Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 27, 2021

Fracture toughness assessment at different regions in an inertial friction welded Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy plate

Yingping Ji and Sujun Wu


The study aims to ascertain the influences of position on fracture toughness and fracture mechanism of inertial friction welded Ti-5Al-2Sn-2Zr-4Mo-4Cr joints. The room-temperature fracture toughness values of the parent material and three other regions in the weld were evaluated by standard crack tip opening displacement tests. The micro-structure and tensile properties of the welds were also investigated. Based on the observation of fracture surface and crack propagation path, a schematic illustration of the crack propagation was formed. The results suggest that the weld metal had the worst fracture toughness. The individual fracture toughness of different regions in the weld could be explained by the various modes of crack propagation, which were affected by different microstructures.

Yingping Ji School of Mechanical Engineering NingBo University of Technology 769 Binhai Road 2 Ningbo Hangzhou Bay New Zone NingBo 315336 P. R. China Tel.: +86–574–82351616


[1] Y.H. Liu, Z.B. Zhao, C.B. Zhang, Q.J. Wang, H. Sun, N. Li: Mater. Lett. 277 (2020) 128329. DOI:10.1016/j.matlet.2020.12832910.1016/j.matlet.2020.128329Search in Google Scholar

[2] Y.P. Ji, S.J. Wu, G.N. Yu: Fatigue. Fract. Eng. M. 37 (2013) 39. DOI:10.1111/ffe.1207610.1111/ffe.12076Search in Google Scholar

[3] R.P. Turner, D. Howe, B. Thota, R.M. Ward, H.C. Basoalto, J.W. Brooks: J. Manuf. Process. 24 (2016) 186. DOI:10.1016/j.jmapro.2016.09.00810.1016/j.jmapro.2016.09.008Search in Google Scholar

[4] W. Baeslack, D. Phillips, C. English, A. Woodfield: J. Mater. Sci. Lett. 10 (1991) 1401. DOI:10.1007/BF0073569210.1007/BF00735692Search in Google Scholar

[5] O. Senkov, D. Mahaffey, S. Semiatin: J. Mater. Process. Technol. 250 (2017) 156. DOI:10.1016/j.jmatprotec.2017. in Google Scholar

[6] W. Guo, G.Q. You, G.Y. Yuan, X.L Zhang: J. Alloys. Compd. 695 (2017) 3267. DOI:10.1016/j.jallcom.2016.11.21810.1016/j.jallcom.2016.11.218Search in Google Scholar

[7] R.P. Turner, B. Perumal, Y. Lu, R.M. Ward, H.C. Basoalto, J.W. Brooks: Metall. Mater. Trans. B 50 (2019) 1000. DOI:10.1007/s11663-018-1489-z10.1007/s11663-018-1489-zSearch in Google Scholar

[8] W.A. Baeslack, D. Phillips, C. English, A.P. Woodfield: J. Mater. Sci. Lett. 10 (1991) 1401. DOI:10.1007/BF0073569210.1007/BF00735692Search in Google Scholar

[9] B.H Tao, Q Li, Y.H Zhang, T.C Zhang, Y Liu: Mat. Sci. Eng. A 634 (2015) 141. DOI:10.1016/j.msea.2015.03.00310.1016/j.msea.2015.03.003Search in Google Scholar

[10] K.P. Rao, K. Angamuthu, P.B. Srinivasan: J. Mater. Process. Technol. 199 (2008) 185. DOI:10.1016/j.jmatprotec.2007.08.00110.1016/j.jmatprotec.2007.08.001Search in Google Scholar

[11] K.K. Murthy, S. Sundaresan, N.B. Potluri: Eng. Fract. Mech. 58 (1997) 29. DOI:10.1016/S0013-7944(97)00075-110.1016/S0013-7944(97)00075-1Search in Google Scholar

[12] T. Santos, T. Hermenegildo, C. Afonso, R. Marinho, M. Paes, A. Ramirez: Eng. Fract. Mech. 77 (2010) 2937. DOI:10.1016/j.engfracmech.2010.07.02210.1016/j.engfracmech.2010.07.022Search in Google Scholar

