Abstract
SiC nanoparticles play an important role in Cu–MWCNTs nanocomposites. So far, the effect of SiC volume fraction has not been considered on the properties of Cu–MWCNTs–SiC hybrid nanocomposites. Copper-based hybrid nanocomposites with 2 vol.% carbon nanotubes and 1–3 vol.% SiC nanoparticles were prepared via powder metallurgy. The composite powders were compacted and then sintered at 850, 900 and 950 °C for 1 h. Increasing the volume fraction of SiC nanoparticles restricts the grain growth, decreases the friction coefficient, and increases the hardness and wear resistance of prepared nanocomposites. The coefficient of friction and wear rate of Cu–MWCNTs–SiC hybrid nanocomposites decreased with increasing SiC content. Nanocomposites sintered at 900 °C exhibited higher hardness and wear resistance compared to other samples. The highest hardness and wear resistance were related to the Cu-2 vol.% MWCNTs-3 vol.%SiC hybrid nanocomposite sintered at 900 °C, which shows approximately 24 and 78% improvement over the pure copper specimen, respectively. Wear resistance and hardness were reduced for samples sintered at 950 °C.
References
[1] M.R. Akbarpour, H. Mousa Mirabad, S. Alipour: Ceram. Int. 45 (2019) 3276. DOI:10.1016/j.ceramint.2018.10.23510.1016/j.ceramint.2018.10.235Search in Google Scholar
[2] K.S. Prakash, T. Thankachan, R. Radhakrishnan: Trans. Nonferrous Met. Soc. China 27 (2017) 627. DOI:10.1016/S1003-6326(17)60070-010.1016/S1003-6326(17)60070-0Search in Google Scholar
[3] K. Rajkumar, S. Aravindan: Tribol. Int. 44 (2011) 347. DOI:10.1016/j.triboint.2010.11.00810.1016/j.triboint.2010.11.008Search in Google Scholar
[4] A.M. Sadoun, A. Fathy, A. Abu-Oqail, H.T. Elmetwaly, A. Wagih: Ceram. Int. 46 (2020) 7586. DOI:10.1016/j.ceramint.2019.11.25810.1016/j.ceramint.2019.11.258Search in Google Scholar
[5] C. Ayyappadas, A. Muthuchamy, A. Raja Annamalai, D.K. Agrawal: Adv. Powder Technol. 28 (2017) 1760. DOI:10.1016/j.apt.2017.04.01310.1016/j.apt.2017.04.013Search in Google Scholar
[6] H. Nautiyal, S. Kumari, O.P. Khatri, R. Tyagi: Compos. Part B Eng. (2019) 173 106931. DOI:10.1016/j.compositesb.2019.10693110.1016/j.compositesb.2019.106931Search in Google Scholar
[7] R. Purohit, N.K. Solanki, G. Bajpayee, R.S. Rana, G. Hemath Kumar: Mater. Today Proc. 4 (2017) 3270. DOI:10.1016/j.matpr.2017.02.21310.1016/j.matpr.2017.02.213Search in Google Scholar
[8] S.G. Sapate, A. Uttarwar, R.C. Rathod, R.K. Paretkar: Mater. Des. 30 (2009) 376. DOI:10.1016/j.matdes.2008.04.05510.1016/j.matdes.2008.04.055Search in Google Scholar
[9] M.R. Akbarpour, S. Alipour, A. Safarzadeh, H.S. Kim: Compos. Part B Eng. 158 (2019) 92. DOI:10.1016/j.compositesb.2018.09.03910.1016/j.compositesb.2018.09.039Search in Google Scholar
[10] V. Rajkovic, D. Bozic, J. Stasic, H. Wang, M.T. Jovanovic: Powder Technol. 268 (2014) 392. DOI:10.1016/j.powtec.2014.08.05110.1016/j.powtec.2014.08.051Search in Google Scholar
[11] B. Duan, Y. Zhou, D. Wang, Y. Zhao: J. Alloys Compd. 771 (2019) 498. DOI:10.1016/j.jallcom.2018.08.31510.1016/j.jallcom.2018.08.315Search in Google Scholar
[12] T. Varo, A. Canakci: Arab. J. Sci. Eng. 40 (2015) 2711. DOI:10.1007/s13369-015-1734-610.1007/s13369-015-1734-6Search in Google Scholar
[13] R. Venkatesh, V.S. Rao: Def. Technol. 14 (2018) 346. DOI:10.1016/j.dt.2018.05.00310.1016/j.dt.2018.05.003Search in Google Scholar
[14] Y. Zhan, G. Zhang: Mater. Des. 27 (2006) 79. DOI:10.1016/j.matdes.2004.08.01910.1016/j.matdes.2004.08.019Search in Google Scholar
[15] C.S. Ramesh, R. Noor Ahmed, M.A. Mujeebu, M.Z. Abdullah: Mater. Des. 30 (2009) 1957. DOI:10.1016/j.matdes.2008.09.00510.1016/j.matdes.2008.09.005Search in Google Scholar
[16] X. Chen, J. Tao, J. Yi, Y. Liu, C. Li, R. Bao: Mater. Sci. Eng. A 718 (2018) 427. DOI:10.1016/j.msea.2018.02.00610.1016/j.msea.2018.02.006Search in Google Scholar
[17] H.M. Mallikarjuna, C.S. Ramesh, P.G. Koppad, R. Keshavamurthy, K.T. Kashyap: Trans. Nonferrous Met. Soc. China 26 (2016) 3170. DOI:10.1016/S1003-6326(16)64449-710.1016/S1003-6326(16)64449-7Search in Google Scholar
[18] M.R. Akbarpour, E. Salahi, F. Alikhani Hesari, A. Simchi, H.S. Kim: Mater. Sci. Eng. A 572 (2013) 83. DOI:10.1016/j.msea.2013.02.03910.1016/j.msea.2013.02.039Search in Google Scholar
[19] Y. Zhan, G. Zhang: Tribol. Lett. 17 (2004) 91. DOI:10.1023/B:TRIL.0000017423.70725.1c10.1023/B:TRIL.0000017423.70725.1cSearch in Google Scholar
[20] H.M. Mallikarjuna, C.S. Ramesh, P.G. Koppad, R. Keshavamurthy, D. Sethuram: Vacuum 145 (2017) 320. DOI:10.1016/j.vacuum.2017.09.01610.1016/j.vacuum.2017.09.016Search in Google Scholar
[21] H. Abdoos: Mech. Adv. Compos. Struct. 6 (2019) 181. DOI:10.22075/macs.2019.15402.115310.22075/macs.2019.15402.1153Search in Google Scholar
[22] V.Y. Novikov: Mater. Lett. 62 (2008) 3748. DOI:10.1016/j.matlet.2008.04.04810.1016/j.matlet.2008.04.048Search in Google Scholar
[23] S.R. Dong, J.P. Tu, X.B. Zhang: Mater. Sci. Eng. A 313 (2001) 83. DOI:10.1016/S0921-5093(01)00963-710.1016/S0921-5093(01)00963-7Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany