K. Tsuzaki: Application of Nanoindentation Technique in Martensitic Structures. DOI:10.5772/4832710.5772/48327Search in Google Scholar

[13] A. Kroupa, J. Havrankova, M. Coufalova, M. Svoboda, J. Vrestal: J. Phase Equilibria 22 (2001) 312. DOI:10.1361/10549710177033882410.1361/105497101770338824Search in Google Scholar

[14] M. Hillert, C. Qiu: J. Phase Equilibria 13 (5) (1992) 512. DOI:10.1007/BF0266576410.1007/BF02665764Search in Google Scholar

[15] Edelstahl Witten-Krefeld GMBH, accessed February 2015.Search in Google Scholar

[16] M. Fujita, J. Kinugawa, A. Okada, T. Kasugai: National Institute for Materials Science, Tokyo, Japan (2003), accessed January 2015.Search in Google Scholar

[17] D. Deng, Y. Tong, N. Ma, H. Murakawa: Acta Metall. Sin. (Engl. Lett.) 26(3) (2013) 333. DOI:10.1007/s40195-012-0163-810.1007/s40195-012-0163-8Search in Google Scholar

[18] Rodacciai: Hot-rolled products, UNI EN 10083-3, 50CrMo4 – Nr. 1.7228, accessed January 2017.Search in Google Scholar

[19] R.W. Swindeman, J.F. King, R.K. Nanstad: Oak Ridge National Laboratory, ORNL/TM-9731, US Department of Commerce, Springfield, Virginia (1985).Search in Google Scholar

[20] P.N. Spencer: Oak Ridge National Laboratory/Fmp-84/4 (1984) 59.Search in Google Scholar

[21] T. Wada, T.B. Cox: American Society of Mechanical Engineers, New York (1984) 77.Search in Google Scholar

[22] R.L. Klueh, A.M. Nasreldin: Metall. Trans. A 18 (1987) 1279. DOI:10.1007/BF0264719710.1007/BF02647197Search in Google Scholar

[23] E. Fromm, E. Gebhardt: Gase und Kohlenstoff in Metallen, Springer-Verlag, Berlin (1976). DOI:10.1007/978-3-642-80943-910.1007/978-3-642-80943-9Search in Google Scholar

[24] D.P. Koistinen, R.E. Marburger: Acta Metall. 7 (1959) 59. DOI:10.1016/0001-6160(59)90170-110.1016/0001-6160(59)90170-1Search in Google Scholar

[25] H.K.D.H. Bhadeshia, Sir R. Honeycombe: Steels Microstructure and Properties, Third edition, Butterworth-Heinemann (Elsevier) (2006). DOI:10.1016/B978-075068084-4/50016-910.1016/B978-075068084-4/50016-9Search in Google Scholar

[26] H.K.D.H. Bhadeshia: Bainite in Steels: Theory and Practice, Third Edition, Maney Publishing, Leeds (2015).Search in Google Scholar

[27] H.K.D.H. Bhadeshia: Interpretation of the Microstructure of Steels, Cambridge University, accessed February (2019).Search in Google Scholar

[28] P. Maynier, B. Jungmann, J. Dollet: Creusot-Loire System for the prediction of the mechanical properties of low alloy steel products, Hardenability Concepts With Applications to Steel, The Metallurgical Society of AIME (1978) 518.Search in Google Scholar

[29] G.F. Bocchini: Int. J. Powder Metall. 22 (1986) 185.Search in Google Scholar

[30] L.Ĉiripova, E. Hryha, E. Dudrova, A. Výrostková: Mater. Des. 35 (2012) 619. DOI:10.1016/j.matdes.2011.10.01110.1016/j.matdes.2011.10.011Search in Google Scholar

[31] H. Ghassemi-Armaki, R. Maab, S.P. Bhat, S. Sriram, J.R. Greer, K.S. Kumar: Acta Mater. 62 (2014) 197. DOI:10.1016/j.actamat.2013.10.00110.1016/j.actamat.2013.10.001Search in Google Scholar

[32] V. Sandeep, U. Verma, P. Prakash, C. Tewari, and D. Khanduja: Mater. Today: Proc. 4 (2017) 459. DOI:10.1016/j.matpr.2017.01.04510.1016/j.matpr.2017.01.045Search in Google Scholar

[33] K. Wieczerzak, P. Bala, M. Stepien, G. Cios, T. Koziel: Mater. Des. 94 (2016) 61. DOI:10.1016/j.matdes.2016.01.02810.1016/j.matdes.2016.01.028Search in Google Scholar

[34] W. Srijampan, A. Wiengmoon, M. Morakotjinda, R. Krataitong, Th. Yotkaew, N. Tosangthum, R. Tongsri: Mater. Des. 88 (2015) 693. DOI:10.1016/j.matdes.2015.09.03010.1016/j.matdes.2015.09.030Search in Google Scholar

[35] D.W. Oxtoby, H.P. Gillis, A. Campion: Principles of modern chemistry Sixth edition, Thomson books/cole (2008) 257.Search in Google Scholar

Accepted: 2020-02-20
Accepted: 2020-09-23
Published Online: 2021-02-19

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 11.12.2023 from
Scroll to top button