[13] J. Ávila, C. Ruchert, P. Mei, R. Marinho, M. Paes, A. Ranirez: Eng. Fract. Mech. 147 (2015) 176. DOI:10.1016/j.engfracmech.2015.08.00610.1016/j.engfracmech.2015.08.006Search in Google Scholar

[14] J. Avila, J. Rodriguez, P. Mei, A. Ramirez: Mat. Sci. Eng. A 673 (2016) 257. DOI:10.1016/j.msea.2016.07.04510.1016/j.msea.2016.07.045Search in Google Scholar

[15] W.W. Yu, M.Y. Fan, J.H. Shi, F. Xue, X. Chen, H. Liu: Eng. Fract. Mech. 202 (2018) 135. DOI:10.1016/j.engfracmech.2018.09.02110.1016/j.engfracmech.2018.09.021Search in Google Scholar

[16] X.G. Li, K.J. Li, S.L. Li, Y. Wu, Z.P. Cai, J.L. Pan: J. Mater. Sci. Technol. 39 (2020) 173. DOI:10.1016/j.jmst.2019.07.02110.1016/j.jmst.2019.07.021Search in Google Scholar

[17] J.K. Tang, Z. Liu, S.W. Shi, X. Chen: Eng. Fract. Mech. 195 (2018) 1. DOI:10.1016/j.engfracmech.2018.03.02210.1016/j.engfracmech.2018.03.022Search in Google Scholar

[18] T. Wang, H.Z. Guo, L.J. Tan, Z.K. Yao, Y. Zhao, P.H. Liu: Mater. Sci. Eng. A 528 (2011) 6375. DOI:10.1016/j.msea.2011.05.04210.1016/j.msea.2011.05.042Search in Google Scholar

[19] J.L. Liu, W.D. Zeng, Y.J Lai, Z.Q. Jia: Mater. Sci. Eng. A 597 (2014) 387. DOI:10.1016/j.msea.2013.12.07610.1016/j.msea.2013.12.076Search in Google Scholar

[20] J.W. Xu, W.D. Zeng, Z.Q. Jia, X. Sun, J.H. Zhou: J. Alloys. Compd. 618 (2015) 348. DOI:10.1016/j.jallcom.2014.08.22310.1016/j.jallcom.2014.08.223Search in Google Scholar

[21] X.H Shi, W.D Zeng, Q.Y Zhao: Mater. Sci. Eng. A 636 (2015) 543. DOI:10.1016/j.msea.2015.04.02110.1016/j.msea.2015.04.021Search in Google Scholar

[22] BS7448: Fracture mechanics toughness tests. British Standards Institution, (1991).Search in Google Scholar

[23] G.Q. Wang, Z.B. Zhao, B.B. Yu, J.R. Liu, Q.J. Wang, J.H. Zhang, R. Yang, J.W. Li: ACTA. METALL. SIN. (English Letters). 30 (2017) 499. DOI:10.1007/s40195-017-0528-010.1007/s40195-017-0528-0Search in Google Scholar

[24] R. Ahluwalia, R. Laskowski, N. Ng, M. Wong, S.S. Quek, D.T. Wu: Mater. Res. Express 7 (2020) 046517. DOI:10.1088/2053-1591/ab875a10.1088/2053-1591/ab875aSearch in Google Scholar

[25] X.H. Shi, W.D. Zeng, C.L. Shi, H.J. Wang, Z.Q. Jia: J. Alloys. Compd. 632 (2015) 748. DOI:10.1016/j.jallcom.2015.01.21710.1016/j.jallcom.2015.01.217Search in Google Scholar

[26] A.A. Wells: Brit. Weld. J. 10 (1963) 563. DOI:10.1007/BF0300210010.1007/BF03002100Search in Google Scholar

[27] J.K. Fan, J.S. Li, H.C. Kou, K. Hua, B. Tang: Mater. Charact. 96 (2014) 93. DOI:10.1016/j.matchar.2014.07.01810.1016/j.matchar.2014.07.018Search in Google Scholar

[28] G. Lütjering, J. Albrecht, C. Sauer, T. Krull: Mater. Sci. Eng. A 468–470 (2007) 201. DOI:10.1016/j.msea.2006.07.16810.1016/j.msea.2006.07.168Search in Google Scholar

Received: 2020-03-07
Accepted: 2020-11-10
Published Online: 2021-02-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany